Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
Abstract
:1. Introduction
1.1. Application Status of Composite Insulators in Transmission Lines
1.2. The Critical Role of the Core Rod in Composite Insulators
- (1)
- External Insulation
- (2)
- Mechanical Load Bearing
- ECR glass fibers provide excellent resistance to acid corrosion;
- The epoxy resin matrix ensures the effective stress transfer and structural integrity of the fibers;
- The composite system simultaneously fulfills the dual functions of mechanical load-bearing and internal insulation.
- (3)
- Mechanical Connection
1.3. Failure Modes of Composite Insulator Core Rods in Transmission Lines
1.4. Failure Data of Composite Insulator Core Rods in Transmission Lines
1.4.1. China
1.4.2. International
2. Mechanical Failures
2.1. Normal Fracture
- (1)
- Stepped Fracture
- (2)
- Splitting Fracture
2.2. Brittle Fracture
2.2.1. Definition
2.2.2. Fracture Characteristics
2.2.3. Mechanism Studies
- (1)
- Water-Induced Stress Corrosion Hypothesis
- (2)
- Acidification by Curing Agent Residue Hypothesis
- (3)
- Oxalic Acid Corrosion Hypothesis
- (4)
- Nitric Acid Corrosion Hypothesis
2.2.4. Mitigation Strategies
2.3. Decay-like Fracture
2.3.1. Definition
2.3.2. Fracture Characteristics
- (1)
- Macroscopic Characteristics
- Significant degradation of the rod, with rough, wood-like fracture surfaces and noticeable discoloration (whitening or yellowing).
- Presence of powdered or flocculent debris on the core rod surface, and visible carbonization observed in some cases.
- Detachment of rod debris adhering to the inner sheath surface, accompanied by loss of sheath toughness.
- Multiple transverse perforations extending outward from the sheath, occurring from the HV end towards the fracture location and beyond.
- Complete failure of adhesion at the rod–sheath interface near the fracture, with visible hydrolysis or carbonization pathways.
- Fracture location typically found within several shed distances from the HV end.
- Abnormally increasing electrical conductivity and dielectric constant in the degraded rod regions.
- (2)
- Microscopic Morphology
- (3)
- FTIR Characteristics
- (4)
- TGA Characteristics
- (5)
- XPS Characteristics
2.3.3. Research Progress
2.3.4. Mechanism Studies
- (1)
- Liquid Infiltration at the Rod–Sheath Interface
- (2)
- Erosion Induced by Discharge and Current
- (3)
- Fiber–Matrix Interfacial Degradation
- Whether the current model can account for all observed decay-like fracture phenomena requires further experimental validation;
- The specific action modes and targets of different degradation factors (moisture, heat, electrical stress, mechanical stress) need to be clearly delineated;
- Since not all insulators under mechanical, electrical, and environmental stresses develop decay-like fractures, refinements and corrections to the current mechanistic models are necessary.
- (1)
- Hygrothermal Aging
- Poor end-sealing, allowing moisture intrusion from the end fittings;
- Sheath damage (due to manufacturing defects, external impact, or aging), enabling direct moisture ingress;
- Moisture permeation through the silicone rubber sheath by diffusion.
- Hydrolysis of core rod materials and the fracture of glass fibers under an acidic environment (produced by discharges);
- Thermal–oxidative aging, leading to oxidation at the fiber–matrix interface and a thermal expansion mismatch, resulting in interfacial debonding and microcrack formation, which further accelerates moisture ingress;
- Thermal decomposition of the epoxy matrix and glass fibers under high temperatures, exposing fibers to acidic conditions and promoting further degradation.
- (2)
- Partial discharge
- Manufacturing defects (poor adhesion, voids, pores) causing local electric field distortion;
- Interface weakening due to long-term operational stresses (humidity, vibration), leading to micro-defects and subsequent debonding.
- Formation of electrical erosion holes: The sheath is perforated from the inside out;
- Epoxy matrix ablation: Melting, gasification, and carbonization leading to pores and bubbles;
- Chemical degradation: Discharges facilitate reactions between the matrix and ambient gases (oxygen, nitrogen), forming compounds and accelerating resin breakdown.
- (3)
- Mechanical Load Effects
- Long-term vibration or fatigue promotes the formation of interfacial gaps, facilitating moisture ingress and erosion;
- Combined action of acid and mechanical stress may accelerate the fracture of glass fibers.
- Further studies are needed to explain the interactive effects of moisture, heat, electrical stress, and mechanical stress and to quantify their respective contributions.
- Advanced experimental techniques are essential to reveal the deterioration processes of resin, fibers, and interfaces.
- Improving coupling agents, enhancing sealing, and boosting the hydrolysis resistance of the core rod materials are vital to enhancing the long-term reliability of composite insulators.
3. Electrical Failures
3.1. Flashunder (Or Internal Breakdown)
3.1.1. Definition
3.1.2. Failure Characteristics
- (1)
- Discharge channels originate from the HV end fitting, penetrating the interface along the axial direction of the core rod and causing severe surface carbonization;
- (2)
- A big gap forms at the rod–sheath interface due to complete interfacial bonding failure;
- (3)
- Electrical erosion holes are observed on the sheath surface;
- (4)
- Intense short-circuit currents cause severe thermal effects, resulting in blocky spalling of the silicone rubber housings, exposing fractured glass fibers aligned longitudinally.
- (1)
- Complete interfacial debonding is evident;
- (2)
- Broken fibers and silicone rubber debris mix and adhere to the sheath.
3.1.3. Mechanism Studies
- (1)
- Deficiencies in interfacial adhesion combined with moisture ingress lead to partial discharge;
- (2)
- These discharges form carbonized conductive paths (tracking) either within or on the core rod surface;
- (3)
- As the carbonized channel grows, the residual insulation distance decreases;
- (4)
- When the critical threshold is reached, flashover occurs.
- (1)
- Expansion of carbonized channels and abrupt flashover, while the mechanical structure remains largely intact.
- (2)
- Discharge traces at the HV end, core rod carbonization, and interfacial separation.
- (3)
- High concealment, rapid development, and severe consequences.
- (1)
- Moisture Ingress and Accumulation
- (2)
- Moisture-Induced Electrical Changes
- (3)
- Partial Discharge Effects
3.1.4. Relationship with Decay-like Fractures
3.2. Abnormal Heating in Composite Insulators
- (1)
- Partial Discharge Induced by Interface Defects
- (2)
- Resistive Losses Due to Insulation Resistance Degradation
- (3)
- Polarization Losses Induced by Moisture Ingress
- (4)
- Resistive Losses Due to Surface Contamination
- (5)
- Combined Factors
4. Preventive Measures
4.1. Material Modification
4.1.1. Superhydrophobic Materials
4.1.2. Self-Diagnostic Materials
4.1.3. Self-Healing Epoxy Resin
4.2. Structural Design
- (1)
- Strict quality control of core rods, ensuring excellent moisture resistance;
- (2)
- Development of rigid insulators to enhance interfacial sealing, effectively preventing moisture ingress;
- (3)
- Optimization of grading ring designs to improve electric field distributions.
