Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology
Abstract
:1. Introduction
- (1)
- Using standards and measuring equipment with the lowest possible temperature coefficients.
- (2)
- Stabilizing environmental conditions (especially the ambient temperature in the laboratory) to a level where the effect of temperature on the comparison results can be neglected or minimized.
- (3)
- Designing new standards equipped with temperature regulation systems or using air thermostatic chambers specifically dedicated to storing standards during measurement.
2. New Impedance Calibration Infrastructure Developed in Poland
2.1. Impedance Standards
2.2. Permuting Capacitor Device
3. Thermostatic Chamber
- −
- For heating the thermostatic chamber: time constant T = 153.8 min, delay τ = 7.4 min, and gain k = 0.647 °C/%.
- −
- For cooling the thermostatic chamber: T = 67 min, τ = 3.5 min, and k = 0.075 °C/%.
- −
- For heating: proportional gain kR = 31.04%/°C, integration time constant Ti = 17.5 min, and derivative time constant Td = 2.9 min.
- −
- For cooling: kR = 266.3%/°C, Ti = 7.6 min, and Td = 1.3 min.
4. Investigation
4.1. Stability of the Thermostatic Chamber
4.2. Temperature Dependence of the Standard Resistors and Capacitors
- −
- For R = 10 Ω: TCR= −10.5 ppm/°C.
- −
- For R = 100 Ω: TCR= −0.32 ppm/°C.
- −
- For R = 1 kΩ: TCR = −0.60 ppm/°C.
- −
- For R = 10 kΩ: TCR = −0.26 ppm/°C.
- −
- For R = 100 kΩ: TCR = +0.93 ppm/°C.
- −
- For C4 = 10 nF: TCC = −7.7 ppm/°C.
- −
- For C9 = 10 nF: TCC = −9.7 ppm/°C.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SUT | Silesian University of Technology, Gliwice, Poland |
GUM | Central Office of Measures, Warsaw, Poland |
PCD | Permuting capacitor device |
4TP | Four-terminal pair, type of terminals |
TCR | Temperature coefficient of resistance |
References
- Mašláň, S.; He, H.; Bergster, T.; Seitz, S.; Heins, T.P. Interlaboratory comparison of battery impedance analyzers calibration. Measurement 2023, 218, 113176. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Xiao, Y.; Huang, X.; Meng, J.; Zhang, Y.; Knap, V.; Stroe, D.-I. Electrochemical Impedance Spectroscopy-Based Characterization and Modeling of Lithium-Ion Batteries Based on Frequency Selection. Batteries 2025, 11, 11. [Google Scholar] [CrossRef]
- Kanoun, O. (Ed.) Impedance Spectroscopy/Advanced Applications: Battery Research, Bioimpedance, System Design; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Pandey, L.; Kumar, D.; Parkash, O.; Pandey, S. Analytical Impedance Spectroscopy; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Overney, F.; Jeanneret, B. Impedance bridges: From Wheatstone to Josephson. Metrologia 2018, 55, 119–134. [Google Scholar] [CrossRef]
- Ortolano, M.; Marzano, M.; Overney, F.; Eichenberger, A.L.; Kucera, J.; D’Elia, V. An International Trilateral Comparison Among the Newest Generations of Digital and Josephson Impedance Bridges. IEEE Trans. Instrum. Meas. 2025, 74, 1501009. [Google Scholar] [CrossRef]
- Ansari, M.A.; Saxena, A.K.; Krishnan Marg, K.S. Comparison of Temperature Coefficient of Standard Inductor by Measuring Change in Inductance and Resistance. In Proceedings of the Conference of Precision Electromagnetics Measurement, Daejeon, Republic of Korea, 13–18 June 2010. [Google Scholar]
- Musioł, K.; Met, A.; Skubis, T. Automatic Bridge for Comparison of Inductance Standards. Measurement 2010, 43, 1661–1667. [Google Scholar] [CrossRef]
