ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of CuxZn1-x-ZIF/NF Catalysts
2.2. Material Characterization
2.3. Electrochemical Testing
3. Results
3.1. Physical Characterization
3.2. AOR Performance of Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jilani, A.; Ibrahim, H. Development in photoelectrochemical water splitting using carbon-based materials: A path to sustainable hydrogen production. Energies 2025, 18, 1603. [Google Scholar] [CrossRef]
- Sotiriou, A.; Aspri, E.; Deligiannakis, Y.; Louloudi, M. Engineering of hybrid SiO2@{N-P-Fe} catalysts with double-ligand for efficient H2 production from HCOOH. Energies 2025, 18, 514. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Pillai, H.S.; Lattimer, J.; Adli, N.M.; Karakalos, S.G.; Chen, M.; Guo, L.; Xu, H.; Yang, J.; et al. Ternary ptirni catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957. [Google Scholar] [CrossRef]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.; Wu, G. Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Appl. Catal. B-Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- La Corte, D.; Maddaloni, M.; Vahidzadeh, R.; Domini, M.; Bertanza, G.; Ansari, S.U.; Marchionni, M.; Tola, V.; Artioli, N. Recovered ammonia as a sustainable energy carrier: Innovations in recovery, combustion, and fuel cells. Energies 2025, 18, 508. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Duan, X.; Zou, P.; Jeerh, G.; Sun, B.; Chen, S.; Humphreys, J.; Walker, M.; Xie, K.; et al. An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis. Adv. Sci. 2021, 8, 2101299. [Google Scholar] [CrossRef] [PubMed]
- Adli, N.M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, 3130–3147. [Google Scholar] [CrossRef]
- Akagi, N.; Hori, K.; Sugime, H.; Noda, S.; Hanada, N. Systematic investigation of anode catalysts for liquid ammonia electrolysis. J. Catal. 2022, 406, 222–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yao, Z. Recent development of fuel cell core components and key materials: A review. Energies 2023, 16, 2099. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, L.; Xiao, Z.; Zhuang, X.; Aslam, T.S.; Zhang, X.; Tan, Y.X.; Wang, Y. Temporally decoupled ammonia splitting by a Zn–NH3 battery with an ammonia oxidation/hydrogen evolution bifunctional electrocatalyst as a cathode. J. Am. Chem. Soc. 2024, 146, 7771–7778. [Google Scholar] [CrossRef] [PubMed]
- Jeerh, G.; Zou, P.; Zhang, M.; Chen, S.; Humphreys, J.; Tao, S. Electrooxidation of ammonia on a-site deficient perovskite oxide La0.9Ni0.6Cu0.35Fe0.05O3-δ for wastewater treatment. Sep. Purif. Technol. 2022, 297, 121451. [Google Scholar] [CrossRef]
- Wang, H.; Tong, X.; Zhou, L.; Wang, Y.; Liao, L.; Ouyang, S.; Zhang, H. Unique three-dimensional nanoflower-like NiCu electrodes constructed by Co, S co-doping for efficient ammonia oxidation reaction. Sep. Purif. Technol. 2022, 303, 122293. [Google Scholar] [CrossRef]
- Li, Y.; Pillai, H.S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q.; Karakalos, S.; Chen, M.; Yang, J.; et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Huang, Y.-H.; Huang, C.P. Electrocatalytic ammonia oxidation over a nickel foam electrode: Role of Ni(OH)2(s)-NiOH(s) nanocatalysts. Electrochim. Acta 2018, 263, 261–271. [Google Scholar] [CrossRef]
- Kim, H.; Yang, W.; Lee, W.H.; Han, M.H.; Moon, J.; Jeon, C.; Kim, D.; Ji, S.G.; Chae, K.H.; Lee, K.-S.; et al. Operando stability of platinum electrocatalysts in ammonia oxidation reactions. ACS Catal. 2020, 10, 11674–11684. [Google Scholar] [CrossRef]