4.2.1. Core Rod Void Detection
4.2.2. Optimization of Grading Rings
4.2.3. Cycloaliphatic Epoxy Resin (CEP) Insulator
4.3. Operation and Maintenance
4.3.1. Line Inspections
- (1)
- Infrared (IR) Thermography
- (2)
- Ultraviolet (UV) Imaging
- (3)
- Electric Field Detection
4.3.2. Diagnostic Methods for Internal Defects
- (1)
- Ultrasonic Inspection
- (2)
- Radiographic Inspection
- (3)
- Microwave Inspection
- (4)
- Terahertz (THz) Inspection
- (5)
- Optical Fiber Sensor Inspection
5. Conclusions and Outlook
5.1. Research Summary
- (1)
- Mechanical Failures
- a.
- Normal Fracture
- b.
- Brittle Fracture
- c.
- Decay-like Fracture
- (2)
- Electrical Failures
- a.
- Flashunder
- b.
- Abnormal Heating in Composite Insulators
- (3)
- Preventive Measures
- a.
- Material Modification
- b.
- Structural Design
- c.
- Operational Maintenance
5.2. Future Outlook
- (1)
- Deeper investigation of mechanism of decay-like fracture
- (2)
- Optimization of materials and processes
- (3)
- Innovation in detection technologies and algorithms
- (4)
- Technical and economic comparison of different insulation options
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Chen, W. China’s Energy Transition Pathway in a Carbon Neutral Vision. Engineering 2022, 14, 64–76. [Google Scholar] [CrossRef]
- National Energy Administration Releases Statistical Data on the National Power Industry for 2024. Available online: https://www.nea.gov.cn/20250121/097bfd7c1cd3498897639857d86d5dac/c.html (accessed on 21 January 2025).
- Zhuo, Z.; Du, E.; Zhang, N.; Nielsen, P.C.; Lu, X.; Xiao, J.; Wu, J.; Kang, C. Cost increase in the electricity supply to achieve carbon neutrality in China. Nat. Commun. 2022, 13, 3172. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Chen, W. Research and application of UHV power transmission in China. High Volt. 2018, 3, 1–13. [Google Scholar] [CrossRef]
- Cherney, E.A. 50 years in the development of polymer suspension-type insulators. IEEE Electr. Insul. Mag. 2013, 29, 18–26. [Google Scholar] [CrossRef]
- CIGRE WG B2.57. Experience with and Application Guide for Composite Line Insulators. TB 919, November 2023. Available online: https://www.e-cigre.org/publications/detail/919-experience-with-and-application-guide-for-composite-line-insulators.html (accessed on 14 May 2025).
- Liang, X.; Li, S.; Gao, Y.; Su, Z.; Zhou, J. Improving the outdoor insulation performance of Chinese EHV and UHV AC and DC overhead transmission lines. IEEE Electr. Insul. Mag. 2020, 36, 7–25. [Google Scholar] [CrossRef]
- Qiao, X.; Ming, Y.; Xu, K.; Yi, N.; Sundararajan, R. Aging of Polymeric Insulators under Various Conditions and Environments: Another Look. Energies 2022, 15, 8809. [Google Scholar] [CrossRef]
- Papailiou, K.O.; Schmuck, F. Silicone Composite Insulators: Materials, Design, Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guan, Z.; Liu, Y.; Zhou, Y.; Jia, Z.; Wang, L.; Shi, W. Insulators and External Insulation of Transmission and Substation Equipment; Tsinghua University Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Sit, K.; Pradhan, A.K.; Chatterjee, B.; Dalai, S. A Review on Characteristics and Assessment Techniques of High Voltage Silicone Rubber Insulator. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1889–1903. [Google Scholar] [CrossRef]
- Mavrikakis, N.C.; Mikropoulos, P.N. Evaluation of field-ageing effects on insulating materials of composite suspension insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 490–498. [Google Scholar] [CrossRef]
- Liang, X.; Gao, Y.; Bao, W.; Li, S.; Gutman, I.; A Hlholm, C.; Radosavljevic, M.; Vosloo, W. A new type of failure of composite insulators: Service experience, degradation characteristics, root cause, and countermeasures. CIGRE D1-207. 2020. Available online: https://www.e-cigre.org/publications/detail/d1-207-2020-a-new-type-of-failure-of-composite-insulators-service-experience-degradation-characteristics-root-cause-experimental-simulation-and-countermeasures.html (accessed on 14 May 2025).
- EPRI. Overhead Transmission Line Component Failure and Performance Summary Report; EPRI: Palo Alto, CA, USA, 2017. [Google Scholar]
- Guan, Z.; Wang, X.; Jia, Z.; Zhang, R. Application and Research of Composite Insulator in China. In Proceedings of the INMR Symposium 2011 in Seoul, Seoul, South Korea, 17–20 April 2011. [Google Scholar]
- Lu, M.; Liu, Z.H.; Gao, C.; Wu, C.; Guo, J.; Li, L. Investigation and Cause Analysis of Typical Faults of Composite Insulators on Domestic Transmission Lines. Insul. Surge Arresters 2022, 42, 214–220. (In Chinese) [Google Scholar] [CrossRef]
- Gubanski, S.M. Modern outdoor insulation-concerns and challenges. IEEE Electr. Insul. Mag. 2005, 21, 5–11. [Google Scholar] [CrossRef]
- da Costa Bortoni, E.; dos Santos, L.; Bastos, G.S.; de Souza, L.; Conti Craveiro, M. Extracting Load Current Influence from Infrared Thermal Inspections. IEEE Trans. Power Del. 2011, 26, 501–506. [Google Scholar] [CrossRef]
- CIGRE WG B2.21: Guide for the Assessment of Composite Insulators in the Laboratory after their Removal from Service. TB 481, December 2011. Available online: https://www.e-cigre.org/publications/detail/481-guide-for-the-assessment-of-composite-insulators-in-the-laboratory-after-their-removal-from-service.html (accessed on 14 May 2025).
- CIGRE WG 22.03. Worldwide Service Experience with HV Composite Insulators. Electra. 2000, pp. 27–43. Available online: https://www.e-cigre.org/publications/detail/elt-191-1-worldwide-service-experience-with-hv-composite-insulators.html (accessed on 14 May 2025).
