Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM
Abstract
1. Introduction
2. Methodology
2.1. Influencing Factors of Wind Power
2.2. Data Preprocessing
2.3. The Composition Module of Deep Network
2.3.1. LSTM Model
2.3.2. CNN Model
2.3.3. CNN-LSTM Module
3. Intelligent Optimization Algorithm
3.1. Particle Swarm Algorithm
3.2. Quantum Particle Swarm Optimization
3.3. Intelligent Optimization Algorithm Combined with LSTM
3.4. PSO Algorithm Optimizes Hybrid CNN-LSTM Model
3.5. Statistical Method
4. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zha, W.T.; Liu, J.; Li, Y.L.; Liang, Y.Y. Ultra-short-term power forecast method for the wind farm based on feature selection and temporal convolution network. ISA Trans. 2022, 129, 405–414. [Google Scholar] [CrossRef]
- Wang, J.J.; Shu, S.Q.; Xu, S.L. A point-interval wind speed prediction model based on entropy clustering and hybrid optimization weighted strategy. Renew. Energy 2025, 244, 122653. [Google Scholar] [CrossRef]
- Lv, Y.L.; Hu, Q.; Xu, H.; Lin, H.Y.; Wu, Y.F. An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model. Energy 2024, 293, 130751. [Google Scholar] [CrossRef]
- Bazionis, I.K.; Karafotis, P.A.; Georgilakis, P.S. A review of short-term wind power probabilistic forecasting and a taxonomy focused on input data. IET Renew. Power Gener. 2022, 16, 77–91. [Google Scholar] [CrossRef]
- Mi, X.W.; Liu, H.; Li, Y.F. Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine. Energy Convers. Manag. 2019, 180, 196–205. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, W. Research on the development status and trend of China’s wind power industry. Electromech. Prod. Dev. Innov. 2023, 36, 206–208. [Google Scholar]
- Li, T.; Ai, L.J.; Yang, Q.S.; Zhang, X.X.; Li, H.; Lu, D.W.; Shen, H.T. Short-term wind power prediction based on multiscale numerical simulation coupled with deep learning. Renew. Energy 2025, 246, 122951. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Li, M.; Wang, Q.H. A short-term wind power prediction approach based on an improved dung beetle optimizer algorithm, variational modal decomposition, and deep learning. Comput. Electr. Eng. 2024, 116, 109182. [Google Scholar] [CrossRef]
- Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sustain. Energy Rev. 2020, 4, 315–374. [Google Scholar] [CrossRef]
- Yildiz, C.; Acikgoz, H.; Korkmaz, D.; Budak, U. An improved residual-based convolutional neural network for very short-term wind power forecasting. Energy Convers. Manag. 2021, 228, 113731. [Google Scholar] [CrossRef]
- Xu, L.B.; Wang, W.; Zhang, T.; Yang, L.; Wang, S.Y.; Li, Y.D. Ultra-short-term wind power prediction based on the average influence value of neural network. Autom. Electr. Power Syst. 2017, 41, 40–45. [Google Scholar]
- Yue, X.Y.; Peng, X.G.; Li, L. Short-term wind power forecasting based on support vector machine optimized by whale. Proc. CSU-EPSA 2020, 32, 146–150. [Google Scholar]
- Chitsazan, M.A.; Fadali, M.S.; Trzynadlowski, A.M. Wind speed and wind direction forecasting using echo state network with nonlinear functions. Renew. Energy 2019, 131, 879–889. [Google Scholar] [CrossRef]
- Lai, G.K.; Chang, W.C.; Yang, Y.M. Modeling long and short-term temporal patterns with deep neural networks. arXiv 2018, arXiv:1703.07015v3. [Google Scholar]
- Ku, X.Y.; Wang, S.P. Research on advertising click-through rate prediction model based on convolution-LSTM network. Comput. Eng. Appl. 2019, 55, 193–197. [Google Scholar]
- Peng, S.M.; Zhu, J.C.; Wu, T.Z.; Yuan, C.C.R.; Cang, J.J.; Zhang, K.; Pecht, M. Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model. Energy 2024, 131345. [Google Scholar] [CrossRef]