- Siddharth, K.; Hong, Y.; Qin, X.; Lee, H.J.; Chan, Y.T.; Zhu, S.; Chen, G.; Choi, S.-I.; Shao, M. Surface engineering in improving activity of pt nanocubes for ammonia electrooxidation reaction. Appl. Catal. B-Environ. 2020, 269, 118821. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Y.; Xi, S.; Diao, C.; Yu, Z.; Lee, W.S.V.; Xue, J. Deciphering NH3 adsorption kinetics in ternary Ni–Cu–Fe oxyhydroxide toward efficient ammonia oxidation reaction. Small 2021, 17, 2005616. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, H.; Zhang, K.; Zhang, G.; Lan, H.; Qu, J. Ni(ii)/Ni(iii) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem. Eng. J. 2021, 404, 126795. [Google Scholar] [CrossRef]
- Xue, Q.; Zhao, Y.; Zhu, J.; Ding, Y.; Wang, T.; Sun, H.; Li, F.; Chen, P.; Jin, P.; Yin, S.; et al. Ptru nanocubes as bifunctional electrocatalysts for ammonia electrolysis. J. Mater. Chem. A 2021, 9, 8444–8451. [Google Scholar] [CrossRef]
- Moran, E.; Cattaneo, C.; Mishima, H.; de Mishima, B.A.L.; Silvetti, S.P.; Rodriguez, J.L.; Pastor, E. Ammonia oxidation on electrodeposited Pt–Ir alloys. J. Solid. State Electrochem. 2007, 12, 583–589. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Zhou, L.; Li, Q.; Yang, X.; Wang, Y.; Zhang, M.; Wu, Z. Efficient and highly selective direct electrochemical oxidation of ammonia to dinitrogen facilitated by nicu diatomic site catalysts. Appl. Catal. B-Environ. 2023, 328, 122544. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, H.; Yan, L.; Zhao, Y.; Yang, L.; Fu, Q.; Li, D.; Zhang, J.; Zhao, X. Self-terminating surface reconstruction induced by high-index facets of delafossite for accelerating ammonia oxidation reaction involving lattice oxygen. Small 2023, 19, e2207727. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Surendran, S.; Kim, M.-C.; An, T.-Y.; Lim, Y.; Choi, H.; Janani, G.; Jesudass, S.C.; Moon, D.J.; Kim, J.; et al. Meticulous integration of n and c active sites in Ni2P electrocatalyst for sustainable ammonia oxidation and efficient hydrogen production. Chem. Eng. J. 2023, 463, 142314. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Tong, X.; Zhou, L.; Yang, X.; Wang, Y.; Zhang, M.; Wu, Z. Sulfur induced surface reconfiguration of Ni1Cu3-S-T/CP anode for high-efficiency ammonia electro-oxidation. Chem. Eng. J. 2023, 452, 139582. [Google Scholar] [CrossRef]
- Chai, L.; Pan, J.; Hu, Y.; Qian, J.; Hong, M. Rational design and growth of MOF-on-MOF heterostructures. Small 2021, 17, 2100607. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Peng, L.; Syzgantseva, O.A.; Trukhina, O.; Kochetygov, I.V.; Justin, A.; Sun, D.T.; Abedini, H.; Syzgantseva, M.A.; Oveisi, E.; et al. Preparation of highly porous metal—organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 2020, 142, 13415–13425. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, T.; Zhang, X.; Zhang, R.; Tang, S.; Yuan, Y.; Xie, Z.; Liu, Y.; Wang, H.; Fedorovich, K.V.; et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Chen, T.; Li, W.; Zheng, S.; Pi, Y.; Luo, Y.; Pang, H. Mxene-Copper/Cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem.-Int. Edit. 2021, 60, 25318–25322. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous Nickel–Zinc batteries. Adv. Mater. 2022, 34, e2201779. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem.-Int. Edit. 2022, 61, e202209350. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Guo, X.; Hang, X.; Pang, H. Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. J. Colloid. Interface Sci. 2022, 607, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Geng, P.; Du, M.; Wu, C.; Luo, T.; Zhang, Y.; Pang, H. Ppy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorg. Chem. Front. 2022, 9, 2389–2394. [Google Scholar] [CrossRef]