- Gao, Y.; Liang, X.; Lu, Y.; Wang, J.; Bao, W.; Li, S.; Wu, C.; Zuo, Z. Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part I: Fracture Morphology Characteristics. IEEE Elect. Insul. Mag. 2021, 37, 7–17. [Google Scholar] [CrossRef]
- Zhong, Z. Research on Decay-like Deterioration Mechanism and Temperature Rise Characteristics of Composite Insulator Rod Under High Humidity. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2022. (In Chinese). [Google Scholar]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Friedrich, K. Application of Fracture Mechanics to Composite Materials; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wang, S. Fracture mechanics for delamination problems in composite materials. J. Compos. Mater. 1983, 17, 210–223. [Google Scholar] [CrossRef]
- Berthelot, J. Composite Materials: Mechanical Behavior and Structural Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Liang, X.; Wang, J.; Su, Z.; Luo, B. Mechanical Reliability of Large-tonnage Compression-connected Composite Insulators during Long-term Operation. High Volt. Eng. 2010, 10, 2560–2564. (In Chinese) [Google Scholar]
- Gao, Y.; Liang, X.; Lu, Y.; Wang, J.; Bao, W.; Li, S.; Wu, C.; Zuo, Z. Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part II: Chemical Properties and Criteria System. IEEE Elect. Insul. Mag. 2021, 37, 18–30. (In Chinese) [Google Scholar] [CrossRef]
- Kumosa, M.; Kumosa, L.; Armentrout, D. Failure analyses of composite (non-ceramic) insulators: Part I—Brittle fracture characteristics. IEEE Elect. Insul. Mag. 2005, 21, 14–27. [Google Scholar] [CrossRef]
- CIGRE Working Group 22.03. Guide for the Identification of Brittle Fracture of Composite Insulator FRP Rod. Electra 1992, 143, 61–66. [Google Scholar]
- Burnham, J.T.; Baker, T.; Bernstorf, A.; de Tourreil, C.; George, J.-M.; Gorur, R.; Hartings, R.; Hill, B.; Jagtiani, A.; McQuarrie, T.S.; et al. IEEE task force report: Brittle fracture in nonceramic insulators. IEEE Trans. Power Del. 2002, 17, 848–856. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Bao, W.; Wu, C.; Li, S. Failure analysis of a field brittle fracture composite insulator: Characterisation by X-ray photoelectron spectroscopy analysis. High Volt. 2019, 4, 89–96. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Bao, W.; Li, S.; Wu, C. Failure analysis of a field brittle fracture composite insulator: Characterization by FTIR analysis and fractography. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 919–927. [Google Scholar] [CrossRef]
- Carpentrer, S.; Kumosa, M. An investigation of brittle fracture of composite insulator rods in an acid environment with either static or cyclic loading. J. Mater. Sci. 2000, 35, 4465–4476. [Google Scholar] [CrossRef]
- Chughtai, A.; Smith, D.; Kumosa, M. Chemical Analysis of a Field Failed Composite Suspension Insulator. Compos. Sci. Tech. 1998, 58, 1641–1647. [Google Scholar] [CrossRef]
- Liang, X.; Dai, J. Analysis of the acid sources of a field brittle fractured composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 870–876. [Google Scholar] [CrossRef]
- Kumosa, M.; Kumosa, L.; Armentrout, D. Causes and potential remedies of brittle fracture failure of composite (non-ceramic) insulators. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 1037–1048. [Google Scholar] [CrossRef]
- Kuhl, M. FRP rods for brittle fracture resistant composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 182–190. [Google Scholar] [CrossRef]
- Montesinos, J.; Gorur, R.S.; Mobasher, B.; Kingsbury, D. Mechanism of brittle fracture in nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 236–243. [Google Scholar] [CrossRef]
- Kumosa, M.; Kumosa, L.; Armentrout, D. Can water cause brittle fracture failures of composite non-ceramic insulators in the absence of electric fields? IEEE Trans. Dielectr. Electr. Insul. 2005, 11, 523–533. [Google Scholar] [CrossRef]
- de Tourreil, C.; Pargamin, L.; Thevenet, G.; Prat, S. Brittle Fracture of Composite Insulators: Why and How they Occur. In Proceedings of the 2000 Power Engineering Society Summer Meeting, Seattle, WA, USA, 16–20 July 2000. [Google Scholar]
- Kumosa, L.; Kumosa, M.; Armentrout, D. Resistance to brittle fracture of glass reinforced polymer composites used in composite (nonceramic) insulators. IEEE Trans. Power Deliv. 2005, 20, 2657–2666. [Google Scholar] [CrossRef]
- Kumosa, M.; Narayan, H.S.; Qiu, Q.; Bansal, A. Brittle fracture of nonceramic suspension insulators with epoxy cone end-fittings. Compos. Sci. Technol. 1997, 57, 739–751. [Google Scholar] [CrossRef]
- Luder, D.; Ariely, S.; Yalin, M. Stress corrosion cracking and brittle failure in a fiber-reinforced plastic (FRP) insulator from a 400 kV transmission line in humid environment. Eng. Fail. Anal. 2019, 95, 206–213. [Google Scholar] [CrossRef]
- Liang, X.; Wang, J.; Dai, J. Surface micro-crack initiated brittle fracture in fiber reinforced plastic rod of composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 368–374. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wang, J.; Liang, X. Influence of Nitric Acid Penetration on the Brittle Fracture of Composite Insulators. High Volt. Eng. 2012, 38, 2528–2535. (In Chinese) [Google Scholar]
- Kumosa, M.; Kumosa, L.; Armentrout, D. Failure analyses of nonceramic insulators: Part II—The brittle fracture model and failure prevention. IEEE Electr. Insul. Mag. 2005, 21, 28–41. [Google Scholar] [CrossRef]
- Armentrout, D.L.; Kumosa, M.; McQuarrie, T.S. Boron-free fibers for prevention of acid induced brittle fracture of composite insulator GRP rods. IEEE Trans. Power Deliv. 2003, 18, 684–692. [Google Scholar] [CrossRef]
- Kumosa, L.; Kumosa, M.; Armentrout, D. Resistance to stress corrosion cracking of unidirectional ECR-glass/polymer composites for high-voltage composite insulator applications. Compos. Part A 2003, 34, 1–15. [Google Scholar] [CrossRef]
- Liang, X.; Gao, Y. Study on Decay-like Fracture of Composite Insulator: Part I—The Principal Character, Definition and Criterion of Decay-like Fracture. Proc. CSEE 2016, 36, 4778–4785. (In Chinese) [Google Scholar]
- Lutz, B.; Cheng, L.; Guan, Z.; Wang, L.; Zhang, F. Analysis of a fractured 500 kV composite insulator—Identification of aging mechanisms and their causes. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1723–1731. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.; Gao, Y. Failure analysis of decay-like fracture of composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2503–2511. [Google Scholar] [CrossRef]
