Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review
Abstract
1. Introduction
1.1. Related Works
1.2. Motivations
1.3. Contributions
- We offer a detailed review of the challenges associated with energy efficiency in conventional ISAC systems, including interference management, resource allocation, hardware constraints, and latency. These challenges form a foundation for understanding the additional complexities introduced by NF propagation.
- We delineate the differences between NF and FF wave propagation, and evaluate their impact on ISAC system performance. Specifically, we highlight how spherical wavefronts, spatial non-stationarity, and depth resolution affect the beamforming, codebook design, and beamtraining in NF systems.
- We systematically categorize the energy efficiency challenges unique to NF-ISAC systems, e.g., channel modeling, channel estimation, codebook design, beamtraining and interference management, etc.
- We provide an extensive survey of energy efficient NF-ISAC system designs, with a structured analysis of power-centric, sensing-centric, communication-centric, and joint designs.
- We introduce emerging research directions for sustainable NF-ISAC systems, including wireless power transfer, RIS-aided ISAC, backscatter technology, fluid antenna and cognitive radios, etc.
1.4. Paper Organization
- Section 2 discusses energy efficiency in traditional ISAC systems, and delineates key challenges such as hardware implementation, interference management, and latency, etc. It also introduces energy-efficient designs that emphasize power and performance considerations.
- Section 3 focuses specifically on energy-efficient NF-ISAC. It begins with a classification of wave propagation regions and outlines the physical and operational differences between FF and NF-ISAC systems. These differences then elaborate the fundamental changes in system designs for NF-ISAC systems. This is followed by an in-depth review of the energy efficiency challenges in NF-ISAC systems, e.g., channel modeling, channel estimation, codebook design, beamforming, and hardware constraints. This section also provides a thorough survey of energy efficient designs of NF-ISAC systems classified as power-centric, joint ISAC, sensing-centric, and communication-centric designs.
- Section 4 presents a road-ahead discussion on sustainable NF-ISAC systems. Modern technologies such as integrated sensing, communication and powering, RIS-assisted ISAC, passive backscattering, fluid antennas, and cognitive radio are discussed in the context of NF-ISAC systems.
- Section 5 concludes the paper with a summary of major findings and implications for 6G and beyond.
2. Energy Efficiency in Integrated Sensing and Communication
2.1. Challenges of Energy Efficiency in ISAC
2.1.1. Interference Management
- Inter-function interference: This occurs when transmitted sensing signals interfere with communication signals and vice versa. This causes performance degradation for both functions.
- Multi-user interference: In multi-user systems, signals intended for one user may interfere with signals intended for another user. This is particularly pronounced in FF communications, where beamforming limitations and user proximity can exacerbate interference.
- Multi-target interference: Multiple reflecting objects or targets can cause undesired signal superposition, which makes it difficult to distinguish the target-of-interest. This is pronounced in urban environments where buildings, vehicles, and other obstacles introduce additional signal reflections.
- Clutter interference: Unwanted reflections from environmental objects, such as walls, buildings, trees, and foliage, can cause significant interference in both sensing and communication [6,39,41]. This is particularly challenging in FF ISAC scenarios, where limited resolution of beamforming action can degrade detection accuracy.
2.1.2. Hardware Implementation
2.1.3. Resource Constraints
2.1.4. Channel Estimation and Modeling
2.1.5. Performance Trade-Off
2.1.6. Latency
2.1.7. Dynamic Environments
2.1.8. Security and Privacy
2.1.9. Network Architecture
2.2. Energy-Efficient Designs
2.2.1. Power-Focused Designs
2.2.2. Performance-Focused Designs
3. Energy Efficient Near-Field Integrated Sensing and Communication
3.1. Differences of Near-Field and Far-Field ISAC Systems
3.1.1. Wave Propagation Differences
3.1.2. Beam Squint
3.1.3. Spatial Non-Stationarity
3.1.4. Depth Resolution
3.2. Challenges of Energy Efficiency in NF-ISAC
3.2.1. Channel Modeling
3.2.2. Channel Estimation
3.2.3. Codebook Design
3.2.4. Beamtraining
3.2.5. Beamfocusing and Precoding
3.2.6. Interference Management
3.2.7. Hardware Implementation
3.3. System Designs for NF-ISAC
3.3.1. Practical Designs
3.3.2. Power-Centric Designs
3.3.3. Joint ISAC Designs
3.3.4. Sensing-Centric Designs
3.3.5. Communication-Centric Designs
4. Sustainable Near-Field Integrated Sensing and Communication
4.1. Integrated Sensing, Communications and Powering
4.2. Reconfigurable Intelligent Surfaces Aided Sustainable ISAC
4.3. Integrated Passive Backscattering and Sensing
4.4. Fluid Antenna Assisted ISAC
4.5. Cognitive Radio with ISAC
5. Lessons Learned and Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. IEEE Access 2018, 6, 55765–55779. [Google Scholar] [CrossRef]
- Guo, S.; Lu, B.; Wen, M.; Dang, S.; Saeed, N. Customized 5G and beyond private networks with integrated URLLC, eMBB, mMTC, and positioning for industrial verticals. IEEE Commun. Stand. Mag. 2022, 6, 52–57. [Google Scholar] [CrossRef]
- Khan, B.S.; Jangsher, S.; Ahmed, A.; Al-Dweik, A. URLLC and eMBB in 5G Industrial IoT: A Survey. IEEE Open J. Commun. Soc. 2022, 3, 1134–1163. [Google Scholar] [CrossRef]
- Anjum, M.; Khan, M.A.; Basharat, S.; Hassan, S.A.; Jung, H. Dedicated versus Shared Element-Allotment in IRS-aided Wireless Systems: When to Use What? In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, M.A.; Anjum, M.; Hassan, S.A.; Jung, H. Machine Learning-Based Resource Allocation for IRS-Aided UAV Networks. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 3051–3057. [Google Scholar] [CrossRef]
- Anjum, M.; Mishra, D.; Seneviratne, A. Power-efficient transceiver design for full-duplex dual-function radar communication systems. In Proceedings of the IEEE SPAWC, Lucca, Italy, 10–13 September 2024; pp. 11–15. [Google Scholar] [CrossRef]
- Kaushik, A.; Singh, R.; Dayarathna, S.; Senanayake, R.; Di Renzo, M.; Dajer, M.; Ji, H.; Kim, Y.; Sciancalepore, V.; Zappone, A.; et al. Toward Integrated Sensing and Communications for 6G: Key Enabling Technologies, Standardization, and Challenges. IEEE Commun. Stand. Mag. 2024, 8, 52–59. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Lu, L.; Zhang, T.; Qiu, T.; Wang, C.; Liu, Y. Enabling intelligent connectivity: A survey of secure ISAC in 6G networks. IEEE Commun. Surveys Tuts. 2025, 27, 748–781. [Google Scholar] [CrossRef]
- Anjum, M.; Mishra, D.; Matthaiou, M.; Seneviratne, A. QoS-Aware Power Minimization for Fluid Antennas Assisted Integrated Sensing and Communication. In Proceedings of the IEEE ICC, Montreal, QC, Canada, 8–12 June 2025; pp. 1–6. [Google Scholar]
- Liao, B.; Ngo, H.Q.; Matthaiou, M.; Smith, P.J. Power Allocation for Massive MIMO-ISAC Systems. IEEE Trans. Wirel. Commun. 2024, 23, 14232–14248. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Sun, S.; Li, R.; Han, C.; Liu, X.; Xue, L.; Tao, M. How to Differentiate Between Near Field and Far Field: Revisiting the Rayleigh Distance. IEEE Commun. Mag. 2025, 63, 22–28. [Google Scholar] [CrossRef]
- Ye, S.; Xiao, M.; Kwan, M.W.; Ma, Z.; Huang, Y.; Karagiannidis, G.; Fan, P. Extremely Large Aperture Array (ELAA) Communications: Foundations, Research Advances and Challenges. IEEE Open J. Commun. Soc. 2024, 5, 7075–7120. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Yang, Z.; Shen, H.; Fu, N.; Huang, Y.; Zhang, Z.; You, X. Unlocking Potentials of Near-Field Propagation: ELAA-Empowered Integrated Sensing and Communication. IEEE Commun. Mag. 2024, 62, 82–89. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, X.; Liu, Y. Near-Field Integrated Sensing and Communications. IEEE Commun. Lett. 2023, 27, 2048–2052. [Google Scholar] [CrossRef]
- Kosasih, A.; Demir, Ö.T.; Kolomvakis, N.; Björnson, E. Spatial Frequencies and Degrees of Freedom: Their roles in near-field communications. IEEE Signal Process. Mag. 2025, 42, 33–44. [Google Scholar] [CrossRef]
- Liu, A.; Huang, Z.; Li, M.; Wan, Y.; Li, W.; Han, T.X.; Liu, C.; Du, R.; Tan, D.K.P.; Lu, J.; et al. A Survey on Fundamental Limits of Integrated Sensing and Communication. IEEE Commun. Surv. Tutor. 2022, 24, 994–1034. [Google Scholar] [CrossRef]