- Li, L.J.; Li, Y.; Zhou, B.; Wu, Q.W.; Gong, Z.; Shen, X.Y.; Liu, H.L. An adaptive time-resolution method for ultra-short-term wind power prediction. Int. J. Electr. Power Energy Syst. 2020, 118, 105814. [Google Scholar] [CrossRef]
- Wang, H.Z.; Lei, Z.X.; Zhang, X.; Zhou, B.; Peng, J.C. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.C.; Ye, Y.; Liu, H.; Chen, K.; Li, D.; Dong, X.; Sun, M.Z. Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty. Renew. Energy 2023, 205, 598–607. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, H.L.; Zhu XGuo Liu, G.Q. Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks. Renew. Energy 2022, 199, 977–992. [Google Scholar] [CrossRef]
- Li, K.; Shen, R.F.; Wang, Z.G.; Yan, B.W.; Yang, Q.S.; Zhou, X.H. An efficient wind speed prediction method based on a deep neural network without future information leakage. Energy 2023, 267, 126589. [Google Scholar] [CrossRef]
- Xue, Y.S.; Yu Chen Zhao, J.H.; Li, K.; Liu, X.Q.; Wu, Q.W.; Yang, G.Y. Review on short-term and ultra-short-term wind power prediction. Autom. Electr. Power Syst. 2015, 39, 141–151. [Google Scholar]
- Liu, D.G.; Wang, W.Q.; Zhang, H.E.; Qiu, G.; Hao, H.Y.; Li, G.Q.; Xiao, G.L. The application of Markov modified combination model in the prediction of medium and long-term available power of wind power in Xinjiang. Power Grid Technol. 2020, 44, 3290–3296. [Google Scholar]
- Zong, C.S.; Gao, Q.Z.; Wu, S. Short-term wind power prediction based on DWT-PSO-LSTM. J. Phys. Conf. Ser. 2023, 2520, 012037. [Google Scholar] [CrossRef]
- Xiong, B.R.; Lou, L.; Meng, X.Y.; Wang, X.; Ma, H.; Wang, Z.X. Short-term wind power forecasting based on attention mechanism and deep learning. Electr. Power Syst. Res. 2022, 206, 107776. [Google Scholar] [CrossRef]
- Kong, Z.Q.; Tang, B.P.; Deng, L.; Liu, W. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units. Renew. Energy 2020, 146, 760–768. [Google Scholar] [CrossRef]
- Yu, G.Z.; Liu, C.Q.; Tang, B.; Chen, R.U.; Liu, L.; Cui, C.Y.; Hu, Y.; Shen, L.X.; Muyeen, S.M. Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution. Renew. Energy 2022, 199, 599–612. [Google Scholar] [CrossRef]
- Zhang, J.A.; Liu, D.; Li, Z.J.; Han, X.; Liu, H.; Dong, C.; Wang, J.Y.; Liu, C.Y.; Xia, Y.P. Power prediction of a wind farm cluster based on spatiotemporal correlations. Appl. Energy 2021, 302, 17568. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Zhang, J.H.; Yu, L.F. Short-term power load forecasting based on QPSO-LSTM. Inf. Rec. Mater. 2024, 25, 240–242. [Google Scholar]
- Ewees, A.A.; Al-qaness, M.A.A.; Abualigah, L.; Elaziz, M.A. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting. Energy Convers. Manag. 2022, 268, 116022. [Google Scholar] [CrossRef]
- Houran, M.A.; Bukhari, S.M.S.; Zafar, M.H.; Mansoor, M.; Chen, W.J. COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications. Appl. Energy 2023, 349, 121638. [Google Scholar] [CrossRef]
- Tong, J.J.; Yang, Y.Y.; Xu, X.Y.; Zhang, G.W.; Yuan, F.; Xiang, G. Shore Power System Load Forecasting Model Based on QPSO-LSTM Network. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024; pp. 2450–2455. [Google Scholar]
- Xin, P.; Wang, H. Short-Term Wind Power Forecasting Based on VMD-QPSO-LSTM. In Proceedings of the 2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 26–28 January 2024; pp. 474–478. [Google Scholar]
- Wang, J.N.; Zhu, H.Q.; Zhang, Y.J.; Cheng, F.; Zhou, C. A novel prediction model for wind power based on improved long short-term memory neural network. Energy 2023, 265, 126283. [Google Scholar] [CrossRef]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. arXiv 2016, arXiv:1611.03679. [Google Scholar] [CrossRef] [PubMed]
- Faruque, M.O.; Hossain, M.A.; Islam, M.R.; Alam, S.M.M.; Karmaker, A.K. Very short-term wind power forecasting for real-time operation using hybrid deep learning model with optimization algorithm. Clean. Energy Syst. 2024, 9, 100129. [Google Scholar] [CrossRef]