- Lu, M.; Gao, C.; Li, Z.; Wu, Y.; Mei, H.; Wang, L. Study on Distribution of Decay-like Fracture of Composite Insulator. High Volt. Appar. 2024, 60, 133–142. [Google Scholar]
- Zhao, L.; Li, T.; Zhou, X.; Guan, W.; Wang, Z.; Wang, S. Statistical Analysis of String Fracture and Core Breakdown of Composite Insulators in Zhejiang Province. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019; pp. 1464–1468. [Google Scholar] [CrossRef]
- Wang, X.; Wan, X.; Lin, C.; Wang, T.; Wang, Q.; Zhang, B. Typical Fault Analysis of Composite Insulators for Transmission Lines in Fujian Province. In Proceedings of the 2023 IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), Shanghai, China, 7–10 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Park, H.; Lim, H.; Won, G.; Lee, J.; Koo, B. Analysis of Polymer Insulator Failures on UHV Lines in Korea. In Proceedings of the INMR World Congress, Vancouver, BC, Canada, 8–11 September 2013. [Google Scholar]
- Gao, Y.; Liang, X.; Bao, W.; Wu, C.; Li, S. Degradation characteristics of epoxy resin of GFRP rod in the decay-like fracture of composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 107–114. [Google Scholar] [CrossRef]
- Liang, X.; Bao, W.; Gao, Y. Decay-like Fracture Mechanism of Silicone Rubber Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 110–119. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.; Li, L.; Liu, Z.; Hua, K. Reason Analysis of Decay-like Aging for Composite Insulator. Power Syst. Technol. 2018, 42, 1335–1341. (In Chinese) [Google Scholar]
- Zhang, Z.; Pang, G.; Lu, M.; Gao, C.; Jiang, X. Research on Silicone Rubber Sheds of Decay-like Fractured Composite Insulators Based on Hardness, Hydrophobicity, NMR, and FTIR. Polymers 2022, 14, 3424. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Zhao, Y.; Jiang, H.; Wang, C. Degradation behavior and aging mechanism of decay-like fractured GRP rod in composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1027–1034. [Google Scholar] [CrossRef]
- Halloum, M.-R.; Reddy, B.S. Investigations on the Failure of In-Service 400-kV Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 2769–2778. [Google Scholar] [CrossRef]
- Nandi, S.; Reddy, B.S. Understanding Field Failures of Composite Insulators. Eng. Fail. Anal. 2020, 116, 104758. [Google Scholar] [CrossRef]
- Gao, C.; Peng, Y.; Zhang, S.; Zhang, B.; Li, W.; Li, L. Mechanism Analysis of Composite Insulators Deterioration and Decay-like Aging Caused by Internal Discharge in Transmission Lines. IEEE Access 2023, 11, 114582–114589. [Google Scholar] [CrossRef]
- Liu, H.; Yang, T.; Zhou, C.; Jia, R.; Zhang, Y.; Qi, Z. Analysis of 500kV composite insulator fracture fault. J. Phys.Conf. Ser. 2020, 1633, 012056. [Google Scholar] [CrossRef]
- Cai, X.; Gao, C.; Zhang, D.; Lu, M.; Peng, J.; Liu, Z.; Pan, W.; Wan, Z. Study on the Effect of Thermal Degradation on the Morphology Characteristics of Composite Insulator Mandrel Under Vacuum Condition. In Proceedings of the 16th Annual Conference of China Electrotechnical Society; Springer: Singapore, 2022. [Google Scholar]
- Wan, Z.; Zhang, D.; Gao, C.; Lu, M.; Li, Z. Experimental Study on the Thermal Decomposition of Epoxy/Anhydride Thermoset Matrix in Composite Insulator Core Rods. Polym. Degrad. Stabil. 2024, 222, 110697. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, D.; Lu, M.; Li, Z.; Gao, C.; Wan, Z. Study on the Morphology Characteristics of Epoxy Resin of Composite Insulator under Acid-heat Condition. 2022 8th International Conference on Electrical Engineering, Control and Robotics. J. Phys. Conf. Ser. 2022, 2213, 012010. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, L.; Yang, C. Aging Characteristics of Interface Between Core and Sheath of Composite Insulators Under Water and High Temperature. Proc. CSEE 2018, 38, 297–307+357. (In Chinese) [Google Scholar] [CrossRef]
- Xie, Q.; Duan, Q.; Xia, G.; Li, J.; Yin, K.; Xie, J. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment. Compos. Part B Eng. 2022, 244, 110152. [Google Scholar] [CrossRef]
- Ray, B.C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interface Sci. 2006, 298, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Liu, Y.; Mosallam, A.; Zhang, Y. Moisture diffusion and hygrothermal aging of pultruded glass fiber reinforced polymer laminates in bridge application. Compos. Part B Eng. 2016, 100, 197–207. [Google Scholar] [CrossRef]
- Yi, X.; Ding, L.; Liu, H.; Zhang, J.; Liu, J. Study on the Mechanism Effect of Bending Loads on the Decay-like Degradation of Composite Insulator GFRP Core Rod. Energies 2024, 17, 423. [Google Scholar] [CrossRef]
- Pang, G.; Zhang, Z.; Jiang, X.; Qiao, X. Deterioration Characteristics of Composite Insulator Core Rod Under Uniform Electric Field. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 25–29 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Pang, G.; Zhang, Z.; Jiang, X.; Lu, M.; Gao, C. Effect of electrical erosion on composite insulator core rod under acidic environment. J. Mater. Res. Technol.-JMRT 2023, 22, 3525–3535. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Liu, Y.; Bao, W.; Li, S.; Wu, C. Effect of electrical stress on glass fiber reinforced polymer used in high voltage composite insulator under wet environment. Compos. Sci. Technol. 2018, 155, 151–159. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liang, X. Hydrolysis of Composite Insulator Core in Condition of Micro Surface Current. High Volt. Eng. 2014, 40, 843–852. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Bao, W.; Gao, Y.; Liu, S.; Liu, S.; Zuo, Z. Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators. Polymers 2023, 15, 790. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liang, X. Study on Decay-like Fracture of Composite Insulator, Part II: Experimental Simulation and Preventive Method Discussion of Decay-like Fracture. Proc. CSEE 2016, 36, 5070–5077+5132. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Xue, W.; Liu, Y.; Wang, S.; Lu, Y.; Wang, H. Influence of Silicone Rubber Content of Shed and Sheath on Composite Insulator Lifespan. High Volt. Eng. 2022, 48, 736–752. (In Chinese) [Google Scholar]
- Xu, H.; Xie, C.; Gou, B.; Wang, R.; Li, Y.; Yang, H. Reappearance of Typical Characteristics of GFRP Core Rods in the Decay-like Fracture Insulator. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1449–1456. [Google Scholar] [CrossRef]