- Magbool, A.; Kumar, V.; Wu, Q.; Renzo, M.D.; Flanagan, M.F. A Survey on Integrated Sensing and Communication with Intelligent Metasurfaces: Trends, Challenges, and Opportunities. arXiv 2024, arXiv:2401.15562. [Google Scholar] [CrossRef]
- Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1295–1315. [Google Scholar] [CrossRef]
- Salem, H.; Quamar, M.M.; Mansoor, A.; Elrashidy, M.; Saeed, N.; Masood, M. Data-driven Integrated Sensing and Communication: Recent Advances, Challenges, and Future Prospects. arXiv 2023. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling Joint Communication and Radar Sensing in Mobile Networks—A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 306–345. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, Y.; Liu, Y.; Chai, Z.; Liu, G.; Jiang, T. Integrated Sensing and Communication Channel: Measurements, Characteristics, and Modeling. IEEE Commun. Mag. 2024, 62, 98–104. [Google Scholar] [CrossRef]
- Singh, S.; Samal, U. Integrated Sensing and Communication in Next-Generation Wireless Networks: Insights and Trends. Int. J. Commun. Syst. 2025, 38. [Google Scholar] [CrossRef]
- Wei, Z.; Qu, H.; Wang, Y.; Yuan, X.; Wu, H.; Du, Y.; Han, K.; Zhang, N.; Feng, Z. Integrated Sensing and Communication Signals Toward 5G-A and 6G: A Survey. IEEE Internet Things J. 2023, 10, 11068–11092. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, R.; Chen, G.; Wu, W. Integrated Sensing and Communication Waveform Design: A Survey. IEEE Open J. Commun. Soc. 2022, 3, 1930–1949. [Google Scholar] [CrossRef]
- Wang, J.; Varshney, N.; Gentile, C.; Blandino, S.; Chuang, J.; Golmie, N. Integrated Sensing and Communication: Enabling Techniques, Applications, Tools and Data Sets, Standardization, and Future Directions. IEEE Internet Things J. 2022, 9, 23416–23440. [Google Scholar] [CrossRef]
- Lu, S.; Liu, F.; Li, Y.; Zhang, K.; Huang, H.; Zou, J.; Li, X.; Dong, Y.; Dong, F.; Zhu, J.; et al. Integrated Sensing and Communications: Recent Advances and Ten Open Challenges. IEEE Internet Things J. 2024, 11, 19094–19120. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Du, H.; Niyato, D.; Cui, S.; Ai, B.; Debbah, M.; Letaief, K.B.; Poor, H.V. A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal Processing, and Applications. IEEE Commun. Surv. Tutor. 2024, 26, 1560–1605. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Liu, Z.; Du, H.; Wang, Z.; Niyato, D.; Guizani, M.; Ai, B. Cell-Free XL-MIMO Meets Multi-Agent Reinforcement Learning: Architectures, Challenges, and Future Directions. IEEE Wirel. Commun. 2024, 31, 155–162. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Du, H.; Sha, W.E.I.; Ai, B.; Niyato, D.; Debbah, M. Extremely Large-Scale MIMO: Fundamentals, Challenges, Solutions, and Future Directions. IEEE Wirel. Commun. 2024, 31, 117–124. [Google Scholar] [CrossRef]
- Gong, T.; Wei, L.; Huang, C.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Near-Field Channel Modeling for Holographic Mimo Communications. IEEE Wirel. Commun. 2024, 31, 108–116. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, C.; Wang, Z.; Xu, J.; Mu, X.; Swindlehurst, A.L. Near-Field Communications: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2025, 27, 1687–1728. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Dai, L.; Di Renzo, M.; Debbah, M.; Hanzo, L. Near-Field Communications: Research Advances, Potential, and Challenges. IEEE Wirel. Commun. 2024, 31, 100–107. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, J.; Wang, Z.; Ai, B.; Bjornson, E. Near-Field User Localization and Channel Estimation for XL-MIMO Systems: Fundamentals, Recent Advances, and Outlooks. IEEE Wirel. Commun. 2025, 1–9. [Google Scholar] [CrossRef]
- Ni, H.; Anjum, M.; Mishra, D.; Seneviratne, A. Energy-Efficient Near-Field Beamforming: A Review on Practical Channel Models. Energies 2025, 18, 2966. [Google Scholar] [CrossRef]
- Hakimi, A.; Galappaththige, D.; Tellambura, C. A roadmap for NF-ISAC in 6G: A comprehensive overview and tutorial. Entropy 2024, 26, 773. [Google Scholar] [CrossRef] [PubMed]
- Stratidakis, G.; Droulias, S.; Alexiou, A. Near-Field Hierarchical Localization for Integrated Sensing and Communication. IEEE Access 2025, 13, 17766–17776. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, Z.; Wang, L.; Wu, H.; Feng, Z. Interference Management for Integrated Sensing and Communication Systems: A Survey. IEEE Internet Things J. 2025, 12, 8110–8134. [Google Scholar] [CrossRef]
- Xu, D.; Xu, Y.; Zhang, X.; Yu, X.; Song, S.; Schober, R. Interference Mitigation for Network-Level ISAC: An Optimization Perspective. IEEE Commun. Mag. 2024, 62, 28–34. [Google Scholar] [CrossRef]
- Tang, A.; Wang, X.; Zhang, J.A. Interference Management for Full-Duplex ISAC in B5G/6G Networks: Architectures, Challenges, and Solutions. IEEE Commun. Mag. 2024, 62, 20–26. [Google Scholar] [CrossRef]
- Anjum, M.; Mishra, D.; Seneviratne, A. Green Transceiver Design for Integrated Sensing and Backscatter Communication with QoS Demands. In Proceedings of the IEEE ICC, Montreal, QC, Canada, 8–12 June 2025; pp. 1–6. [Google Scholar]
- Sarupriya, S.; P, R.; Musuku, S.; Suman, S.K.; Manogna, D.; Kaliappan, S. Ultra-Reliable Low Latency ISAC System Designs for Critical Application. In Proceedings of the 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), Indore, India, 27–28 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Al-Nahhal, I.; Dobre, O.A.; Wang, F. Deep-Learning-Based Channel Estimation for IRS-Assisted ISAC System. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 4220–4225. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, J.; Xu, W.; Chang, C. Joint Target Detection and Channel Estimation for Distributed Massive MIMO ISAC Systems. IEEE Trans. Cogn. Commun. Netw. 2025, 11, 300–315. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, F.; Lops, M. Generalized Deterministic-Random Tradeoff of Integrated Sensing and Communications: The Sensing-Optimal Operating Point. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 8481–8485. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, F.; Cui, Y.; Yuan, W.; Han, T.X.; Caire, G. On the Fundamental Tradeoff of Integrated Sensing and Communications Under Gaussian Channels. IEEE Trans. Inf. Theory 2023, 69, 5723–5751. [Google Scholar] [CrossRef]
- Du, Z.; Liu, F.; Xiong, Y.; Han, T.X.; Eldar, Y.C.; Jin, S. Reshaping the ISAC Tradeoff Under OFDM Signaling: A Probabilistic Constellation Shaping Approach. IEEE Trans. Signal Process. 2024, 72, 4782–4797. [Google Scholar] [CrossRef]
- Dong, F.; Liu, F.; Lu, S.; Xiong, Y. Secure ISAC Transmission With Random Signaling. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 407–412. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.; Zheng, Z.; He, B.; Huangfu, W.; Wang, X.; Zhang, H.; Long, K. Analysis of Pareto Boundary in MIMO ISAC: From the Perspective of Instantaneous Covariance Mismatch. IEEE Trans. Wirel. Commun. 2025, 24, 555–570. [Google Scholar] [CrossRef]
- Jia, H.; Li, X.; Ma, L. Physical Layer Security Optimization With Cramér–Rao Bound Metric in ISAC Systems Under Sensing-Specific Imperfect CSI Model. IEEE Trans. Veh. Technol. 2024, 73, 6980–6992. [Google Scholar] [CrossRef]
- Qu, K.; Ye, J.; Li, X.; Guo, S. Privacy and Security in Ubiquitous Integrated Sensing and Communication: Threats, Challenges and Future Directions. IEEE Internet Things Mag. 2024, 7, 52–58. [Google Scholar] [CrossRef]
- Cao, Y.; Duan, L.; Zhang, R. Sensing for Secure Communication in ISAC: Protocol Design and Beamforming Optimization. IEEE Trans. Wirel. Commun. 2025, 24, 1207–1220. [Google Scholar] [CrossRef]
- Ma, T.; Xiao, Y.; Lei, X.; Xiao, M. Sensing—Resistance-Oriented Beamforming for Privacy Protection from ISAC Devices. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 1207–1212. [Google Scholar] [CrossRef]
- Zou, J.; Cui, Y.; Liu, Y.; Sun, S. Energy Efficiency Optimization for Integrated Sensing and Communications Systems. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 216–221. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Shen, H.; Huang, Y.; Xiao, H. Energy Efficient Beamforming Optimization for Integrated Sensing and Communication. IEEE Wirel. Commun. Lett. 2022, 11, 1374–1378. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, J.; Ouyang, Q.; Yan, S. An Energy-Efficient ISAC Beam Management Scheme in UAV Communications. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; He, T.; Xiang, W.; Hu, R.Q. Energy Efficient Robust Beamforming for Vehicular ISAC with Imperfect Channel Estimation. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 1864–1869. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, W.; Liu, W.; Qi, C. Energy Efficiency Optimization in Secure Full-Duplex ISAC Systems. IEEE Commun. Lett. 2025, 29, 220–224. [Google Scholar] [CrossRef]