- Guo, X.; Li, W.; Geng, P.; Zhang, Q.; Pang, H.; Xu, Q. Construction of SiO/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J. Colloid. Interface Sci. 2022, 606, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Mapping the Cu-btc metal—organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 2015, 281, 669–677. [Google Scholar] [CrossRef]
- Migunova, A.A.; Nemkayeva, R.R.; Zhakanbayev, Y.A.; Tuleushev, Y.Z. One-step synthesis CuCoNiSxO4−x thio/oxy spinel on Ni foam for high-performance asymmetric supercapacitors. Energies 2025, 18, 561. [Google Scholar] [CrossRef]
- Song, X.; Han, B.; Yu, X.; Hu, W. The analysis of charge transport mechanism in molecular junctions based on current-voltage characteristics. Chem. Phys. 2020, 528, 110514. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Yang, Z.; Shen, Y.; Wang, X.; Song, X.; Mu, X.; Gao, J.; Zhou, J.; Miao, L. High-performance NiCu hydroxide self-supported electrode as a bifunctional catalyst for AOR and OER. Battery Energy 2025, 4, e70010. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Han, C.B.; Zhao, W.K.; Fang, D.C.; Zhao, Y.L.; Liu, C.X.; Wang, X.; Sun, L.; Song, X.M. Formaldehyde oxidation reaction enhanced by interface engineering of Cu/Cu2O/Co(OH)2 composite electrocatalyst for bipolar hydrogen production. Chem. Eng. J. 2025, 512, 162568. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Wang, Z.; Fu, Y.; Yu, D.; Liang, J.; Huang, Y.; Wang, L.; Bello, I.T.; Ekambo, G.N.; et al. Cu-improving ammonia oxidation to nitrogen across wide potential range via synergistic effect over Cu and Ni anchored metal-organic frameworks. Chem. Eng. J. 2024, 499, 156283. [Google Scholar] [CrossRef]
- Huang, J.; Cai, J.; Wang, J. Cu-nanostructured wire-in-plate electrocatalyst for high-durability production of hydrogen and nitrogen from alkaline ammonia solution. ACS Appl. Energ. Mater. 2020, 3, 4108–4113. [Google Scholar] [CrossRef]
- Vu, H.K.; Mahvelati-Shamsabadi, T.; Dang, T.T.; Hur, S.H.; Kang, S.G.; Chung, J.S. Cu-synergistic effects of Ni and Cu in morphology-controlled NiCu electrocatalysts for ammonia electro-oxidation. ACS Appl. Nano Mater. 2023, 6, 20688–20699. [Google Scholar] [CrossRef]
- Xu, W.; Du, D.; Lan, R.; Humphreys, J.; Miller, D.N.; Walker, M.; Wu, Z.; Irvine, J.T.; Tao, S. Cu-electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B-Environ. 2018, 237, 1101–1109. [Google Scholar] [CrossRef]
- Lee, K.; Vikneshvaran, S.; Lee, H.; Lee, S.-Y. Ligand-mediated electrocatalytic activity of Cu-imidazolate coordination polymers for OER in water electrolysis. Int. J. Hydrogen Energy 2024, 51, 1184–1196. [Google Scholar] [CrossRef]