- Peng, Y.; Li, W.; Zeng, S.; Zhang, Y.; Deng, Y. Reproduction and Analysis of Decay-like Aging Development Induced by Interfacial Discharge in Composite Insulators. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1858–1867. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Bao, W.; Wu, C.; Li, S.; Liu, Y. Study on liquids diffusion into and relevant corrosion behavior of glass fiber reinforced polymer used in high voltage composite insulator. High Volt. 2019, 5, 53–61. [Google Scholar] [CrossRef]
- Colin, X. Interaction between cracking and oxidation in organic matrix composites. J. Compos. Mater. 2005, 39, 1371–1389. [Google Scholar] [CrossRef]
- Andersson, J.; Gubanski, S.M.; Hillborg, H. Properties of interfaces between silicone rubber and epoxy. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1360–1367. [Google Scholar] [CrossRef]
- Kone, G.; Volat, C.; Ezzaidi, H. Numerical Investigation of Electric Field Distortion Induced by Internal Defects in Composite Insulators. High Volt. 2017, 2, 253–260. [Google Scholar] [CrossRef]
- Harris, S.J.; Nobel, B.; Owen, M.J. Metallographic investigation of the damage caused to GRP by the combined action of electrical, mechanical and chemical environments. J. Mater. Sci. 1984, 19, 1596–1604. [Google Scholar] [CrossRef]
- Owen, M.J.; Harris, S.J.; Nobel, B. Failure of high voltage electrical insulators with pultruded glass fibre-reinforced plastic cores. Composites 1986, 17, 217–226. [Google Scholar] [CrossRef]
- Baer, C.; Schmuck, F.; Strumbelj, J.; Tinner, E.; Lachman, J.; Kornhuber, S.; Loh, J.T. Technical Demands to Improve Today’s Composite Insulator Reliability. CIGRE Centennial 2021, Amended Paper B2-221. Available online: https://www.e-cigre.org/publications/detail/b2-221-2020-technical-demands-to-improve-todays-composite-insulator-reliability.html (accessed on 14 May 2025).
- Schmuck, F.; Seifert, J.; Gutman, I.; Pigini, A. Assessment of the Condition of Overhead Line Composite Insulators. CIGRE Session 2012. Available online: https://www.e-cigre.org/publications/detail/b2-214-2012-assessment-of-the-condition-of-overhead-line-composite-insulators.html (accessed on 14 May 2025).
- Farzaneh, M. Outdoor Insulators: Overview of In-Service Experience, Inspection Practice and Future Challenges. In Proceedings of the 2009 IEEE Electrical Insulation Conference, Montreal, QC, Canada, 31 May–3 June 2009; pp. 542–550. [Google Scholar] [CrossRef]
- Carreira, A.J.; Cherney, E.A.; Christman, R.A.; Cleckley, E.; Kuffel, J.; Phillip, A.J. sGuidelines for Establishing Diagnostic Procedures for Live-Line Working of Nonceramic Insulators. IEEE Trans. Power Deliv. 2014, 29, 126–130. [Google Scholar] [CrossRef]
- Radosavljevic, M.; Gutman, I.; Ahlholm, C. Ageing and deterioration of composite post insulators exposed to high electric field in 220 kV and 400 kV switchyards in Swedish network. CIGRE SC B3 Colloquium 2017. Available online: https://cse.cigre.org/cse-n024/limits-of-electric-field-for-composite-insulators-state-of-the-art-and-recent-investigations-of-overhead-line-insulators-purchased-by-power-utilities.html (accessed on 14 May 2025).
- Lachman, J. Lessons from 25 Years’ Experience Testing Polymeric Insulators. In Proceedings of the INMR World Congress, Tucson, AZ, USA, 20–23 October 2019. [Google Scholar]
- Bastidas, P.D.; Rowland, S.M. Interfacial aging in composite insulators as a result of partial discharge activity. In Proceedings of the 2017 IEEE Electrical Insulation Conference (EIC), Baltimore, MD, USA, 11–14 June 2017; pp. 13–16. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, L.H.; Jia, Z.D.; Guan, Z.C. Performances of FRP core rod-HTV SIR sheath interface in a water environment. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3024–3030. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, L.H.; Jia, Z.D.; Guan, Z.C. Water and Moisture Permeability of High-temperature Vulcanized Silicone Rubber. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2440–2448. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, R.; Zhang, Q. Discussion of the Erosion on the Interface between Housing and Core of Composite Insulators. Insul. Surge Arresters 2015, 4, 19–24+31. (In Chinese) [Google Scholar] [CrossRef]
- Dang, Z.P.; Wu, Y.M. Influence of Mold Releasing Agent Used in Production of Composite Insulator Core on Quality of Composite Insulators. Power Sys. Tech. 2006, 12, 106–108. (In Chinese) [Google Scholar]
- Wang, C.J.; Liang, Q.Y.; Li, R.F. Influence of the Size of Interface Micro-air Gap on the Insulation Performance of Composite Insulators. Water Resour. Power 2016, 34, 186–190. (In Chinese) [Google Scholar]
- Lu, M.; Wu, C.; Sheng, C.B. Correlation Analysis on Decay—Like Fracture and Internal Breakdown of Composite Insulators. Insul. Surge Arresters 2022, 1, 157–164. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Li, R.; Zhang, F.; Gong, B. Review on characteristics, heating sources and evolutionary processes of the operating composite insulators with abnormal temperature rise. CSEE J. Power Energy Syst. 2022, 8, 910–921. [Google Scholar]
- Li, T.; Wang, S.H.; Hu, Q.; Liu, L.; Deng, Y. Temperature distribution characteristics and heat defect judgment method based on temperature gradient of suspended composite insulator in operation. IET Gener. Trans. Distrib. 2021, 15, 2554–2566. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Zhao, Y.; Jiang, H.; Wang, C. Analysis on heat source of abnormal temperature rise of composite insulator housings. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3578–3585. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, R.; Cheng, L.; Zhang, F.; Zeng, X. Study on influence factors and restraining measures of composite insulator end heating caused by housing microstructure defects. IET Sci. Meas. Technol. 2021, 15, 61–69. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, Y.; Yan, N.; Miao, X.; Tong, C. Study on abnormal heating mechanism of FRP rod of composite insulator. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 022089. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Lv, Q.; Ma, X.; Zhang, F. Failure Analysis of “Lantern-Like” Composite Insulator Heating Defects and the Improved Dye Penetration Test Method. IEEE Access 2021, 9, 50646–50651. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Tu, Y.; Yuan, Z.; Li, R. Heating phenomenon in unclean composite insulators. Eng. Fail. Anal. 2016, 65, 48–56. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, L.; Liao, R.; Liu, Y. Specific Position and Influence of Moisture in Newly-Installed Composite Insulators. CSEE J. Power Energy Syst. 2025, 11, 440–446. [Google Scholar] [CrossRef]