- Mu, J.; Ouyang, W.; Jing, Z.; Li, B.; Zhang, F. Energy-Efficient Interference Cancellation in Integrated Sensing and Communication Scenarios. IEEE Trans. Green Commun. Netw. 2023, 7, 370–378. [Google Scholar] [CrossRef]
- Singh, J.; Srivastava, S.; Jagannatham, A.K. Energy-Efficient Hybrid Beamforming for Integrated Sensing and Communication Enabled mmWave MIMO Systems. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Tang, D. Secure energy-efficient beamforming design for integrated sensing and communication. In Proceedings of the Sixteenth International Conference on Signal Processing Systems (ICSPS 2024), Kunming, China, 15–17 November 2024; Minasian, R., Chai, L., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2025; Volume 13559, p. 135594J. [Google Scholar] [CrossRef]
- Huang, N.; Dou, C.; Wu, Y.; Qian, L.; Lu, R. Energy-Efficient Integrated Sensing and Communication: A Multi-Access Edge Computing Design. IEEE Wirel. Commun. Lett. 2023, 12, 2053–2057. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, J.; Zhou, E.; Xi, T.; Dong, Z. Maximizing Energy Efficiency in Sensing-Centric Cell-Free ISAC Systems. In Proceedings of the 2024 12th International Conference on Communications and Broadband Networking, ICCBN ’24, New York, NY, USA, 24–27 July 2024; pp. 161–166. [Google Scholar] [CrossRef]
- Yang, K.; Xu, J.; Tao, X.; Sun, M.; Wang, B.; Wu, H. Sensing-Centric Energy-Efficient Hybrid Beamforming Design for Terahertz Integrated Sensing and Communications. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Zou, J.; Sun, S.; Masouros, C.; Cui, Y.; Liu, Y.F.; Ng, D.W.K. Energy-Efficient Beamforming Design for Integrated Sensing and Communications Systems. IEEE Trans. Commun. 2024, 72, 3766–3782. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhao, X.; Du, F.; Zhang, Y.; Fu, Z.; Jiang, J.; Xin, P. Energy-Minimization Resource Allocation for FD-NOMA Enabled Integrated Sensing, Communication, and Computation in PIoT. IEEE Trans. Netw. Sci. Eng. 2024, 11, 5863–5877. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.; Xu, J.; Feng, Z.; Cui, S. Energy-Efficient MIMO Integrated Sensing and Communications With On–Off Nontransmission Power. IEEE Internet Things J. 2024, 11, 12177–12191. [Google Scholar] [CrossRef]
- Allu, R.; Katwe, M.; Singh, K.; Duong, T.Q.; Li, C.P. Robust Energy Efficient Beamforming Design for ISAC Full-Duplex Communication Systems. IEEE Wirel. Commun. Lett. 2024, 13, 2452–2456. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, Z.; Song, Z.; Feng, Z.; Wu, H.; Ma, D.; Liu, H.; Zhang, J. Energy-Efficient Interference Cancellation for Coordinated Multi-Point ISAC Systems. IEEE Trans. Green Commun. Netw. 2025, 1. [Google Scholar] [CrossRef]
- Xue, N.; Mu, X.; Liu, Y.; Zhang, X.; Chen, Y. Hybrid NOMA Empowered Energy-Efficient ISAC. IEEE Trans. Wirel. Commun. 2025, 24, 3894–3908. [Google Scholar] [CrossRef]
- Dou, C.; Huang, N.; Wu, Y.; Qian, L.; Quek, T.Q.S. Channel Sharing Aided Integrated Sensing and Communication: An Energy-Efficient Sensing Scheduling Approach. IEEE Trans. Wirel. Commun. 2024, 23, 4802–4814. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, H.; Ma, Y.; Li, X.; Zhang, H.; Fang, Y. Energy-Efficient Integrated Sensing and Communication in Collaborative Millimeter Wave Networks. IEEE Trans. Wirel. Commun. 2025, 24, 2341–2357. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, X.; Liu, Z.; Durrani, T.S. Sensing Fairness-Based Energy Efficiency Optimization for UAV Enabled Integrated Sensing and Communication. IEEE Wirel. Commun. Lett. 2023, 12, 1702–1706. [Google Scholar] [CrossRef]
- Huang, Y.; Fang, Y.; Li, X.; Xu, J. Coordinated Power Control for Network Integrated Sensing and Communication. IEEE Trans. Veh. Technol. 2022, 71, 13361–13365. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Shen, H.; Ng, D.W.K.; Eldar, Y.C.; You, X. Full-Duplex Communication for ISAC: Joint Beamforming and Power Optimization. IEEE J. Sel. Areas Commun. 2023, 41, 2920–2936. [Google Scholar] [CrossRef]
- Xu, D.; Yu, X.; Ng, D.W.K.; Schmeink, A.; Schober, R. Robust and Secure Resource Allocation for ISAC Systems: A Novel Optimization Framework for Variable-Length Snapshots. IEEE Trans. Commun. 2022, 70, 8196–8214. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z.; Yu, Y.; Jia, M.; Na, Z.; Durrani, T.S. Secure Rate Maximization for ISAC-UAV Assisted Communication Amidst Multiple Eavesdroppers. IEEE Trans. Veh. Technol. 2024, 73, 15843–15847. [Google Scholar] [CrossRef]
- Meng, K.; Wu, Q.; Ma, S.; Chen, W.; Wang, K.; Li, J. Throughput Maximization for UAV-Enabled Integrated Periodic Sensing and Communication. IEEE Trans. Wirel. Commun. 2023, 22, 671–687. [Google Scholar] [CrossRef]
- Li, F.; Liao, B. Massive MIMO-ISAC Beamforming Design Via Sensing Energy Maximization. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Yilmaz, M.B.; Xiang, L.; Klein, A. Joint Beamforming and Trajectory Optimization for UAV-Enabled ISAC Under a Finite Energy Budget. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 1876–1881. [Google Scholar] [CrossRef]
- Dou, C.; Huang, N.; Wu, Y.; Qian, L.; Quek, T.Q.S. Sensing-Efficient NOMA-Aided Integrated Sensing and Communication: A Joint Sensing Scheduling and Beamforming Optimization. IEEE Trans. Veh. Technol. 2023, 72, 13591–13603. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Chen, K.; Xu, L.; Fei, A. Full-Duplex NOMA-Enabled Integrated Sensing and Communication: Joint Transmit and Receive Beamforming Optimization. IEEE Internet Things J. 2024, 11, 27015–27029. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Liu, Y.F.; Liu, F. Efficient Global Algorithms for Transmit Beamforming Design in ISAC Systems. IEEE Trans. Signal Process. 2024, 72, 4493–4508. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Cheng, W.; Dong, L.; Yan, B. Sensing-Efficient Transmit Beamforming for ISAC with MIMO Radar and MU-MIMO Communication. Remote Sens. 2024, 16, 3028. [Google Scholar] [CrossRef]
- Khalili, A.; Rezaei, A.; Xu, D.; Schober, R. Energy-Aware Resource Allocation and Trajectory Design for UAV-Enabled ISAC. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 4193–4198. [Google Scholar] [CrossRef]
- Prasad, K.N.R.S.V.; Hossain, E.; Bhargava, V.K. Energy Efficiency in Massive MIMO-Based 5G Networks: Opportunities and Challenges. IEEE Wirel. Commun. 2017, 24, 86–94. [Google Scholar] [CrossRef]
- Tuovinen, T.; Berg, M.; Yazdandoost, K.Y.; Salonen, E.; Iinatti, J. Reactive near-field region radiation of planar UWB antennas close to a dispersive tissue model. In Proceedings of the IEEE LAPC, Loughborough, UK, 12–13 November 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Luo, H.; Gao, F.; Yuan, W.; Zhang, S. Beam Squint Assisted User Localization in Near-Field Integrated Sensing and Communications Systems. IEEE Trans. Wirel. Commun. 2024, 23, 4504–4517. [Google Scholar] [CrossRef]
- Hao, W.; You, X.; Zhou, F.; Chu, Z.; Sun, G.; Xiao, P. The Far-/Near-Field Beam Squint and Solutions for THz Intelligent Reflecting Surface Communications. IEEE Trans. Veh. Technol. 2023, 72, 10107–10118. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, J.; Xiao, H.; Ng, D.W.K.; Ai, B. Deep Learning-Based Near-Field User Localization With Beam Squint in Wideband XL-MIMO Systems. IEEE Trans. Wirel. Commun. 2025, 24, 1568–1583. [Google Scholar] [CrossRef]
- Luo, H.; Gao, F.; Yuan, W. Near-Field Localization Based On Beam Squint of mmWave Communications. In Proceedings of the ICC 2023—IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 6461–6466. [Google Scholar] [CrossRef]
- Li, Z.; Wan, Z.; Ying, K.; Mei, Y.; Ke, M.; Gao, Z. Reconfigurable Intelligent Surface Assisted Localization Over Near-Field Beam Squint Effect. In Proceedings of the 2022 International Symposium on Wireless Communication Systems (ISWCS), Hangzhou, China, 19–22 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Myers, N.J.; Heath, R.W. InFocus: A Spatial Coding Technique to Mitigate Misfocus in Near-Field LoS Beamforming. IEEE Trans. Wirel. Commun. 2022, 21, 2193–2209. [Google Scholar] [CrossRef]
- Liu, M.; Cai, W.; Li, M.; Liu, Q. An Efficient Beamforming Design for Near-Field Beam Squint Mitigation in Wideband ELAA Systems. In Proceedings of the 2023 International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2–4 November 2023; pp. 1062–1066. [Google Scholar] [CrossRef]
