Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies
Abstract
1. Introduction
2. Climate-Dependent Cell Temperature and Energy Yield Simulations
2.1. Climate Sites and Simulation Setup
- G is irradiance in W/m2;
- Tcell is cell temperature in °C;
- Tamb is ambient temperature in °C.
Parameter | Value | Unit | Note |
---|---|---|---|
Module type | Mono-Si 96-cell | – | SAM IEC 61853 model |
Power at STC (Pmp) | 322.3 | W | |
Open circuit voltage (Voc) | 70.21 | V | |
Voltage at Pmp (Vmp) | 58.54 | V | |
Short-circuit current (Isc) | 5.903 | A | |
Current at Pmp (Imp) | 5.506 | A | |
Efficiency at STC | 19.19 | % | |
Temperature coefficient at STC | −0.275 | % | |
Module area | 1.68 | m2 | |
Installation | Fixed tilt | – | Tilt angle = latitude |
Orientation | South-facing | – | Azimuth = 180° |
- is irradiance in W/m2;
- v is wind speed in m/s;
- U0 and U1 are heat loss coefficients in W/(m2·°C) and W/(m2·°C·(m/s)).
2.2. Efficiency and Energy Yield
2.3. LCOE Calculation and Cooling Comparison
- FCR: fixed charge rate (default = 0.09);
- CC: system capital cost (USD/kWdc);
- FOC: annual fixed operation and maintenance cost;
- EY: annual energy yield (kWh) from SAM simulation.
- ΔLCOE: the difference in LCOE ($/kWh) before and after cooling;
- Lifetime yield: the total energy produced per unit area (kWh/m2) over the system’s lifetime.
3. Simulation Results
3.1. Temperature-Driven Efficiency Losses
3.2. Regression of U0/U1
3.3. LCOE and Cost–Benefit Simulation Cooling Cost Break-Even Estimation
- ΔE represents the annual power generation gain (kWh/kW/year);
- P represents the local electricity price (USD/kWh);
- ΔT represents the cooling amplitude (°C).
- ΔE: the annual power generation gain (kWh/kW/year);
- P: the local electricity price (USD/kWh);
- N: system lifetime (year);
- Module capacity: module capacity per unit area (kW/m2).
4. Discussion
4.1. STC-Based Efficiency Benchmark and Real-World Deviation
4.2. Temperature Models
4.3. Interpreting LCOE Improvements and the Applicability of Cooling Strategies
4.4. Limitations of Simulation-Based Evaluation and the Need for Experimental Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Champion Photovoltaic Module Efficiency Chart | Photovoltaic Research | NREL. Available online: https://www.nrel.gov/pv/module-efficiency (accessed on 12 May 2025).
- Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J.; Riley, E.; Hansen, C. Weather-Corrected Performance Ratio; National Renewable Energy Laboratory: Golden, CO, USA, 2013; p. 1078057, NREL/TP-5200-57991. [Google Scholar]
- Woodhouse, M.; Cordell, J.; Ramasamy, V.; Zuboy, J.; Smith, B.; Margolis, R.; Feldman, D. Reflections on 15 Years of PV Module and System Price Declines and Where Things Go from Here; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar]
- Vaillon, R.; Dupré, O.; Cal, R.B.; Calaf, M. Pathways for Mitigating Thermal Losses in Solar Photovoltaics. Sci. Rep. 2018, 8, 13163. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Zuboy, J.; Dummit, K.; Stright, D.; Heine, M.; Grossman, S.; Narayanaswami, M.; Margolis, R. Fall 2024 Solar Industry Update; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024; p. 2496617, NREL/PR-7A40-92257; MainId:94038. [Google Scholar]
- Khalili, Z.; Sheikholeslami, M.; Momayez, L. Hybrid Nanofluid Flow Within Cooling Tube of Photovoltaic-Thermoelectric Solar Unit. Sci. Rep. 2023, 13, 8202. [Google Scholar] [CrossRef] [PubMed]
- Poudel, S.; Zou, A.; Maroo, S.C. Thermal Management of Photovoltaics Using Porous Nanochannels. Energy Fuels 2022, 36, 4549–4556. [Google Scholar] [CrossRef]
- Yoon, S.; Seo, J.; Jung, J.; Choi, M.; Lee, B.J.; Kim, J.B. Improving Radiative Cooling Performance via Strong Solar Reflection by Dense Al2O3 Particles in a Polymeric Film. Int. J. Heat Mass Transf. 2024, 227, 125574. [Google Scholar] [CrossRef]
- Jäger, K.; Aeberhard, U.; Alarcon Llado, E.; Bläsi, B.; Burger, S.; Ehrler, B.; Favre, W.; Fejfar, A.; Gageot, T.; Gordon, I.; et al. Optics for Terawatt-Scale Photovoltaics: Review and Perspectives. Adv. Opt. Photon. 2025, 17, 185. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Xu, S.; Tan, G.; Yin, X.; Yang, R. Radiative Sky Cooling: Fundamental Principles, Materials, and Applications. Appl. Phys. Rev. 2019, 6, 021306. [Google Scholar] [CrossRef]