- Tu, Y.; Gong, B.; Wang, C.; Xu, K.; Xu, Z. Effect of moisture on temperature rise of composite insulators operating in power system. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2207–2213. [Google Scholar] [CrossRef]
- Tu, Y.; Gong, B.; Yuan, Z.; Wang, C.; Xu, Z. Moisture induced local heating of overhead line composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 483–489. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, H.; Sun, Y.; Zhang, Z.; Wang, X. Temperature compensation method for infrared detection of live equipment under the interferences of wind speed and ambient temperature. IEEE Trans. Instrum. Meas. 2021, 70, 3508709. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Li, C.R.; Chen, M.; Chen, R.H. Research on the heating mechanism of composite insulators in high-voltage transmission lines. Power Sys. Tech. 2005, 5, 57–60. (In Chinese) [Google Scholar]
- Zheng, Z.; Yuan, C.; Liu, Y.P.; Hou, S.Z.; Geng, J.H. Study on the influence mechanism of ambient humidity on the temperature rise of decay-like composite insulators. High Volt. 2021, 7, 916–924. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Cheng, L. Influence of composite insulator sheath moisture absorption on abnormal temperature rise at the end. Power Sys. Tech. 2016, 40, 608–613. (In Chinese) [Google Scholar]
- Wang, Y.; Liu, Y.; Fan, H. Boiled Aging Characteristics of Silicone Rubber and Cycloaliphatic Epoxy Resin Composite Insulators Interface. High Volt. Eng. 2022, 48, 2028–2035. (In Chinese) [Google Scholar]
- Da Costa, E.G.; Ferreira, T.V.; Neri, M.G.G.; Queiroz, I.B.; Germano, A.D. Characterization of polymeric insulators using thermal and UV imaging under laboratory conditions. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 985–992. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Jiang, H.; Wang, C.; Wang, C. Study on heating mechanism of GRP rod in a composite insulator. IET Sci. Meas. Technol. 2019, 13, 108–113. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.; Zhang, Z.; Zhang, F. Mechanism of fracture related heating for 500kV composite insulators in highly humid areas. Int. Trans. Electr. Energy Syst. 2016, 26, 641–654. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Li, L. A Comparative Study of Abnormal Heating Composite Insulators. Polymers 2023, 15, 2772. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Q.; Xu, X.; Rao, L.; Jiang, X. Temperature and Physicochemical Properties of Abnormal Heating Composite Insulators. Polymers 2024, 16, 3010. [Google Scholar] [CrossRef]
- Lei, C.; Mo, W.; Luan, L.; Wang, Y.; Wang, H.; Li, H.; Xu, Z.; Zhang, M. Study on the physicochemical properties of end-heating of composite insulator. Electr. Eng. 2018, 17, 144–146. [Google Scholar]
- Peng, W.; Gou, X.; Qin, H.; Zhao, M.; Zhao, X. Creation of a multifunctional superhydrophobic coating for composite insulators. Chem. Eng. J. 2018, 352, 774–781. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Wang, Q.; Zuo, Z.; Wei, L. Improving surface performance of silicone rubber for composite insulators by multifunctional Nano-coating. Chem. Eng. J. 2023, 451, 138679. [Google Scholar] [CrossRef]
- Maurer, J.A.; Miller, M.J.; Bartolucci, S.F. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating. J. Colloid Interface Sci. 2018, 524, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, F.; Yang, T.; Hu, T.; Bennett, P.; Yang, Q. Aging characteristics and self-healing properties of laser-textured superhydrophobic silicone rubber for composite insulators. Polym. Degrad. Stabil. 2021, 192, 109693. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Cherney, E.A.; Farzaneh, M.; Momen, G.; Illias, H.A.; Mier, G.; Peesapati, V.; Yin, F. Development and Application of Superhydrophobic Outdoor Insulation: A Review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1392–1399. [Google Scholar] [CrossRef]
- Sima, W.; Tang, X.; Sun, P.; Sun, Z.; Yuan, T. Nondestructive 3D Imaging of Microscale Damage Inside Polymers—Based on the Discovery of Self Excited Fluorescence Effect Induced by Electrical Field. Adv. Sci. 2023, 10, 2302262. [Google Scholar] [CrossRef]
- Sima, W.; Yang, Y.; Sun, P. Self-Reporting Microsensors Inspired by Noctiluca Scintillans for Small-Defect Positioning and Electrical-Stress Visualization in Polymers. Adv. Mater. 2024, 36, 2313254. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, S.; Zhang, P. Autonomous indication of electrical degradation in Polymers. Nat. Mater. 2024, 23, 237–243. [Google Scholar] [CrossRef]
- Rifaie-Graham, O.; Apebende, E.A.; Bast, L.K.; Bruns, N. Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage. Adv. Mater. 2018, 30, 1705483. [Google Scholar] [CrossRef]
- Li, W.; Matthews, C.C.; Yang, K.; Odarczenko, M.T. Autonomous indication of mechanical damage in polymeric coatings. Adv. Mater. 2016, 28, 2189–2194. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Li, Q.; Gao, L.; Hu, J. Self-healing of electrical damage in Polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 2019, 14, 151–155. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, Z.M.; Li, Q.; He, J. Self-healing of electrical damage in Polymers. Adv. Sci. 2020, 7, 2002131. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.W.; Zhuo, R. Study on Self-Healing Technology of Epoxy Resin for Insulator Core Rods. J. Appl. Polym. Sci. 2025, 142, e56935. [Google Scholar] [CrossRef]
- Sima, W.; Liang, C.; Sun, P.; Yang, M.; Zhu, C.; Yuan, T.; Liu, F.; Zhao, M.; Shao, Q.; Yin, Z.; et al. Novel Smart Insulating Materials Achieving Targeting Self-Healing of Electrical Trees: High Performance, Low Cost, and Eco-Friendliness. ACS Appl. Mater. Interfaces 2021, 13, 33485–33495. [Google Scholar] [CrossRef] [PubMed]
- Sima, W.; Shao, Q.; Sun, P.; Liang, C.; Yang, M.; Yin, Z.; Deng, Q. Magnetically Gradient-Distributed Microcapsule/Epoxy Composites: Low Capsule Load and Highly Targeted Self-Healing Performance. Chem. Eng. J. 2021, 405, 126908. [Google Scholar] [CrossRef]
- Sun, P.; Liu, F.; Sima, W.; Yuan, T.; Yang, M.; Liang, C.; Zhao, M.; Yin, Z. A Novel UV, Moisture and Magnetic Field Triple-Response Smart Insulating Material Achieving Highly Targeted Self-Healing Based on Nano-Functionalized Microcapsules. Nanoscale 2022, 14, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Mao, J.; Zhang, B. Polymeric insulating materials characteristics for high-voltage applications. Nat. Rev. Electr. Eng. 2024, 1, 516–528. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Liao, R. Process Improvement to restrain emergency heating defect of Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 446–453. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Liu, Y.F.; Liao, R. Study on the detection method of holes in composite insulator rods. High Volt. 2021, 6, 873–880. [Google Scholar] [CrossRef]