- Cabiati, F.; Bosco, G.C. LC comparison system based on two-phase generator. IEEE Trans. Instr. Meas. 1987, 36, 411–417. [Google Scholar] [CrossRef]
- Muciek, A. A combined transformer bridge for precise comparison of inductance with capacitance. IEEE Trans. Instr. Meas. 1983, 32, 419–423. [Google Scholar] [CrossRef]
- Mašláň, S.; Šíra, M.; Skalická, T.; Bergsten, T. Four-Terminal Pair Digital Sampling Impedance Bridge up to 1 MHz. IEEE Trans. Instr. Meas. 2019, 68, 1860–1869. [Google Scholar] [CrossRef]
- Overney, F.; Jeanneret, B. RLC Bridge Based on an Automated Synchronous Sampling System. IEEE Trans. Instrum. Meas. 2011, 60, 2393–2398. [Google Scholar] [CrossRef]
- Ortolano, M.; Palafox, L.; Kučera, J.; Callegaro, L.; D’Elia, V.; Marzano, M.; Overney, F.; Gülmez, G. An international comparison of phase angle standards between the novel impedance bridges of CMI, INRIM and METAS. Metrologia 2018, 55, 499–512. [Google Scholar] [CrossRef]
- Overney, F.; Flowers-Jacobs, N.E.; Jeanneret, B.; Rufenacht, A.; Fox, A.E.; Dresselhaus, P.D.; Benz, S.P. Dual Josephson impedance bridge: Towards a universal bridge for impedance metrology. Metrologia 2020, 57, 065014. [Google Scholar] [CrossRef] [PubMed]
- Pimsut, Y.; Bauer, S.; Karus, M.; Behr, R.; Kruskopf, M.; Kieler, O.; Palafox, L. Development and implementation of an automated four terminal-pair Josephson impedance bridge. Metrologia 2024, 61, 025007. [Google Scholar] [CrossRef]
- Overney, F.; Flowers-Jacobs, N.E.; Jeanneret, B.; Rufenacht, A.; Fox, A.E.; Underwood, J.M.; Koffman, A.D.; Benz, S.P. Josephson-based full digital bridge for high-accuracy impedance comparison. Metrologia 2016, 53, 1045–1053. [Google Scholar] [CrossRef]
- Bauer, S.; Behr, R.; Hagen, T.; Kieler, O.; Lee, J.; Palafox, L.; Schurr, J. A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance. Metrologia 2017, 54, 152–160. [Google Scholar] [CrossRef]
- Bauer, S.; Behr, R.; Elmquist, R.E.; Götz, M.; Herick, J.; Kieler, O.; Kruskop, M.; Lee, J.; Palafox, L.; Pimsut, Y. A Four-terminal-pair Josephson impedance bridge combined with a graphene-quantized Hall resistance. Meas. Sci. Technol 2021, 32, 065007. [Google Scholar] [CrossRef]
- Musioł, K.; Kampik, M.; Ziółek, A.; Jursza, J. Experiences with a new sampling-based four-terminal-pair digital impedance bridge. Measurement 2022, 205, 112159. [Google Scholar] [CrossRef]
- Sedlacek, R. A Wide-Range Maxwell-Wien Bridge Utilizing IVD’s and Precision Electronic Circuits. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 17–19 May 2005. [Google Scholar]
- Murata Manufacturing Co., Ltd. Chip Multilayer Ceramic Capacitors for General Purpose, Specification of Murata GRM31C5C1H104JA01#. Available online: https://www.murata.com (accessed on 12 February 2025).
- Kibble, B.P. Four terminal-pair to anything else! In Proceedings of the IEE Colloquium on Interconnections from DC to Microwaves (Ref. No. 1999/019), London, UK, 18 February 1999. [Google Scholar]
- Musioł, K.; Koszarny, M.; Kampik, M.; Kubiczek, K.; Ziółek, A.; Jursza, J. A new impedance metrology infrastructure at GUM. In Proceedings of the 25th IMEKO TC-4 International Symposium on Measurement of Electrical Quantities, Brescia, Italy, 12–14 September 2022. [Google Scholar]
- HZ Series (Z-Foil) with Zero TCR. Vishay Precision Group, Document Number: 63120. Available online: https://www.vishay.com/en/how/onlineliterature/online-libraries/ (accessed on 10 March 2025).
