Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight
Abstract
1. Introduction
2. Data and Methods
2.1. Wind Turbine and Climate Data
2.2. Model Description and Calibration
3. Results and Discussion
3.1. Model Validation
3.2. Wind Power Generation
4. Conclusions
- Realistic wind power simulations can be performed with the presented physical model;
- A clear trend of decreasing wind power generation with increasing RCP could be shown for the investigated years of 2008 and 2010;
- The local effects of climate change on wind power generation are not as strong as one might assume.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic(s) |
RCP | Representative Concentration Pathway |
ReSTEP | Renewable Spatial–Temporal Electricity Production |
GERICS | Climate Service Center Germany |
REF | Reference |
RMSE | Root-Mean-Square Error |
IPCC | Intergovernmental Panel on Climate Change |
RCM | Regional Climate Model |
GCM | Global Climate Model |
CORDEX | Coordinated Regional Climate Downscaling Experiment |
Appendix A
References
- GWEC. Global Wind Report 2025; Global Wind Energy Council: Lisbon, Portugal, 2025. [Google Scholar]
- Zeitreihen zur Entwicklung der Erneuerbaren Energien in Deutschland unter Verwendung von Daten der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat); Umweltbundesamt (UBA): Dessau-Roßlau, Germany. 2025. Available online: https://www.umweltbundesamt.de (accessed on 21 May 2025).
- Bloomfield, H.C.; Brayshaw, D.J.; Shaffrey, L.C.; Coker, P.J.; Thornton, H.E. Quantifying the increasing sensitivity of power systems to climate variability. Environ. Res. Lett. 2016, 11, 124025. [Google Scholar] [CrossRef]
- Wiel, K.; Bloomfield, H.C.; Lee, R.W.; Stoop, L.P.; Blackport, R.; Screen, J.A.; Selten, F.M. The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett. 2019, 14, 094010. [Google Scholar] [CrossRef]
- Bloomfield, H.C.; Brayshaw, D.J.; Troccoli, A.; Goodess, C.M.; De Felice, M.; Dubus, L.; Bett, P.E.; Saint-Drenan, Y.-M. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew. Energy 2021, 164, 1062–1075. [Google Scholar] [CrossRef]
- Drücke, J.; Borsche, M.; James, P.; Kaspar, F.; Pfeifroth, U.; Ahrens, B.; Trentmann, J. Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification. Renew. Energy 2021, 164, 1254–1266. [Google Scholar] [CrossRef]
- Mockert, F.; Grams, C.M.; Brown, T.; Neumann, F. Meteorological conditions during periods of low wind speed and insolation in Germany: The role of weather regimes. Meteorol. Appl. 2023, 30, e2141. [Google Scholar] [CrossRef]
- Li, B.; Basu, S.; Watson, S.J.; Russchenberg, H.W. Mesoscale modeling of a “Dunkelflaute” event. Wind. Energy 2021, 24, 5–23. [Google Scholar] [CrossRef]
- Li, B.; Basu, S.; Watson, S.J.; Russchenberg, H.W.J. A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas. Energies 2021, 14, 6508. [Google Scholar] [CrossRef]
- Ho-Tran, L.; Fiedler, S. A climatology of weather-driven anomalies in European photovoltaic and wind power production. Commun. Earth Environ. 2024, 5, 63. [Google Scholar] [CrossRef]
- Ho-Tran, L.; Fiedler, S. More summertime low-power production extremes in Germany with a larger solar power share. Sol. Energy 2024, 283, 112979. [Google Scholar] [CrossRef]
- Russo, M.A.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the inevitable: A review on the impacts of climate change on renewable energy resources. Sustain. Energy Techno. Assess. 2022, 52, 102283. [Google Scholar] [CrossRef]
- Ravestein, P.; Schrier, G.; Haarsma, R.; Scheele, R.; Broek, M. Vulnerability of European intermittent renewable energy supply to climate change and climate variability. Renew. Sustain. Energy Rev. 2018, 97, 497–508. [Google Scholar] [CrossRef]
- Rauner, S.; Eichhorn, M.; Thrän, D. The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision. Appl. Energy 2016, 184, 1038–1050. [Google Scholar] [CrossRef]
- Lehneis, R.; Manske, D.; Schinkel, B.; Thrän, D. Spatiotemporal Modeling of the Electricity Production from Variable Renewable Energies in Germany. ISPRS Int. J. Geo-Inf. 2022, 11, 90. [Google Scholar] [CrossRef]
- Harnisch, F.; Lehneis, R. The power grids need to be made ready for a circular and bio-based economy. Next Sustain. 2023, 2, 100010. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 5, 109. [Google Scholar] [CrossRef]
- Lehneis, R.; Manske, D.; Thrän, D. Modeling of the German Wind Power Production with High Spatiotemporal Resolution. ISPRS Int. J. Geo-Inf. 2021, 10, 104. [Google Scholar] [CrossRef]
- Lehneis, R.; Thrän, D. Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany. Energies 2023, 16, 3239. [Google Scholar] [CrossRef]