- Acosta, J.S.; Tavares, M.C. Multi-objective optimization of overhead transmission lines including the phase sequence optimization. Int. J. Electr. Power Energy Syst. 2020, 115, 105495. [Google Scholar] [CrossRef]
- M’hamdi, B.; Teguar, M.; Mekhaldi, A. Optimal design of corona ring on HV Composite insulator using PSO approach with dynamic population size. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1048–1057. [Google Scholar] [CrossRef]
- Salhi, R.; Mekhaldi, A.; Teguar, M.; Kherif, O. Corona Ring Improvement to Surface Electric Field Stress Mitigation of 400 kV Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 1509–1516. [Google Scholar] [CrossRef]
- Kumagal, S.; Yoshimura, N. Impacts of thermal aging and water absorption on the surface electrical and chemical properties of cycloaliphatic epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 424–431. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Zhang, Y.; Cao, B.; Wu, K. Understanding Water Diffusion Behaviors in Epoxy Resin through Molecular Simulations and Experiments. Langmuir 2024, 40, 4871–4880. [Google Scholar] [CrossRef]
- Wang, L.; Nie, Z.; Zhao, C. Permeation Characteristics of Moisture in the Sheath of Epoxy Resin Composite Insulators. High Volt. Eng. 2019, 45, 173–180. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Tu, Y.; Cao, B.; Liu, Y.; Mei, H. Review of nondestructive testing methods for defects in insulating Polymers. CSEE J. Power Energy Syst. 2025, 11, 1380–1397. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Geng, J.; Liu, Q.; Zhang, S. Defect Identification of Composite Insulator Based on Infrared Image. Polymers 2022, 14, 2620. [Google Scholar] [CrossRef]
- Jadin, M.S.; Taib, S.; Ghazali, K.H. Finding Region of Interest in the Infrared Image of Electrical Installation. Infrared Phys. Technol. 2015, 71, 329–338. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, G.; Lu, M.; Gao, C.; Jiang, X. Study on decay-like fracture of 500 kV composite insulators: Infrared, ultraviolet and electric field distribution detection. IET Gener. Transm. Distrib. 2022, 16, 4132–4141. [Google Scholar] [CrossRef]
- Wang, S.H.; Lv, F.C.; Liu, Y.P. Variation characteristics of ultraviolet image parameters and estimation of discharge capacity for corona discharge of composite insulators. Proc. CSEE 2013, 33, 233–240+33. (In Chinese) [Google Scholar]
- Dong, X.; Wu, J.; Wang, H. Research on airborne ultraviolet equipment and fault diagnosis technique for transmission line. J. Elect Power Sci. Tech. 2017, 32, 117–122. [Google Scholar]
- Wu, S.; Wang, L.; Song, B.; Gao, J. Live-Line Detection of Deteriorated Insulators on Overhead Transmission Lines Based on Electric Field Distribution. IEEE Sens. J. 2024, 24, 1687–1695. [Google Scholar] [CrossRef]
- Volat, C.; Jabbari, M.; Farzaneh, M.; Duvillaret, L. New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 194–201. [Google Scholar] [CrossRef]
- Liu, F.; Lopez, E.; West, A.; Ramnarine, V. Electric Field Mapping by Electro-Optical Probes in Known Geometries Under High Voltage. In Proceedings of the 2024 IEEE 5th International Conference on Dielectrics (ICD), Toulouse, France, 30 June–4 July 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Liang, X.; Dai, J.; Zhou, Y. Research on the Detection of Brittle Fracture Cracks in FRP Core Rods for Insulators by Ultrasonic Method. Proc. CSEE 2005, 25, 110–114. (In Chinese) [Google Scholar]
- Yuan, C.; Xie, C.; Li, L.; Zhang, F.; Gubanski, S.M. Ultrasonic phased array detection of internal defects in composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 525–531. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Xia, Z.; Li, C.; Liu, G. Inspection of internal defects of composite insulators by ultrasonic phased array method based on flexible coupling. High Volt. Eng. 2019, 45, 1274–1280. (In Chinese) [Google Scholar]
- Wang, H.Q.; Cheng, L.; Liao, R.J.; Zhang, S.D.; Yang, L.J. Nondestructive testing method of micro-debonding defects in composite insulation based on high power ultrasonic. High Volt. 2019, 4, 167–172. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, L. Research on X-ray inspection of Basin insulators and wireless image sensing technology. J. Sens. 2021, 2021, 2483518. [Google Scholar] [CrossRef]
- Lv, Z.J.; Wang, J.; Tang, G. Fault diagnosis of composite insulators based on the X-ray. Adv. Mater. Res. 2014, 926–930, 358–361. [Google Scholar] [CrossRef]
- Wang, L.; Li, A.; Cheng, L.; Hu, X.; Yang, J.; Chen, W. Microwave-based non-destructive testing method on composite Insulators. High Volt. Eng. 2015, 41, 584–591. (In Chinese) [Google Scholar]
- Qaddoumi, N.N.; El-Hag, A.H.; Saker, Y. Outdoor insulators testing using artificial neural network-based near-field microwave technique. IEEE Trans. Instrum. Meas. 2014, 63, 260–266. [Google Scholar] [CrossRef]
- Yakovlev, E.V.; Zaytsev, K.I.; Dolganova, I.N.; Yurchenko, S.O. Non-Destructive Evaluation of Polymer Composite Materials at the Manufacturing Stage Using Terahertz Pulsed Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 810–816. [Google Scholar] [CrossRef]
- Mei, H.; Jiang, H.; Yin, F.; Li, L.; Wang, L. Detection of Small Defects in Composite Insulators Using Terahertz Technique and Deconvolution Method. IEEE Trans. Instrum. Meas. 2020, 69, 8146–8155. [Google Scholar] [CrossRef]
- Hao, Y.; Cao, H.; Wei, J. Monitoring the Brittle Fracture Process of Acid-Intolerant Core Rods of Composite Insulators Using Fiber Bragg Gratings. High Volt. Eng. 2021, 47, 1998–2006. (In Chinese) [Google Scholar] [CrossRef]
- Wen, S.; Cai, W.; Deng, H.M.; Du, S.; Ke, R. Analysis of Fault Simulation Tests of Fiber Bragg Grating Composite Insulators. High Volt. Eng. 2013, 39, 81–87. (In Chinese) [Google Scholar]
- Ahlrot, C.; Aparicio, P.; Berlin, A.; Condon, T.; Goffinet, J.-F.; Gutman, I.; Halsan, K.; Radosavljevic, R.; Varli, K.; Välimaa, K. New Test Procedure Intended to Evaluate Adhesion of Core/Housing Interface of Composite Insulators. CIGRE D1-303, CIGRE Session 2020. Available online: https://www.e-cigre.org/publications/detail/d1-303-2020-new-test-procedure-intended-to-evaluate-adhesion-of-corehousing-interface-of-composite-insulators.html (accessed on 14 May 2025).