- Liu, M.; Pan, C.; Zhi, K.; Ren, H.; Wang, J. Hybrid Precoding Design for Near-Field Wideband THz Systems with Spatial Non-Stationarity. IEEE Commun. Lett. 2024, 28, 2372–2376. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, J.; Ji, Y.; Pedersen, G.F.; Fan, W. Spatial Non-Stationary Near-Field Channel Modeling and Validation for Massive MIMO Systems. IEEE Trans. Antennas Propag. 2023, 71, 921–933. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, J.; Degli-Esposti, V.; Zhang, Y.; Fan, W. Efficient Ray-Tracing Simulation for Near-Field Spatial Non-Stationary mmWave Massive MIMO Channel and Its Experimental Validation. IEEE Trans. Wirel. Commun. 2024, 23, 8910–8923. [Google Scholar] [CrossRef]
- Xu, H.; Tang, P.; Zhang, J.; Xing, H.; Tian, L.; Wang, Q. An Empirical Study on Near-Field, Spatial Non-Stationarity, and Beam Misalignment Characteristics of THz XL-MIMO Channels at 132 GHz. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 744–749. [Google Scholar] [CrossRef]
- Babu, N.; Kosasih, A.; Masouros, C.; Björnson, E. Symbol-Level Precoding for Near-Field ISAC. IEEE Commun. Lett. 2024, 28, 2041–2045. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Mu, X.; Zhiwen, P.; Liu, Y. Near-Field Integrated Sensing, Positioning, and Communication: A Downlink and Uplink Framework. IEEE J. Sel. Areas Commun. 2024, 42, 2196–2212. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, W.; Xiao, Z.; Zhang, R. Movable Antenna Enabled Near-Field Communications: Channel Modeling and Performance Optimization. IEEE Trans. Commun. 2025, 1. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yang, Z.; Yang, J.; Sha, W.E.I.; Zhang, Z.; Debbah, M.; Yuen, C. Tri-Polarized Holographic MIMO Surfaces for Near-Field Communications: Channel Modeling and Precoding Design. IEEE Trans. Wirel. Commun. 2023, 22, 8828–8842. [Google Scholar] [CrossRef]
- Tian, J.; Han, Y.; Jin, S.; Zhang, J.; Wang, J. Analytical Channel Modeling: From MIMO to Extra Large-Scale MIMO. Chin. J. Electron. 2025, 34, 1–15. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Huang, C.; Debbah, M.; Vincent Poor, H.; Hanzo, L. A Tutorial on Holographic MIMO Communications—Part I: Channel Modeling and Channel Estimation. IEEE Commun. Lett. 2023, 27, 1664–1668. [Google Scholar] [CrossRef]
- Huang, C.; Xu, J.; Xu, W.; You, X.; Yuen, C.; Chen, Y. Low-Complexity Channel Estimation for Extremely Large-Scale MIMO in Near Field. IEEE Wirel. Commun. Lett. 2024, 13, 671–675. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Zhang, H.; Yang, L. Near-Field Channel Estimation for Extremely Large-Scale Array Communications: A Model-Based Deep Learning Approach. IEEE Commun. Lett. 2023, 27, 1155–1159. [Google Scholar] [CrossRef]
- Cui, M.; Dai, L. Near-Field Channel Estimation for Extremely Large-scale MIMO with Hybrid Precoding. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, L. Near-Field Channel Estimation in Mixed LoS/NLoS Environments for Extremely Large-Scale MIMO Systems. IEEE Trans. Commun. 2023, 71, 3694–3707. [Google Scholar] [CrossRef]
- Eslami, S.; Gouda, B.; Tölli, A. Near-Field MIMO Channel Reconstruction Via Limited Geometry Feedback. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 9256–9260. [Google Scholar] [CrossRef]
- Cui, M.; Dai, L. Channel Estimation for Extremely Large-Scale MIMO: Far-Field or Near-Field? IEEE Trans. Commun. 2022, 70, 2663–2677. [Google Scholar] [CrossRef]
- Wu, J.; Kim, S.; Shim, B. Near-Field Channel Estimation for RIS-Assisted Wideband Terahertz Systems. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 3893–3898. [Google Scholar] [CrossRef]
- Elbir, A.M.; Shi, W.; Papazafeiropoulos, A.K.; Kourtessis, P.; Chatzinotas, S. Near-Field Terahertz Communications: Model-Based and Model-Free Channel Estimation. IEEE Access 2023, 11, 36409–36420. [Google Scholar] [CrossRef]
- Lee, A.; Ju, H.; Kim, S.; Shim, B. Intelligent Near-Field Channel Estimation for Terahertz Ultra-Massive MIMO Systems. In Proceedings of the 2022 IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5390–5395. [Google Scholar] [CrossRef]
- Yu, W.; Shen, Y.; He, H.; Yu, X.; Zhang, J.; Letaief, K.B. Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO via Fixed Point Networks. In Proceedings of the 2022 IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5384–5389. [Google Scholar] [CrossRef]
- Tarboush, S.; Ali, A.; Al-Naffouri, T.Y. Cross-Field Channel Estimation for Ultra Massive-MIMO THz Systems. IEEE Trans. Wirel. Commun. 2024, 23, 8619–8635. [Google Scholar] [CrossRef]
- Yue, S.; Zeng, S.; Liu, L.; Eldar, Y.C.; Di, B. Hybrid Near-Far Field Channel Estimation for Holographic MIMO Communications. IEEE Trans. Wirel. Commun. 2024, 23, 15798–15813. [Google Scholar] [CrossRef]
- Jang, S.; Lee, C. Neural Network-Aided Near-Field Channel Estimation for Hybrid Beamforming Systems. IEEE Trans. Commun. 2024, 72, 6768–6782. [Google Scholar] [CrossRef]
- Wei, X.; Dai, L. Channel Estimation for Extremely Large-Scale Massive MIMO: Far-Field, Near-Field, or Hybrid-Field? IEEE Commun. Lett. 2022, 26, 177–181. [Google Scholar] [CrossRef]
- Pan, C.; Zhou, G.; Zhi, K.; Hong, S.; Wu, T.; Pan, Y.; Ren, H.; Renzo, M.D.; Lee Swindlehurst, A.; Zhang, R.; et al. An Overview of Signal Processing Techniques for RIS/IRS-Aided Wireless Systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 883–917. [Google Scholar] [CrossRef]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Zhang, K.; Björnson, E. RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials. IEEE Trans. Commun. 2021, 69, 8627–8640. [Google Scholar] [CrossRef]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Usman, M.; Basharat, S.; Hassan, S.A.; Pervaiz, H.; Ding, Z.; Jung, H. Performance Analysis of NOMA-Enabled RIS-Assisted Backscatter Communication. IEEE Trans. Veh. Technol. 2024, 73, 18961–18973. [Google Scholar] [CrossRef]
- Anjum, M.; Khan, M.A.; Hassan, S.A.; Jung, H.; Mahmood, A.; Gidlund, M. A Multi-Level ML-Based Optimization Framework for IIoT Networks with Distributed IRS Assisted UAVs. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 1338–1343. [Google Scholar] [CrossRef]
- Yang, S.; Lyu, W.; Hu, Z.; Zhang, Z.; Yuen, C. Channel Estimation for Near-Field XL-RIS-Aided mmWave Hybrid Beamforming Architectures. IEEE Trans. Veh. Technol. 2023, 72, 11029–11034. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Jin, S.; Wang, J. RIS-Aided Near-Field Localization and Channel Estimation for the Terahertz System. IEEE J. Sel. Top. Signal Process. 2023, 17, 878–892. [Google Scholar] [CrossRef]
- Yang, S.; Xie, C.; Lyu, W.; Ning, B.; Zhang, Z.; Yuen, C. Near-Field Channel Estimation for Extremely Large-Scale Reconfigurable Intelligent Surface (XL-RIS)-Aided Wideband mmWave Systems. IEEE J. Sel. Areas Commun. 2024, 42, 1567–1582. [Google Scholar] [CrossRef]
- Haghshenas, M.; Ramezani, P.; Magarini, M.; Björnson, E. Parametric Channel Estimation With Short Pilots in RIS-Assisted Near- and Far-Field Communications. IEEE Trans. Wirel. Commun. 2024, 23, 10366–10382. [Google Scholar] [CrossRef]
- Lee, J.; Chung, H.; Cho, Y.; Kim, S.; Hong, S. Near-Field Channel Estimation for XL-RIS Assisted Multi-User XL-MIMO Systems: Hybrid Beamforming Architectures. IEEE Trans. Commun. 2025, 73, 1560–1574. [Google Scholar] [CrossRef]
- Liu, S.; Yu, X.; Gao, Z.; Ng, D.W.K. DPSS-Based Codebook Design for Near-Field XL-MIMO Channel Estimation. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 3864–3870. [Google Scholar] [CrossRef]
- Wang, F.; Hou, X.; Li, X.; Chen, L. Plane Wave Expansion-based Codebook Design for 6G Near-field MIMO. In Proceedings of the 2024 IEEE 29th Asia Pacific Conference on Communications (APCC), BALI, Indonesia, 5–7 November 2024; pp. 536–541. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, H.; Xu, Y.; Zheng, F.C. Near-Field Codebook Design for Extremely Large Cylindrical Antenna Array Systems. IEEE Trans. Commun. 2024, 72, 5380–5395. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, D.; Jiang, R.; Xu, Y. Codebook Design for Beamforming in Near-Field Cylindrical Antenna Array Systems. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 2348–2353. [Google Scholar] [CrossRef]
- Wu, X.; You, C.; Li, J.; Zhang, Y.; Chen, L.; Han, K. Near-Field Beam Training with DFT Codebook. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, C.; You, C.; Zhou, J.; Shi, S. Near-field Beam Training with Sparse DFT Codebook. IEEE Trans. Commun. 2024, 73, 4394–4408. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Zhang, J.; Li, C.; Huang, Y.; Yang, L. Codebook Design for Extremely Large-Scale MIMO Systems: Near-Field and Far-Field. IEEE Trans. Commun. 2024, 72, 1191–1206. [Google Scholar] [CrossRef]