- Lehneis, R.; Manske, D.; Thrän, D. Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS Int. J. Geo-Inf. 2020, 9, 621. [Google Scholar] [CrossRef]
- Lehneis, R.; Thrän, D. In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape. Energies 2024, 17, 3871. [Google Scholar] [CrossRef]
- Lehneis, R.; Harnisch, F.; Thrän, D. Electricity Production Landscape of Run-of-River Power Plants in Germany. Resources 2024, 13, 174. [Google Scholar] [CrossRef]
- Lehneis, R. The Electricity Generation Landscape of Bioenergy in Germany. Energies 2025, 18, 1497. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- McCollum, D.L.; Gambhir, A.; Rogelj, J.; Wilson, C. Energy modellers should explore extremes more systematically in scenarios. Nat. Energy 2020, 5, 104–107. [Google Scholar] [CrossRef]
- Bieritz, L. Die Auswirkungen des Klimawandels auf die Energiewirtschaft: Welche Folgen hat die Erwärmung auf die Energieerzeugung und -verteilung? Gesellschaft für Wirtschaftliche Strukturforschung (GWS): Osnabrück, Germany, 2015. [Google Scholar]
- Griffin, P.A. Energy finance must account for extreme weather risk. Nat. Energy 2020, 5, 98–100. [Google Scholar] [CrossRef]
- Core Energy Market Data Register, Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Bonn, Germany. Available online: https://www.bundesnetzagentur.de/EN/Areas/Energy/CoreEnergyMarketDataRegister/start.html (accessed on 9 February 2025).
- Online Portal of the Core Energy Market Data Register, Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Bonn, Germany. Available online: https://www.marktstammdatenregister.de/MaStR (accessed on 9 February 2025).
- Amin, A.; Mourshed, M. Weather and climate data for energy applications. Renew. Sustain. Energy Rev. 2024, 192, 114247. [Google Scholar] [CrossRef]
- Remke, T. Assessing Climate Change Impacts on Wind Energy Financing, Dissertation, Leuphana Universität Lüneburg. 2020. Available online: https://pubdata.leuphana.de/entities/publication/dd1e9a96-93f1-42a6-b5cc-3c5cc34cad71 (accessed on 16 June 2025).
- Ekström, J.; Koivisto, M.; Mellin, I.; Millar, R.J.; Lehtonen, M. A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations. Energies 2018, 11, 2442. [Google Scholar] [CrossRef]
- Olauson, J.; Bergkvist, M. Modelling the Swedish wind power production using MERRA reanalysis data. Renew. Energy 2015, 76, 717–725. [Google Scholar] [CrossRef]
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef]
- Bañuelos-Ruedas, F.; Angeles-Camacho, C.; Rios-Marcuello, S. Methodologies Used in the Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind Energy Resource Assessment in a Region. In Wind Farm—Technical Regulations, Potential Estimation and Siting Assessment; BoD–Books on Demand: Norderstedt, Germany, 2011. [Google Scholar] [CrossRef]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind power meteorology. Part I: Climate and turbulence. Wind. Energy 1998, 1, 2–22. [Google Scholar] [CrossRef]
- Pierrot, M. TheWind Power. Available online: https://www.thewindpower.net/ (accessed on 29 July 2022).
- EU Science Hub–Photovoltaic Geographical Information System (PVGIS), European Commission’s Joint Research Centre (JRC), Brussels, Belgium. Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 15 March 2024).
- Satellite Application Facility on Climate Monitoring (CM SAF), DeutscherWetterdienst, Offenbach, Germany. Available online: https://www.cmsaf.eu (accessed on 15 March 2024).
- Millinger, M.; Tafarte, P.; Jordan, M.; Hahn, A.; Meisel, K.; Thrän, D. Electrofuels from excess renewable electricity at high variable renewable shares: Cost, greenhouse gas abatement, carbon use and competition. Sustain. Energy Fuels 2021, 5, 828–843. [Google Scholar] [CrossRef]
- Esmaeili Aliabadi, D.; Manske, D.; Seeger, L.; Lehneis, R.; Thrän, D. Integrating Knowledge Acquisition, Visualization, and Dissemination in Energy System Models: BENOPTex Study. Energies 2023, 16, 5113. [Google Scholar] [CrossRef]
Wind Turbine Data | Climate Data |
---|---|
Location | Location |
Hub height | Wind speed |
Installed capacity | Air temperature |
Operation time | Ground elevation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehneis, R. Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight. Energies 2025, 18, 3287. https://doi.org/10.3390/en18133287
Lehneis R. Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight. Energies. 2025; 18(13):3287. https://doi.org/10.3390/en18133287
Chicago/Turabian StyleLehneis, Reinhold. 2025. "Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight" Energies 18, no. 13: 3287. https://doi.org/10.3390/en18133287
APA StyleLehneis, R. (2025). Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight. Energies, 18(13), 3287. https://doi.org/10.3390/en18133287