- Ji, S.; Jia, Y.; Yang, X.; Liu, Z.; Zhu, L. A Method for Measuring Electric Field Distribution Along Insulator Surfaces Based on Electroluminescence Effect and Its Image Processing Algorithm. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 939–947. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Wu, W.; Ma, G. Defect Detection on Operating Insulation Spacer of GIS Based on 3D X-ray Digital Imaging Technology. High Volt. Appa. 2022, 58, 230–236. (In Chinese) [Google Scholar]
- Lin, Q.; Lyu, F.; Yu, S.; Xiao, H.; Li, X. Optimized Denoising Method for Weak Acoustic Emission Signal in Partial Discharge Detection. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1409–1416. [Google Scholar] [CrossRef]
- Park, K.; Motai, Y.; Yoon, J.R. Acoustic Fault Detection Technique for High-Power Insulators. IEEE Trans. Ind. Electron. 2017, 64, 9699–9708. [Google Scholar] [CrossRef]
- Roberts, T.M.; Talebzadeh, M. Acoustic emission monitoring of fatigue crack propagation. J. Constr. Steel Res. 2003, 59, 695–712. [Google Scholar] [CrossRef]
Reason for Failure | Normal Fracture | Brittle Fracture | Decay-like Fracture | Internal Breakdown |
---|---|---|---|---|
Occurrences | 2 | 23 | 22 | 12 |
Proportion (%) | 3.4 | 39.0 | 37.3 | 20.3 |
Failure Mode | Electrical Damage | Mechanical Damage | Total | |||
---|---|---|---|---|---|---|
Flashover | Interface Breakdown | End Fitting | Rod Slip-Off | Rod Fracture | ||
U < 200 kV | 25 | 51 | 2 | 4 | 23 | 105 |
200 ≤ U < 300 kV | 8 | 10 | 0 | 2 | 8 | 28 |
300 ≤ U < 500 kV | 0 | 6 | 0 | 0 | 101 | 107 |
U ≥ 500 kV | 0 | 2 | 0 | 0 | 1 | 3 |
Total | 33 | 69 | 2 | 6 | 133 | 243 |
Failure rate (%) | 0.015 | 0.02 |
Sample | C, % | O, % | Si, % | Ca, % | Al, % | B, % | N, % | S, % |
---|---|---|---|---|---|---|---|---|
Site 1 | 50.67 | 33.21 | 11.89 | 1.21 | 1.06 | - | 1.96 | - |
Site 2 | 49.03 | 34.82 | 11.66 | 0.83 | 1.42 | - | 2.24 | - |
Site 3 | 59.34 | 24.81 | 8.52 | 2.53 | 1.93 | 1.08 | 1.79 | - |
Original | 58.29 | 26.34 | 9.01 | 1.59 | 2.26 | 1.33 | 1.18 | - |
Carbon, C 1s [%] | ||||
---|---|---|---|---|
Chemical state | C-C, C-H | C-O | C=O | O-C=O |
Binding energy | 284.8 eV | 286.7 eV | 287.1 eV | 288.6 eV |
Site 1 | 48.6 | 29.1 | 7.6 | 14.7 |
Site 2 | 54.3 | 21.0 | 7.0 | 17.7 |
Site 3 | 74.5 | 5.9 | 7.0 | 12.7 |
Original | 74.2 | 7.0 | 6.2 | 12.6 |
Carbon, C 1s [%] | |||||
---|---|---|---|---|---|
Chemical state | C-C, C-H | C-O | C=O | (C=O)-N | O-C=O |
Binding energy | 284.8 eV | 286.7 eV | 287.1 eV | 287.9 eV | 288.6 eV |
Intact GFRP | 84.3% | 6.2% | 5.5% | - | 4.0% |
Interior region | 58.3% | 18.5% | 6.4% | 5.1% | 11.7% |
External region | 69.8% | 10.7% | 5.2% | 7.6% | 6.7% |
Nitrogen, N 1s [%] | |||
---|---|---|---|
Chemical state | -(C=O)-NH- | CH2-NH2 | Nitrite |
Binding energy | 399.4 eV | 400.4 eV | 407.8 eV |
Intact GFRP | - | - | - |
Interior region | 18.3% | 44.9% | 36.8% |
External region | 14.5% | 29.3% | 56.2% |
Heating Type | Shape | Position | ΔT | Factors |
---|---|---|---|---|
Sheath-aged [106,107] | Point | Surface layer of the HV end sheath | Low | Aging, humidity, and field strength |
Decay-like [54,108] Lantern-type [109] | Segment | Multi-region | High | Internal defects |
Contaminated [110] | Point or Segment | HV end, other areas (severe pollution) | Low | Pollution, humidity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, G.; Zhang, Z.; Hu, J.; Hu, Q.; Zheng, H.; Jiang, X. Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines. Energies 2025, 18, 3138. https://doi.org/10.3390/en18123138
Pang G, Zhang Z, Hu J, Hu Q, Zheng H, Jiang X. Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines. Energies. 2025; 18(12):3138. https://doi.org/10.3390/en18123138
Chicago/Turabian StylePang, Guohui, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng, and Xingliang Jiang. 2025. "Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines" Energies 18, no. 12: 3138. https://doi.org/10.3390/en18123138
APA StylePang, G., Zhang, Z., Hu, J., Hu, Q., Zheng, H., & Jiang, X. (2025). Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines. Energies, 18(12), 3138. https://doi.org/10.3390/en18123138