- Luo, J.; Fan, J.; Xie, K.; Shi, X. Efficient Hybrid Near- and Far-Field Beam Training for XL-MIMO Communications. IEEE Trans. Veh. Technol. 2024, 73, 19785–19790. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Dai, L. Hierarchical Beam Training for Extremely Large-Scale MIMO: From Far-Field to Near-Field. IEEE Trans. Commun. 2024, 72, 2247–2259. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Dai, L. Near-Field 2D Hierarchical Beam Training for Extremely Large-Scale MIMO. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 7176–7181. [Google Scholar] [CrossRef]
- Weng, C.; Guo, X.; Wang, Y. Near-Field Beam Training With Hierarchical Codebook: Two-Stage Learning-Based Approach. IEEE Trans. Veh. Technol. 2024, 73, 14003–14008. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Zou, Y.; Xie, W.; Liu, Y. Wideband Beamforming for RIS Assisted Near-Field Communications. IEEE Trans. Wirel. Commun. 2024, 23, 16836–16851. [Google Scholar] [CrossRef]
- Zhang, Y.; Alkhateeb, A. Deep Learning of Near Field Beam Focusing in Terahertz Wideband Massive MIMO Systems. IEEE Wirel. Commun. Lett. 2023, 12, 535–539. [Google Scholar] [CrossRef]
- Ning, B.; Tian, Z.; Mei, W.; Chen, Z.; Han, C.; Li, S.; Yuan, J.; Zhang, R. Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications. IEEE Open J. Commun. Soc. 2023, 4, 614–658. [Google Scholar] [CrossRef]
- Cui, M.; Dai, L. Near-Field Wideband Beamforming for Extremely Large Antenna Arrays. IEEE Trans. Wirel. Commun. 2024, 23, 13110–13124. [Google Scholar] [CrossRef]
- Chen, Y.; Han, C.; Björnson, E. Can Far-Field Beam Training Be Deployed for Cross-Field Beam Alignment in Terahertz UM-MIMO Communications? IEEE Trans. Wirel. Commun. 2024, 23, 14972–14987. [Google Scholar] [CrossRef]
- Liu, W.; Pan, C.; Ren, H.; Wang, J.; Schober, R. Near-Field Multiuser Beam-Training for Extremely Large-Scale MIMO Systems. IEEE Trans. Commun. 2024, 73, 2663–2679. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; You, C. Fast Near-Field Beam Training for Extremely Large-Scale Array. IEEE Wirel. Commun. Lett. 2022, 11, 2625–2629. [Google Scholar] [CrossRef]
- Wu, C.; You, C.; Liu, Y.; Chen, L.; Shi, S. Two-Stage Hierarchical Beam Training for Near-Field Communications. IEEE Trans. Veh. Technol. 2024, 73, 2032–2044. [Google Scholar] [CrossRef]
- Pérez-Adán, D.; González-Coma, J.P.; López-Martínez, F.J.; Castedo, L. Interference-Aware Precoding and User Selection for Multi-Cell Near-Field XL-MIMO Systems. IEEE Wirel. Commun. Lett. 2025, 14, 1396–1400. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, M.; Zhang, Z.; Dai, L. Distance-Aware Precoding for Near-Field Capacity Improvement in XL-MIMO. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Shlezinger, N.; Guidi, F.; Dardari, D.; Imani, M.F.; Eldar, Y.C. Beam Focusing for Near-Field Multiuser MIMO Communications. IEEE Trans. Wirel. Commun. 2022, 21, 7476–7490. [Google Scholar] [CrossRef]
- Zheng, G.; Wen, M.; Wen, J.; Shan, C. Joint Hybrid Precoding and Rate Allocation for RSMA in Near-Field and Far-Field Massive MIMO Communications. IEEE Wirel. Commun. Lett. 2024, 13, 1034–1038. [Google Scholar] [CrossRef]
- Li, X.; Hou, X.; Chen, L. Near-Field Line-of-Sight MIMO Precoding with Distributed Antennas. In Proceedings of the 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 2–5 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Xu, B.; Xiao, H.; Ai, B. Precoding and Power Control Design for Cell-Free XL-MIMO: From Far-Field to Near-Field. In Proceedings of the 2024 International Conference on Ubiquitous Communication (Ucom), Xi’an, China, 5–7 July 2024; pp. 63–67. [Google Scholar] [CrossRef]
- Gong, Y.; Karimi, M.; Le-Ngoc, T. Near-Field Nulling Control Beamfocusing Optimization for Multi-User Interference Suppression. IEEE Open J. Commun. Soc. 2025, 6, 1727–1746. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, L. Multiple Access for Near-Field Communications: SDMA or LDMA? IEEE J. Sel. Areas Commun. 2023, 41, 1918–1935. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, Y. Near-Field Modeling and Performance Analysis for Multi-User Extremely Large-Scale MIMO Communication. IEEE Commun. Lett. 2022, 26, 277–281. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, X.; Liu, Y. Beamfocusing Optimization for Near-Field Wideband Multi-User Communications. IEEE Trans. Commun. 2025, 73, 555–572. [Google Scholar] [CrossRef]
- Liang, P.; Wu, Q. Characteristic Mode Analysis of Antenna Mutual Coupling in the Near Field. IEEE Trans. Antennas Propag. 2018, 66, 3757–3762. [Google Scholar] [CrossRef]
- Frid, H.; Holter, H.; Jonsson, B.L.G. An Approximate Method for Calculating the Near-Field Mutual Coupling Between Line-of-Sight Antennas on Vehicles. IEEE Trans. Antennas Propag. 2015, 63, 4132–4138. [Google Scholar] [CrossRef]
- Ebadi, Z.; Molaei, A.M.; Abbasi, M.A.B.; Cotton, S.; Tukmanov, A.; Yurduseven, O. Near-Field Localization with an Exact Propagation Model in Presence of Mutual Coupling. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Sarkar, D.; Antar, Y.M.M. Antenna Mutual Coupling in Near-Field: Insights Using EM Lagrangian Density and Complex Helicity. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2670–2674. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, X.; Liu, Y. Rethinking Integrated Sensing and Communication: When Near Field Meets Wideband. IEEE Commun. Mag. 2024, 62, 44–50. [Google Scholar] [CrossRef]
- Qu, K.; Guo, S.; Ye, J.; Saeed, N. Near-Field Integrated Sensing and Communications: Unlocking Potentials and Shaping the Future. In Proceedings of the 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 22–24 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, W.; Pedersen, G.F. Near-field signal model for large-scale uniform circular array and its experimental validation. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1237–1240. [Google Scholar] [CrossRef]
- Sakhnini, A.; De Bast, S.; Guenach, M.; Bourdoux, A.; Sahli, H.; Pollin, S. Near-field coherent radar sensing using a massive MIMO communication testbed. IEEE Trans. Wirel. Commun. 2022, 21, 6256–6270. [Google Scholar] [CrossRef]
- Liu, J.; Wu, K.; Su, T.; Pang, G.; Chen, S.L. Near-field calibration of millimeter-wave massive MIMO antenna array using sphere reflectors. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3619–3623. [Google Scholar] [CrossRef]
- Pan, Y.; De Bast, S.; Pollin, S. Indoor direct positioning with imperfect massive MIMO array using measured near-field channels. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Xu, G. MIMO radar calibration and imagery for near-field scattering diagnosis. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 442–452. [Google Scholar] [CrossRef]
- Vieira, J.; Rusek, F.; Edfors, O.; Malkowsky, S.; Liu, L.; Tufvesson, F. Reciprocity calibration for massive MIMO: Proposal, Modeling, and Validation. IEEE Trans. Wirel. Commun. 2017, 16, 3042–3056. [Google Scholar] [CrossRef]
- Galappaththige, D.; Zargari, S.; Tellambura, C.; Li, G.Y. Near-Field ISAC: Beamforming for Multi-Target Detection. IEEE Wirel. Commun. Lett. 2024, 13, 1938–1942. [Google Scholar] [CrossRef]
- Cai, Z.; Sheng, M.; Liu, J.; Liu, J.; Li, J. Low-Power Beamforming Design for Near-Field Integrated Sensing and Communication Networks. IEEE Internet Things J. 2024, 12, 14979–14992. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, W.; Wang, X.; Amin, M.; Zoubir, A. Wideband Near-Field Integrated Sensing and Communications: A hybrid precoding perspective. IEEE Signal Process. Mag. 2025, 42, 88–105. [Google Scholar] [CrossRef]
- Zhao, B.; Ouyang, C.; Liu, Y.; Zhang, X.; Poor, H.V. Modeling and Analysis of Near-Field ISAC. IEEE J. Sel. Top. Signal Process. 2024, 18, 678–693. [Google Scholar] [CrossRef]
- Zhao, B.; Ouyang, C.; Xu, J.; Zhang, X.; Liu, Y. Near-Field ISAC: Performance Analysis and Rate Region Characterization. In Proceedings of the 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), Corvallis, OR, USA, 8–11 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, B.; Ouyang, C.; Zhang, X.; Liu, Y. Performance Analysis of Near-Field ISAC Based on an Accurate Channel Model. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 4918–4923. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Z.; Zhang, J.; Liu, F.; Li, X.; Zhang, Q.; Wei, Z.; Fan, S.; Yan, J. Near-Field Integrated Sensing and Communication Beamforming Considering Complexity. IEEE Trans. Veh. Technol. 2024, 74, 6021–6034. [Google Scholar] [CrossRef]
- Daei, S.; Zamani, A.; Chatterjee, S.; Skoglund, M.; Fodor, G. Near-Field ISAC in 6G: Addressing Phase Nonlinearity via Lifted Super-Resolution. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Cong, J.; You, C.; Li, J.; Chen, L.; Zheng, B.; Liu, Y.; Wu, W.; Gong, Y.; Jin, S.; Zhang, R. Near-Field Integrated Sensing and Communication: Opportunities and Challenges. IEEE Wirel. Commun. 2024, 31, 162–169. [Google Scholar] [CrossRef]