- Velisoju, V.K.; Cerrillo, J.L.; Ahmad, R.; Mohamed, H.O.; Attada, Y.; Cheng, Q.; Yao, X.; Zheng, L.; Shekhah, O.; Telalovic, S.; et al. Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO2 hydrogenation catalyst. Nat. Commun. 2024, 15, 2045. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Cheng, Y.; Pan, H.; Kang, P. Tailored bimetallic Ni–Sn catalyst for electrochemical ammonia oxidation to dinitrogen with high selectivity. Inorg. Chem. 2023, 62, 3986–3992. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Tang, D.; Xue, J.; Liu, S.; Wang, J.; Ji, H.; Chen, C.; Zhang, Y.; Zhao, J. Competitive non-radical nucleophilic attack pathways for NH3 oxidation and H2O oxidation on hematite photoanodes. Angew. Chem.-Int. Edit. 2022, 61, e202214580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, W.; Wang, H.; Tong, X.; Wang, Y.; Yang, X.; Wu, Z.; Liu, Z. A core-shell NiCu@NiCuOOH 3D electrode induced by surface electrochemical reconstruction for the ammonia oxidation reaction. Int. J. Hydrogen Energy 2022, 47, 16080–16091. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, X.; Wang, H.; Zhou, L.; Huang, S.; Li, D.; Wang, Y.; Xiao, H.; Zhang, M. Efficient ammonia removal promoted in a bifunctional system constructed with NiCu–S/DSA electrodes. J. Clean. Prod. 2023, 415, 137636. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, P.; Jeerh, G.; Sun, B.; Walker, M.; Tao, S. Oxygen vacancy-rich La0.5Sr1.5Ni0.9Cu0.1O4–δ as a high-performance bifunctional catalyst for symmetric ammonia electrolyzer. Adv. Funct. Mater. 2022, 32, 2204881. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, L.; Jiang, H.; Yang, L.; Zhao, Y.; Yang, X.; Wang, Y.; Shen, J.; Zhao, X. Facile fabrication of a foamed Ag3CuS2 film as an efficient self-supporting electrocatalyst for ammonia electrolysis producing hydrogen. ACS Appl. Mater. Interfaces 2022, 14, 9036–9045. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Lan, R.; Du, D.; Humphreys, J.; Walker, M.; Wu, Z.; Wang, H.; Tao, S. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B-Environ. 2017, 218, 470–479. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Jeerh, G.; Zou, P.; Sun, B.; Walker, M.; Xie, K.; Tao, S. A symmetric direct ammonia fuel cell using ternary NiCuFe alloy embedded in a carbon network as electrodes. J. Mater. Chem. A 2022, 10, 18701–18713. [Google Scholar] [CrossRef]
Catalyst | Electrolytes | Anode Potential (vs. RHE) | Current Density (mA/cm2) | Ref. |
---|---|---|---|---|
Cu0.7Zn0.3-ZIF/NF | 1 M KOH + 1 M NH3 | 1.6 V | 124 | This work |
1.7 V | 195 | |||
Ni1Cu1Co0.5-S-T/CP | 1 M NaOH + 0.2 M NH4Cl | 1.6 V | 96 | Ref. [12] |
NiCu3@Ni-NDC | 0.5 M KOH + 55 mM NH3 | 1.6 V | 54 | Ref. [39] |
LNCO55-Ar | 0.5 M KOH + 55 mM NH4Cl | 1.6 V | 14 | Ref. [6] |
Ni2P/NF | 1 M KOH + 5000 mg/L NH3 | 1.6 V | 8.2 | Ref. [18] |
α-Fe2O3 | 0.1 M NaClO4 + 0.5 M NH3 | 1.6 V | 2.13 | Ref. [46] |
Ni1Cu3-S-T/CP | 1 M NaOH + 0.2 M NH4Cl | 1.69 V | 110 | Ref. [24] |
Ni1Cu3-N-C | 1 M NaOH + 0.2 M NH4Cl | 1.69 V | 88 | Ref. [21] |
Ni4Cu5Fe1/C | 0.5 M KOH + 55 mM NH3 | 1.72 V | 92 | Ref. [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, M.; Chen, G.; Ning, W.; Wang, X.; Mu, X.; Miao, L. ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen. Energies 2025, 18, 3871. https://doi.org/10.3390/en18143871
Ouyang M, Chen G, Ning W, Wang X, Mu X, Miao L. ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen. Energies. 2025; 18(14):3871. https://doi.org/10.3390/en18143871
Chicago/Turabian StyleOuyang, Mingguang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu, and Lei Miao. 2025. "ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen" Energies 18, no. 14: 3871. https://doi.org/10.3390/en18143871
APA StyleOuyang, M., Chen, G., Ning, W., Wang, X., Mu, X., & Miao, L. (2025). ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen. Energies, 18(14), 3871. https://doi.org/10.3390/en18143871