- Li, R.; Ma, T.; Zhang, X.; Hui, X.; Liu, Y.P.; Yin, X.G. Short-term wind power prediction based on convolutional long short-term memory neural network. Acta Energiae Solaris Sin. 2021, 42, 304–311. [Google Scholar]
- Sun, Y.; Zhou, Q.B.; Sun, L.; Sun, L.P.; Kang, J.C.; Li, H. CNN–LSTM–AM: A power prediction model for offshore wind turbines. Ocean. Eng. 2024, 301, 117598. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Rioflorido, C.L.P.; Zhang, W.N. Hybrid deep learning and quantum-inspired neural network for day-ahead spatiotemporal wind speed forecasting. Expert Syst. Appl. 2024, 241, 122645. [Google Scholar] [CrossRef]
- Sun, S.Z.; Wang, Y.; Meng, Y.; Wang, C.X.; Zhu, X.H. Multi-step wind speed forecasting model using a compound forecasting architecture and an improved QPSO-based synchronous optimization. Energy Rep. 2022, 8, 9899–9918. [Google Scholar] [CrossRef]
Dataset | Months | Season | Data Point |
---|---|---|---|
1 | March 2021–May 2021 | Spring | 17,233 |
2 | June 2021–August 2021 | Summer | 18,724 |
3 | September 2021–November 2021 | Autumn | 13,846 |
4 | December 2021–February 2022 | Winter | 19,917 |
Time | Models | R2 | RMSE | MAE | MSE |
---|---|---|---|---|---|
daytime | CNN-LSTM | 0.9878 | 3.0827 | 2.4048 | 9.5030 |
CNN-LSTM-ATT | 0.9893 | 2.8797 | 2.2247 | 8.2927 | |
QPSO-LSTM | 0.9977 | 1.3402 | 1.0799 | 1.7961 | |
PSO-LSTM | 0.9974 | 1.4157 | 1.0490 | 2.0042 | |
PSO-CNN-LSTM | 0.9994 | 0.6707 | 0.5420 | 0.4499 | |
night | CNN-LSTM | 0.9978 | 1.1319 | 0.7911 | 1.2811 |
CNN-LSTM-ATT | 0.9996 | 0.4909 | 0.3338 | 0.2410 | |
QPSO-LSTM | 0.9994 | 0.5935 | 0.4149 | 0.3523 | |
PSO-LSTM | 0.9996 | 0.4909 | 0.3338 | 0.2410 | |
PSO-CNN-LSTM | 0.9999 | 0.2136 | 0.1522 | 0.0456 |
Season | Models | R2 | RMSE | MAE | MSE |
---|---|---|---|---|---|
Spring | CNN-LSTM | 0.9971 | 2.7329 | 2.0678 | 7.4198 |
CNN-LSTM-ATT | 0.9984 | 2.0416 | 1.6189 | 4.1681 | |
QPSO-LSTM | 0.9993 | 1.3682 | 1.1539 | 1.8719 | |
PSO-LSTM | 0.9996 | 1.0624 | 0.7698 | 1.1287 | |
PSO-CNN-LSTM | 0.9999 | 0.5725 | 0.4367 | 0.3278 | |
Summer | CNN-LSTM | 0.9974 | 2.5875 | 1.9998 | 6.6952 |
CNN-LSTM-ATT | 0.9985 | 1.9829 | 1.5299 | 3.9320 | |
QPSO-LSTM | 0.9930 | 4.2985 | 3.4516 | 18.4770 | |
PSO-LSTM | 0.9997 | 0.8584 | 0.6913 | 0.7369 | |
PSO-CNN-LSTM | 0.9999 | 0.5469 | 0.4237 | 0.2991 | |
Autumn | CNN-LSTM | 0.9945 | 2.7543 | 2.2345 | 7.5863 |
CNN-LSTM-ATT | 0.9942 | 2.8267 | 2.3678 | 7.9901 | |
QPSO-LSTM | 0.9978 | 1.7364 | 1.5006 | 3.0151 | |
PSO-LSTM | 0.9994 | 0.9257 | 0.7432 | 0.8570 | |
PSO-CNN-LSTM | 0.9996 | 0.7183 | 0.5946 | 0.5159 | |
Winter | CNN-LSTM | 0.9952 | 2.9574 | 2.2675 | 8.7465 |
CNN-LSTM-ATT | 0.9963 | 2.5931 | 2.0769 | 6.7240 | |
QPSO-LSTM | 0.9989 | 1.4351 | 0.9779 | 2.0595 | |
PSO-LSTM | 0.9994 | 1.0584 | 0.7793 | 21.1203 | |
PSO-CNN-LSTM | 0.9998 | 0.6350 | 0.5233 | 0.4032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Q.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhou, Q.; Gao, P.; Zhang, H. Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM. Energies 2025, 18, 3346. https://doi.org/10.3390/en18133346
Lv Q, Zhang J, Zhang J, Zhang Z, Zhou Q, Gao P, Zhang H. Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM. Energies. 2025; 18(13):3346. https://doi.org/10.3390/en18133346
Chicago/Turabian StyleLv, Qingquan, Jialin Zhang, Jianmei Zhang, Zhenzhen Zhang, Qiang Zhou, Pengfei Gao, and Haozhe Zhang. 2025. "Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM" Energies 18, no. 13: 3346. https://doi.org/10.3390/en18133346
APA StyleLv, Q., Zhang, J., Zhang, J., Zhang, Z., Zhou, Q., Gao, P., & Zhang, H. (2025). Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM. Energies, 18(13), 3346. https://doi.org/10.3390/en18133346