- Elbir, A.M.; Celik, A.; Eltawil, A.M. Near-field Hybrid Beamforming for Terahertz-band Integrated Sensing and Communications. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 1117–1122. [Google Scholar] [CrossRef]
- Miao, H.; Peng, M. Near-Field High-Speed User Sensing in Wideband mmWave Communications: Algorithms and Bounds. IEEE Trans. Signal Process. 2025, 73, 919–935. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, W.; Chen, Y.; Zheng, W.; Lu, Z.; Wen, X. Hybrid Beamforming Design for Wideband Near-Field ISAC with Delay Alignment Modulation. In Proceedings of the 2024 16th International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 24–26 October 2024; pp. 881–886. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, W.; Wang, X.; Amin, M.G.; Cai, K. Wideband Near-Field Integrated Sensing and Communication With Sparse Transceiver Design. IEEE J. Sel. Top. Signal Process. 2024, 18, 662–677. [Google Scholar] [CrossRef]
- Qu, K.; Guo, S.; Saeed, N.; Ye, J. Near-Field Integrated Sensing and Communication: Performance Analysis and Beamforming Design. IEEE Open J. Commun. Soc. 2024, 5, 6353–6366. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, H.; Guidi, F.; Dardari, D.; Wang, B.; Eldar, Y.C. Beam-Focusing for Near-Field ISAC Systems. In Proceedings of the 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 10–13 September 2024; pp. 241–245. [Google Scholar] [CrossRef]
- Lu, M.; Luo, H.; Liu, R.; Li, M.; Liu, Q. Beamforming Design for Near-Field Integrated Sensing and Communications. In Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 20–22 October 2023; pp. 434–438. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Mu, X.; Liu, Y.; Chen, Y.; Zhiwen, P. Downlink CRB Minimization for Near-Field Integrated Sensing and Communication. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 903–908. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Chen, H.; Cao, Y. Physical Layer Security of the NOMA-Assisted ISAC Systems Under Near-Field Scenario. IEEE Internet Things J. 2025, 12, 18546–18553. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, S.; Cai, K.; Mu, X.; Liu, Y.; Zhu, Y. Near-Field Integrated Sensing and Communications for Secure UAV Networks. arXiv 2025, arXiv:2502.01003. [Google Scholar]
- Huang, Q.; Song, Z.; Xiong, Z.; Xu, G.; Zhao, N.; Niyato, D. Joint Design of Trajectory and Near-Field Beamforming for STAR-RIS-Enabled ISAC. In Proceedings of the 2024 16th International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 24–26 October 2024; pp. 175–180. [Google Scholar] [CrossRef]
- Zeng, X.; Xing, L.; Wu, Y.; Shi, Y. Beamforming Design for Integrated Sensing and SWIPT System. In Proceedings of the IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; pp. 403–408. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Q. Federated Learning Based Integrated Sensing, Communications, and Powering Over 6G Massive-MIMO Mobile Networks. In Proceedings of the IEEE INFOCOM 2024—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 20–20 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Dai, J.; Liu, C.; Pan, C.; Wang, K. Secure Downlink Transmission for Integrated Sensing, Energy, and Communication Systems. IEEE Commun. Lett. 2024, 28, 1996–2000. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Q. Integrated Sensing, Communications, and Powering for Statistical-QoS Provisioning Over Next-Generation Massive-MIMO Mobile Networks. In Proceedings of the 2024 58th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 13–15 March 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, S.; Li, X.; Qiu, L.; Xu, J.; Ng, D.W.K. Secure Communications in Near-Field ISCAP Systems with Extremely Large-Scale Antenna Arrays. In Proceedings of the 2024 19th International Symposium on Wireless Communication Systems (ISWCS), Rio de Janeiro, Brazil, 14–17 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- He, S.; Tang, K.; Zheng, B.; Xiu, X.; Feng, W.; Che, W.; Xue, Q. Throughput Maximization Design for RIS-Assisted WPCN-NOMA-Based ISAC Systems. IEEE Trans. Commun. 2025, 1. [Google Scholar] [CrossRef]
- Yu, Z.; Ren, H.; Pan, C.; Zhou, G.; Wang, B.; Dong, M.; Wang, J. Active RIS-Aided ISAC Systems: Beamforming Design and Performance Analysis. IEEE Trans. Commun. 2024, 72, 1578–1595. [Google Scholar] [CrossRef]
- Chen, J.; Wu, K.; Niu, J.; Li, Y.; Xu, P.; Andrew Zhang, J. Spectral and Energy Efficient Waveform Design for RIS-Assisted ISAC. IEEE Trans. Commun. 2025, 73, 158–172. [Google Scholar] [CrossRef]
- Xue, N.; Mu, X.; Chen, Y.; Liu, Y. Near-field ISAC for A RIS-assisted System. In Proceedings of the GLOBECOM 2024—2024 IEEE Global Communications Conference, Cape Town, South Africa, 8–12 December 2024; pp. 4034–4039. [Google Scholar] [CrossRef]
- Dong, X.; Fei, Z.; Hua, M.; Wang, X.; Liu, Y. Semi-passive RIS Aided Near-field ISAC: CRB Analysis and Optimization. IEEE Trans. Veh. Technol. 2025, 74, 9084–9099. [Google Scholar] [CrossRef]
- Hu, L.; Tan, Z.; Wu, L.; Huang, C.; Xie, S.; He, T. Beam Scanning Design and Performance Analysis for Near-Field IRS-Aided Integrated Sensing and Communication Systems. IEEE Trans. Green Commun. Netw. 2024, 1. [Google Scholar] [CrossRef]
- Galappaththige, D.; Tellambura, C.; Maaref, A. Integrated Sensing and Backscatter Communication. IEEE Wirel. Commun. Lett. 2023, 12, 2043–2047. [Google Scholar] [CrossRef]
- Johnston, J.; Venturino, L.; Grossi, E.; Lops, M.; Wang, X. Radar-enabled backscatter communication. In Proceedings of the IEEE ACSSC, Pacific Grove, CA, USA, 31 October–2 November 2022. [Google Scholar] [CrossRef]
- Zargari, S.; Galappaththige, D.; Tellambura, C. Sensing and Backscatter Communication Integration: Realizing Efficiency in Wireless Systems for IoT. arXiv 2023, arXiv:2312.06888. [Google Scholar]
- Wang, C.; Li, G.; Zhang, H.; Wong, K.K.; Li, Z.; Ng, D.W.K.; Chae, C.B. Fluid Antenna System Liberating Multiuser MIMO for ISAC via Deep Reinforcement Learning. IEEE Trans. Wirel. Commun. 2024, 23, 10879–10894. [Google Scholar] [CrossRef]
- Zou, J.; Xu, H.; Wang, C.; Xu, L.; Sun, S.; Meng, K.; Masouros, C.; Wong, K.K. Shifting the ISAC Trade-Off With Fluid Antenna Systems. IEEE Wirel. Commun. Lett. 2024, 13, 3479–3483. [Google Scholar] [CrossRef]
- Zhou, L.; Yao, J.; Jin, M.; Wu, T.; Wong, K.K. Fluid Antenna-Assisted ISAC Systems. IEEE Wirel. Commun. Lett. 2024, 13, 3533–3537. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, M.; Zhang, T.; Chen, G.; Liu, J.; Ching, P.C. An Efficient Sum-Rate Maximization Algorithm for Fluid Antenna-Assisted ISAC System. IEEE Commun. Lett. 2025, 29, 200–204. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Yang, Z.; Reza Shikh-Bahaei, M. Near-Field Extremely Large-Scale STAR-RIS Enabled Integrated Sensing and Communications. IEEE Trans. Green Commun. Netw. 2025, 9, 404–416. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chen, K.C.; Li, G.Y.; Mahonen, P. Cognitive radio networking and communications: An overview. IEEE Trans. Veh. Technol. 2011, 60, 3386–3407. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, J. Near-Field Integrated Sensing and Communication in Cognitive Radio Networks. IEEE Internet Things J. 2024, 12, 14969–14978. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Guo, H.; Qi, M.; Kato, N. Envisioning Device-to-Device Communications in 6G. IEEE Netw. 2020, 34, 86–91. [Google Scholar] [CrossRef]
- Ponnimbaduge Perera, T.D.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 264–302. [Google Scholar] [CrossRef]
- Pan, G.; Lei, H.; Yuan, Y.; Ding, Z. Performance Analysis and Optimization for SWIPT Wireless Sensor Networks. IEEE Trans. Commun. 2017, 65, 2291–2302. [Google Scholar] [CrossRef]
- Tang, J.; Luo, J.; Liu, M.; So, D.K.C.; Alsusa, E.; Chen, G.; Wong, K.K.; Chambers, J.A. Energy Efficiency Optimization for NOMA With SWIPT. IEEE J. Sel. Top. Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef]
- Boshkovska, E.; Ng, D.W.K.; Zlatanov, N.; Schober, R. Practical Non-Linear Energy Harvesting Model and Resource Allocation for SWIPT Systems. IEEE Commun. Lett. 2015, 19, 2082–2085. [Google Scholar] [CrossRef]
- Mei, P.; Cai, Y.; Zhao, K.; Ying, Z.; Pedersen, G.F.; Lin, X.Q.; Zhang, S. On the Study of Reconfigurable Intelligent Surfaces in the Near-Field Region. IEEE Trans. Antennas Propag. 2022, 70, 8718–8728. [Google Scholar] [CrossRef]
- Xu, T.; Liu, F.; Masouros, C.; Darwazeh, I. An Experimental Proof of Concept for Integrated Sensing and Communications Waveform Design. IEEE Open J. Commun. Soc. 2022, 3, 1643–1655. [Google Scholar] [CrossRef]