- Cutkosky, R.D.; Shields, J.Q. The precision measurement of transformer ratios. IRE Trans. Instrum. 1960, 9, 243–250. [Google Scholar] [CrossRef]
- Kampik, M.; Kubiczek, K.; Musioł, K.; Zawadzki, P.; Koszarny, M.; Ziółek, A.; Jursza, J. Linearity measurement of digitizers used in sampling-based digital impedance bridges by the method of permuting capacitors. Metrol. Hallmark 2024, 1, 1–9. [Google Scholar]
- Temperature and Humidity Test Chambers Lab1st—Technical Data. Available online: https://www.lab1st.com (accessed on 8 May 2025).
- Temperature Chambers Kambič—Technical Data Sheets. Available online: www.kambicmetrology.com/temperature-chamber/ (accessed on 8 May 2025).
- Meshram, P.M.; Kanojiya, R.G. Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor. In Proceedings of the IEEE-International Conference On Advances In Engineering, Science and Management (ICAESM), Nagapattinam, India, 30–31 March 2012; pp. 117–122. [Google Scholar]
- Oe, T.; Kaneko, N.-H.; Nozato, H.; Suma, H.; Zama, M.; Kumagai, M. Extremely Stable 10 kΩ Metal Foil Resistors in n Ω/Ω Level. IEEE Trans. Instrum. Meas. 2025, 74, 1008007. [Google Scholar] [CrossRef]
- Lee, H.-K.; Kim, D.B.; Kim, W.-S. Effect of Humidity on the Calibration of the Four-Terminal-Pair Air-Dielectric Capacitance Standards. Measurement 2016, 86, 196–201. [Google Scholar] [CrossRef]
- Rietveld, G.; Bauer, A.; Dix, B.; Laegsgaard, E.; van den Brom, H.E. DC and Low-Frequency Humidity Dependence of a 20 pF Air-Gap Capacitor. IEEE Trans. Instrum. Meas. 2009, 58, 1197–1203. [Google Scholar] [CrossRef]
- Cutkosky, R.D.; Lee, L.H. Improved Ten-Picofarad Fused Silica Dielectric Capacitor. J. Res. Natl. Bur. Stand. Sect. C Eng. Instrum. 1965, 69C, 173–179. [Google Scholar] [CrossRef]
10 Ω | 100 Ω | 1 kΩ | 10 kΩ | 100 kΩ | C4 | C9 |
---|---|---|---|---|---|---|
−0.7 ppm/% | −0.07 ppm/% | −0.14 ppm/% | −0.2 ppm/% | −0.27 ppm/% | −0.2 ppm/% | −0.27 ppm/% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampik, M.; Musioł, K.; Rybski, R.; Kaczmarek, J.; Kozioł, M.; Koszarny, M.; Ziółek, A.; Jursza, J.; Zawadzki, P. Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology. Energies 2025, 18, 3018. https://doi.org/10.3390/en18123018
Kampik M, Musioł K, Rybski R, Kaczmarek J, Kozioł M, Koszarny M, Ziółek A, Jursza J, Zawadzki P. Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology. Energies. 2025; 18(12):3018. https://doi.org/10.3390/en18123018
Chicago/Turabian StyleKampik, Marian, Krzysztof Musioł, Ryszard Rybski, Janusz Kaczmarek, Mirosław Kozioł, Maciej Koszarny, Adam Ziółek, Jolanta Jursza, and Paweł Zawadzki. 2025. "Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology" Energies 18, no. 12: 3018. https://doi.org/10.3390/en18123018
APA StyleKampik, M., Musioł, K., Rybski, R., Kaczmarek, J., Kozioł, M., Koszarny, M., Ziółek, A., Jursza, J., & Zawadzki, P. (2025). Temperature Dependence of the New Calibration Infrastructure for Impedance Metrology. Energies, 18(12), 3018. https://doi.org/10.3390/en18123018