- Perrakis, G.; Tasolamprou, A.C.; Kenanakis, G.; Economou, E.N.; Tzortzakis, S.; Kafesaki, M. Passive Radiative Cooling and Other Photonic Approaches for the Temperature Control of Photovoltaics: A Comparative Study for Crystalline Silicon-Based Architectures. Opt. Express 2020, 28, 18548. [Google Scholar] [CrossRef] [PubMed]
- Mariam, E.; Ramasubramanian, B.; Sumedha Reddy, V.; Dalapati, G.K.; Ghosh, S.; Pa, T.S.; Chakrabortty, S.; Motapothula, M.R.; Kumar, A.; Ramakrishna, S.; et al. Emerging Trends in Cooling Technologies for Photovoltaic Systems. Renew. Sustain. Energy Rev. 2024, 192, 114203. [Google Scholar] [CrossRef]
- Ibrahim, T.; Hachem, F.; Ramadan, M.; Faraj, J.; El Achkar, G.; Khaled, M. Cooling PV Panels by Free and Forced Convections: Experiments and Comparative Study. AIMS Energy 2023, 11, 774–794. [Google Scholar] [CrossRef]
- Kaneesamkandi, Z.; Rehman, A.U. Selection of a Photovoltaic Panel Cooling Technique Using Multi-Criteria Decision Analysis. Appl. Sci. 2023, 13, 1949. [Google Scholar] [CrossRef]
- Barykina, E.; Hammer, A. Modeling of Photovoltaic Module Temperature Using Faiman Model: Sensitivity Analysis for Different Climates. Sol. Energy 2017, 146, 401–416. [Google Scholar] [CrossRef]
- IEC 61853-2:2016; Photovoltaic (PV) Module Performance Testing and Energy Rating—Part 2: Spectral Responsivity, Incidence Angle and Module Operating Temperature Measurements. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- Faiman, D. Assessing the Outdoor Operating Temperature of Photovoltaic Modules. Prog. Photovolt. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Yadav, S.K.; Kumar, N.M.; Bajpai, U. Quantitative Impact Assessment of Temperature on the Economics of a Rooftop Solar Photovoltaic System. Environ. Sci. Pollut. Res. 2022, 30, 21900–21913. [Google Scholar] [CrossRef]
- Rahmatmand, A.; Harrison, S.J.; Oosthuizen, P.H. An Innovative Method to Control Surface Temperature of a Rooftop Photovoltaic System. Sol. Energy 2020, 195, 581–591. [Google Scholar] [CrossRef]
Location | Yearly Tamb (°C) | Daily GHI (kWh/m2/day) | Annual Insolation (kWh/m2) | Yearly Wind Speed (m/s) | July Tamb (°C) | Latitude |
---|---|---|---|---|---|---|
College Station, TX | 20.53 | 4.89 | 1784.9 | 2.67 | 33 | 30.61° N |
El Paso, TX | 18.77 | 5.92 | 2160.8 | 3.44 | 33 | 31.77° N |
Jacksonville, FL | 21.68 | 4.85 | 1770.2 | 1.34 | 30 | 30.33° N |
Location/Study | U0 [W/(°C·m2)] | U1 [W·s/(°C·m3)] | Module Type | Data Period |
---|---|---|---|---|
College Station, TX (This study) | 26.88 | 8.88 | mono-Si | 2015–2023 |
El Paso, TX (This study) | 26.23 | 8.90 | mono-Si | 2015–2023 |
Jacksonville, FL (This study) | 26.17 | 8.93 | mono-Si | 2015–2023 |
Cologne, DE ([15]) | 35.7 | 8.22 | poly-Si | 6 months |
Tempe, US ([15]) | 32.1 | 6.08 | poly-Si | 6 months |
Ancona, IT ([15]) | 41.9 | 3.95 | poly-Si | 6 months |
Chennai, IN ([15]) | 30.1 | 4.75 | poly-Si | 6 months |
Thuwal, SA ([15]) | 39.7 | 3.06 | poly-Si | 6 months |
City | LCOE No Cooling (USD/kWh) | Local Electricity Price (USD/kWh) | = 10 °C (USD/kWh) | = 10 °C |
---|---|---|---|---|
College Station | 0.165 | 0.119 | 0.161 | 2.68 |
Jacksonville | 0.167 | 0.13 | 0.162 | 2.83 |
El Paso | 0.131 | 0.16 | 0.128 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Madsen, C. Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies. Energies 2025, 18, 3609. https://doi.org/10.3390/en18143609
Jiang B, Madsen C. Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies. Energies. 2025; 18(14):3609. https://doi.org/10.3390/en18143609
Chicago/Turabian StyleJiang, Bitian, and Christi Madsen. 2025. "Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies" Energies 18, no. 14: 3609. https://doi.org/10.3390/en18143609
APA StyleJiang, B., & Madsen, C. (2025). Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies. Energies, 18(14), 3609. https://doi.org/10.3390/en18143609