- Kim, J.; Clerckx, B.; Mitcheson, P.D. Experimental Analysis of Harvested Energy and Throughput Trade-off in a Realistic SWIPT System. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Aboagye, S.; Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Poor, H.V. RIS-Assisted Visible Light Communication Systems: A Tutorial. IEEE Commun. Surv. Tutor. 2023, 25, 251–288. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Kuai, X.; Liang, Y.C. AmBC-Aided integrated sensing and communication systems for V2X networks. In Proceedings of the IEEE ICC Workshops, Rome, Italy, 28 May–1 June 2023; pp. 1480–1485. [Google Scholar] [CrossRef]
- Ren, C.; Liu, L. Toward Full Passive Internet of Things: Symbiotic Localization and Ambient Backscatter Communication. IEEE Internet Things J. 2023, 10, 19495–19506. [Google Scholar] [CrossRef]
- Okubo, R.; Jacobs, L.; Wang, J.; Bowers, S.; Soltanaghai, E. Integrated Two-way Radar Backscatter Communication and Sensing with Low-power IoT Tags. In Proceedings of the ACM SIGCOMM 2024 Conference, Sydney, NSW, Australia, 4–8 August 2024; ACM SIGCOMM ’24. pp. 327–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Xu, T. Zero-Power Backscatter Sensing and Communication Proof-of-Concept. arXiv 2025, arXiv:2503.00602. [Google Scholar] [CrossRef]
- Marcus, S.; Carbone, R. Gain and relaxation studies in transversely excited HF lasers. IEEE J. Quantum Electron. 1972, 8, 651–655. [Google Scholar] [CrossRef]
- Ye, Y.; You, L.; Xu, H.; Elzanaty, A.; Wong, K.K.; Gao, X. SCNR Maximization for MIMO ISAC Assisted by Fluid Antenna System. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Hao, T.; Shi, C.; Guo, Y.; Xia, B.; Yang, F. Fluid-Antenna Enhanced Integrated Sensing and Communication: Joint Antenna Positioning and Beamforming Design. In Proceedings of the 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 7–9 August 2024; pp. 956–961. [Google Scholar] [CrossRef]
- Huelsman, L. A Generalization of an Active RC Realization Technique. IEEE Trans. Circuit Theory 1967, 14, 422–424. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Hou, Y.; Tao, X. Energy-Efficiency Optimization for Slow Fluid Antenna Multiple Access Using Mean-Field Game. IEEE Wirel. Commun. Lett. 2024, 13, 915–918. [Google Scholar] [CrossRef]
- Martínez, J.O.; Rodríguez, J.R.; Shen, Y.; Tong, K.F.; Wong, K.K.; Armada, A.G. Toward Liquid Reconfigurable Antenna Arrays for Wireless Communications. IEEE Commun. Mag. 2022, 60, 145–151. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, P.; Kotte, V.V.; Rauf, S.; Yang, Y.; Rahman, M.M.U.; Al-Naffouri, T.Y.; Shamim, A. Electromagnetically Reconfigurable Fluid Antenna System for Wireless Communications: Design, Modeling, Algorithm, Fabrication, and Experiment. arXiv 2025, arXiv:2502.19643. [Google Scholar] [CrossRef]
- Robat Mili, M.; Musavian, L.; Hamdi, K.A.; Marvasti, F. How to Increase Energy Efficiency in Cognitive Radio Networks. IEEE Trans. Commun. 2016, 64, 1829–1843. [Google Scholar] [CrossRef]
- Haider, F.; Wang, C.X.; Haas, H.; Hepsaydir, E.; Ge, X.; Yuan, D. Spectral and Energy Efficiency Analysis for Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2015, 14, 2969–2980. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Power scaling laws and Near-field behaviors of massive MIMO and intelligent reflecting surfaces. IEEE Open J. Commun. Soc. 2020, 1, 1306–1324. [Google Scholar] [CrossRef]
Abbreviations | Explanation |
---|---|
AoA | Angle of Arrival |
AT | Assisting Transceiver |
BCD | Block Coordinate Descent |
BS | Base-Station |
BSUM | Block Successive Upper bound Minimization |
CoMP | Coordinated Multipoint |
CR | Cognitive Radio |
CRB | Cramer-Rao Bound |
CSI | Channel State Information |
CU | Communication Users |
DC | Difference of Convex |
DFRC | Dual-Function Radar and Communication |
DFT | Discrete Fourier Transform |
DOA | Direction-of-Arrival |
DoF | Degrees-of-Freedom |
DRT | Deterministic-Random Trade-off |
EE | Energy Efficiency |
EKF | Extended Kalman Filter |
ELAA | Extremely Large Antenna Array |
EM | Electromagnetic |
ER | Energy Receiver |
FAS | Fluid Antenna Systems |
FD | Full-Duplex |
FF | Far-Field |
FIM | Fisher Information Matrix |
FPA | Fixed-Position Antenna |
HAD | Hybrid-Analog-and-Digital |
IoT | Internet-of-Things |
IR | Information Receiver |
ISAC | Integrated Sensing and Communication |
ISABC | Integrated Sensing and Backscatter Communication |
ISACP | Integrated Sensing, Communications, and Powering |
ISCC | Integrated Sensing, Communication and Computing |
ISEAC | Integrating Sensing, Energy and Communication |
ISPAC | Integrated Sensing, Positioning, and Communication |
ITU | International Telecommunication Union |
JCAS | Joint Communication and Sensing |
JWOD | Joint Waveform Optimization and Design |
LoS | Line-of-Sight |
MIMO | Multiple-Input Multiple-Output |
MM | Majorization-Minimization |
mmWave | Millimeter wave |
MUSIC | Multiple Signal Classification |
NF | Near-Field |
NF-ISAC | Near-field Integrated Sensing and Communication |
NOMA | Non-Orthogonal Multiple Access |
OFDM | Orthogonal Frequency Division Multiplexing |
PAPR | Peak-to-Average Power Ratio |
PCCP | Penalty Convex-Concave Procedure |
PDD | Penalty Dual Decomposition |
PEB | Position Error Bound |
PLS | Physical Layer Security |
PMN | Perceptive Mobile Network |
PWM | Plane Wave Model |
QoS | Quality-of-service |
RCG | Reimannian Conjugate Gradient |
RE | Reflecting Elements |
RF | Radio-Frequency |
RIS | Reconfigurable Intelligent Surface |
SCA | Successive Convex Approximation |
SDR | Semi-Definite Relaxation |
SEE | Sensing-centric Energy Efficiency |
SINR | Signal-plus-Interference-to-Noise Ratio |
SNR | Signal-to-Noise Ratio |
SOCP | Second-Order Cone Programming |
SWIPT | Simultaneous Wireless Information and Power Transfer |
SWM | Spherical Wave Model |
THz | Terahertz |
TTD | True-Time-Delay |
UAV | Unmanned Aerial Vehicle |
USW | Uniform Spherical Wave |
XL-MIMO | Extremely large scale Multiple-Input Multiple-Output |
XL-RIS | Extremely Large-scale Reconfigurable Intelligent Surface |
XL-STAR-RIS | Extremely Large-scale Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface |
ZZB | Ziv-Zakai Bound |
Type of Design | Objective | Optimized | Constrained |
---|---|---|---|
Power focused designs | Maximize communication energy efficiency [54,55,56,57,58,59,60,61] | Communication performance, power | Sensing performance |
Maximize sensing energy efficiency [62,63,64] | Sensing performance, power | Communication performance | |
Maximize joint sensing and communication energy efficiency [65,66,67,68,69,70,71,72,73,74] | Communication & sensing performance, power | Power | |
Minimize power consumption [6,75] | Power | Communication & sensing performance | |
Performance focused designs | Maximize communication performance [76,77,78] | Communication performance, power | Sensing performance |
Maximize sensing performance [52,79,80,81,82] | Sensing performance, power | Communication performance | |
Maximize joint sensing and communication performance [83,84] | Communication & sensing performance, power | Power |
Type | Work | Motivations |
---|---|---|
Energy efficient beam management | [6,55,56,57,59,62,67,68,69,71,72,75] | The simultaneous operation of sensing and communication while meeting the QoS requirements of modern communication systems is only possible owing to optimized beamforming design. |
Energy efficient waveform design | [54,65] | Waveform design is necessary for the joint operation of integrated sensing and communication. An optimized waveform facilitates efficient spectrum utilization and enhances the accuracy of target detection while maintaining robust communication performance. |
Secure communications | [58,61] | Physical layer security is highly dependent on sensing the eavesdroppers so that their respective signal-plus-interference-to-noise ratio (SINR) can be minimized. The sensing functionality of ISAC provides an efficient procedure to sense eavesdroppers and therefore naturally enables secure communications. |
mmWave & THz communications | [60,64] | Communication systems operating at a high frequency produce narrow beams and can therefore frequently face the problem of beam alignment. ISAC provides an efficient solution to the problem by allowing both high speed communication and accurate target sensing and tracking for enhanced beam alignment. |
Cell-free communications | [63,74] | Line of sight operation is necessary for accurate sensing, this requirement is adequately fulfilled in the case of cell-free communications. |
NOMA enabled communications | [66,70] | As in the case of ISAC, NOMA also focuses on efficient spectrum utilization at the cost of increased processing. It can be used to further enhance the spectrum utilization of ISAC. |
UAV enabled communication | [73,85] | UAVs have extremely high mobility making them prone to beam misalignment. ISAC is enabled by the line of sight operation provided by UAVs, and can offer a viable solution to the problem of beam misalignment in UAV enabled systems. |
Type | Work | Motivations |
---|---|---|
Energy efficient beam management | [79,83,84] | Waveform and beamforming designs are essential for the proper functioning of ISAC systems owing to their joint operation. Without waveform design and beamforming neither of functionalities promised by ISAC would fulfill the requirements of modern communication systems. |
Secure communication | [52,76,77] | Secure communication systems are highly reliant on the detection and tracking of malicious entities trying to intercept sensitive communications. The sensing functionality of ISAC provides a viable opportunity to cater for this requirement. |
UAV communcations | [78,82] | Simultaneous sensing and communication allows for the deployment and efficient operation of versatile service providing entities like UAVs. Beamforming and beam alignment are important requirements within systems formed by such entities and can greatly benefit from the sensing capabilities of ISAC. |
NOMA communications | [81,82] | Simultaneous sensing and communication are required for the efficient utilization of the available spectrum without incurring more hardware costs. NOMA is also a transformative technology that allows for the efficient spectrum utilization and can complement the operation of ISAC. |
Aspect | Reactive Near-Field | Radiating Near-Field | Far-Field |
---|---|---|---|
Energy Behavior | Non-radiative, oscillatory energy storage | Partial energy radiation with spherical wavefronts | Fully radiative with stable wave propagation |
Field Distribution | Highly non-uniform, dominated by reactive components | Transitioning from reactive to radiative fields | Uniform field distribution with well-defined propagation |
Wavefront Formation | Not fully developed, no clear propagation pattern | Formed but exhibits significant curvature | Fully developed and approximated as planar waves |
Phase Variation | Non-linear and complex, preventing simple approximations | Non-linear across the aperture due to spherical curvature | Linear with respect to the aperture, enabling simplified modeling |
Power Distribution | Localized with rapid field strength decay | More uniform but still affected by distance-dependent variations | Uniform and governed by free-space path loss |
Beamforming Capability | Ineffective due to high field reactivity | Enables beamfocusing at specific locations in space | Enables beamsteering with stable angular properties |
Frequency Dependence | Higher frequency extends the reactive NF range | Higher frequency extends the radiating NF region | Lower frequency shifts the FF region closer to the antenna |
Boundary Definition | Fresnel distance: | Rayleigh distance: | Beyond Rayleigh distance where planar wave approximation holds |
Paper | Key Focus | Techniques/Algorithms |
---|---|---|
[14] | Fundamentals of NF propagation and ISAC. Discussion of typical NF-ISAC applications. | Survey/discussion |
[162] | Wideband channel characteristics, angular-delay correlations, and Doppler effects. | Analysis of angular-delay correlations, Doppler-domain signal multiplexing, velocity sensing |
[163] | Potentials and advantages of NF-ISAC systems. Discussion of technological frameworks supporting NF-ISAC. | Simulation results |
[170] | Joint transmit/receive beamforming for multi-target detection and multi-user communication with power minimization. | Iterative non-convex optimization, generalized Rayleigh ratio quotient, Semi-definite Relaxation, Gaussian randomization method |
[171] | Low-power transmit beamforming in CoMP ISAC networks. | SCA, Novel fast-converging algorithm |
[172] | NF wideband sensing and communication, high-accuracy target estimation. | Fully-digital and hybrid precoding design |
[173] | NF-ISAC framework for DL/UL, effects of aperture and polarization on channel models. | Rate derivations, scaling law analysis |
[174] | Accurate channel model-based NF-ISAC framework incorporating effective aperture loss. | Closed-form expression derivations |
[175] | NF-ISAC framework with effective aperture loss and polarization mismatch. | Closed-form derivations |
[99] | Transmit symbol design for weighted joint sensing and communication performance. | 2D MUSIC algorithm for target estimation |
[176] | NF-ISAC beamforming schemes (conjugate sensing, null-space sensing, joint design). | Derivation of closed-form rate expressions |
[177] | Joint communication channel estimation and target parameter estimation overcoming phase nonlinearity. | High-dimensional linear model formulation |
[178] | Overview of NF-ISAC techniques: comm-assisted sensing, sensing-assisted comm, and joint designs. | Comparative discussion and analysis |
[179] | Hybrid beamforming for NF THz-ISAC, mitigating beam squint. | Alternating optimization |
[180] | Impact of Doppler and spatial wideband effects on NF-ISAC performance. | CRB and Ziv-Zakai bound derivations, joint position-velocity estimation |
[181] | Multi-user NF-ISAC with delay alignment modulation for target echo sensing. | SCA, PCCP, and SOCP |
Paper | Key Focus | Techniques/Algorithms |
---|---|---|
[15] | Joint waveform optimization to maximize sensing performance subject to communication constraints. | Two-stage optimization and SDR |
[182] | NF wideband ISAC for multiuser and multi-target sensing, CRB minimization. | CRB derivation, iterative convex optimization |
[183] | Sensing SINR maximization using NF beamforming while satisfying communication QoS. | Rayleigh entropy theory and SDR |
[184] | ELAA-based NF-ISAC design to maximize the minimum beam pattern gain for radar sensing. | SDR and low-complexity algorithm |
[185] | Joint waveform design to minimize beampattern matching error for sensing. | Majorization-minimization (MM) algorithm |
[100] | Integrated sensing, positioning, and communication (ISPAC) using a double-array at the BS. | PDD-based double-loop and alternating optimization |
[186] | Joint angle and distance CRB minimization in a double-array NF-ISAC system. | PDD-based double-loop iterative algorithm |
[37] | Localization via NF beamforming for receiver positioning. | Localization algorithm with Monte-Carlo simulations |
[88] | Mitigation of beam squint in NF systems using TTD lines for localization. | TTD implementation and trajectory equation derivation |
Paper | Key Focus | Techniques/Algorithms |
---|---|---|
[187] | Secure NF-ISAC in a NOMA scenario, joint beamforming for secure communication and sensing. | SDR and SCA, CRB derivation |
[188] | Joint trajectory design and ground base station beamforming, UAVs, location prediction, secrecy rate, high time efficiency | Alternating optimization, successive convex approximation |
[189] | Joint trajectory design and beamforming, STAR-RIS, transmission/reflection matrices, UAVs, sum rate maximization | Alternating optimization, successive convex approximation |
Technology | Articles | Motivations |
---|---|---|
Integrated Sensing, Communications and Powering | [190,191,192,193,194] | Combines sensing, data transfer and RF power delivery to mitigate energy and spectrum bottlenecks in ultra-dense 6G networks. |
RIS-aided Sustainable ISAC | [195,196,197,198,199,200] | Employs passive beamforming to direct energy and extend coverage with minimal RF hardware. |
Integrated Passive Backscattering and Sensing | [41,201,202,203] | Uses ultra-low-power backscatter tags for scalable, cost-effective sensing and communications without active RF chains. |
Fluid Antenna–assisted ISAC | [9,204,205,206,207,208] | Dynamically reconfigures antenna element positions to maximize spatial multiplexing gains. |
Cognitive Radio with ISAC | [209,210] | Leverages dynamic spectrum access to boost spectral efficiency for joint sensing and communication. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjum, M.; Khan, M.A.; Mishra, D.; Jung, H.; Seneviratne, A. Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review. Energies 2025, 18, 3682. https://doi.org/10.3390/en18143682
Anjum M, Khan MA, Mishra D, Jung H, Seneviratne A. Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review. Energies. 2025; 18(14):3682. https://doi.org/10.3390/en18143682
Chicago/Turabian StyleAnjum, Mahnoor, Muhammad Abdullah Khan, Deepak Mishra, Haejoon Jung, and Aruna Seneviratne. 2025. "Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review" Energies 18, no. 14: 3682. https://doi.org/10.3390/en18143682
APA StyleAnjum, M., Khan, M. A., Mishra, D., Jung, H., & Seneviratne, A. (2025). Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review. Energies, 18(14), 3682. https://doi.org/10.3390/en18143682