Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects
Abstract
1. Introduction
2. Global Perspectives on Geochemical Characteristics of Chlorine in Coal
3. Combustion Characteristics and Mechanisms of High-Chlorine Coal
3.1. Occurrence Modes of Chlorine in Coal
3.2. Release Behavior of Chlorine
3.3. Formation Mechanisms of Corrosive Gases
4. Migration and Transformation Mechanisms and Pollution Control of Chlorine During Coal Combustion
4.1. Transport and Deposition Characteristics of Chloride Salts in Fly Ash
4.2. Speciation and Retention Mechanisms of Chlorine in Ash Residues
4.3. Formation Pathways and Control Strategies of Secondary Pollution
5. Advances in Chemical Synergistic Effects Between Chlorine and Mercury in Coal with Mercury Removal Technologies
5.1. Synergistic Mechanism of Chlorine in Mercury Speciation Transformation
5.1.1. Homogeneous Oxidation Reaction
5.1.2. Heterogeneous Catalysis
5.2. Synergistic Chlorine-Mediated Mercury Removal Technologies
5.2.1. Adsorbent Modification Techniques
5.2.2. Synergistic Abatement via Existing Pollution Control Devices
5.2.3. Advanced Combustion Modulation Technologies
6. Formation Mechanisms and Emission Control of Dioxins During Combustion Processes
6.1. Mechanistic Role of Chlorine in Dioxin Formation
6.2. Impact of Combustion Conditions on Dioxin Formation
6.3. Characterization and Congener-Specific Analysis of Dioxin Emissions
6.4. Advances in Dioxin Abatement Technologies: Current Research Progress
7. Mechanisms of Chlorine-Induced Corrosion in Coal Combustion Systems
7.1. Incipient Stage of Chlorine-Induced Corrosion: Degradation Mechanisms of Oxide Layers
7.2. Synergistic Interactions Between Chlorine and Sulfur
7.3. Direct Chloride Attack on Metallic Materials
7.4. Impact of Physicochemical Properties of Deposits
7.5. Regulatory Effects of Temperature and Atmosphere
7.6. Protection Strategies and Material Innovations
8. Ecological Impacts of High-Chlorine Coal Combustion
8.1. Exacerbation of Atmospheric Fine Particulate Matter (PM2.5) Pollution
8.2. Enhancement of Ground-Level Ozone Formation
8.3. Emission of Ozone-Depleting Substances (ODSs)
8.4. Enhancement of Mercury Pollution Toxicity
8.5. Modulation of Atmospheric Oxidizing Capacity
9. Conclusions
9.1. Existing Problems and Challenges
- 1.
- Bottlenecks in Corrosion Control
- 2.
- Limitations of Pollution Control Technologies
- 3.
- Difficulties in Multi-Pollutant Synergistic Control
- 4.
- Economic and Scaling Barriers
9.2. Future Perspectives
- 1.
- Mechanism Research and Model Development
- 2.
- Development of Novel Materials and Technologies
- 3.
- System Integration and Intelligent Control
- 4.
- Expansion of Green and Low-Carbon Pathways
Author Contributions
Funding
Conflicts of Interest
References
- Yudovich, Y.E.; Ketris, M.P. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 127–144. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Xu, C.B.; Zhu, J.; Preto, F.; Wang, J.S.; Tourigny, G.; Badour, C.; Li, H.N. Ash and chlorine deposition during co-combustion of lignite and a chlorine-rich Canadian peat in a fluidized bed—Effects of blending ratio, moisture content and sulfur addition. Fuel 2012, 95, 25–34. [Google Scholar] [CrossRef]
- Spears, D.A.; Zheng, Y. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol. 1999, 38, 161–179. [Google Scholar] [CrossRef]
- Bläsing, M.; Müller, M. Release of Alkali Metal, Sulfur, and Chlorine Species during High-Temperature Gasification of Coal and Coal Blends in a Drop Tube Reactor. Energy Fuels 2012, 26, 6311–6315. [Google Scholar] [CrossRef]
- Mazurek, I.; Skawinska, A.; Sajdak, M. Analysis of chlorine forms in hard coal and the impact of leaching conditions on chlorine removal. J. Energy Inst. 2021, 94, 337–351. [Google Scholar] [CrossRef]
- Owen, D.D.R.; Raiber, M.; Cox, M.E. Relationships between major ions in coal seam gas groundwaters: Examples from the Surat and Clarence-Moreton basins. Int. J. Coal Geol. 2015, 137, 77–91. [Google Scholar] [CrossRef]
- Jiménez, A.; Martínez-Tarazona, M.R.; Suárez-Ruiz, I. The mode of occurrence and origin of chlorine in Puertollano coals (Spain). Fuel 1999, 78, 1559–1565. [Google Scholar] [CrossRef]
- Spears, D.A. A review of chlorine and bromine in some United Kingdom coals. Int. J. Coal Geol. 2005, 64, 257–265. [Google Scholar] [CrossRef]
- Ning, J.; Jin, H.; Wang, Z.; Liu, H. Research advances on the occurrence and release characteristics of chlorine in coal. J. China Coal Soc. 2019, 44, 2886–2897. [Google Scholar]
- Frigge, L.; Ströhle, J.; Epple, B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor. Fuel 2017, 201, 105–110. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Saito, T.; Ohtaka, N.; Ohtsuka, Y. Evolution of Hydrogen Chloride and Change in the Chlorine Functionality during Pyrolysis of Argonne Premium Coal Samples. Energy Fuels 2013, 27, 87–96. [Google Scholar] [CrossRef]
- Liu, X.S.; Wang, R.; Huang, T.F.; Geng, X.Z.; Ding, X.L.; Duan, Y.F.; Zhao, S.L. Insights into the HCl formation and volatilization mechanism from organochlorine in coal: A DFT study. Fuel 2023, 338, 127271. [Google Scholar] [CrossRef]
- Lasek, J.A.; Glód, K.; Sowik, K. The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure. Renew. Energy 2021, 179, 828–841. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Gao, J.; Song, Y. Building of chlorine removal model on process of coal pyrolysis. J. Fuel Chem. Technol. 2003, 31, 27–30. [Google Scholar]
- Sun, Q.Q.; Fang, T.; Chen, J.; Da, C.N. Characteristics of Chlorine Releasing from Coal-Fired Power Plant. Atmosphere 2021, 12, 1550. [Google Scholar] [CrossRef]
- Zhou, C.; Xi, W.; Yang, L.; Li, B. Chlorine emission characteristics and control status of coal-fired units. Energy Rep. 2022, 8, 51–58. [Google Scholar] [CrossRef]
- Ma, D.Y.; Li, R.; Wang, X.B.; Hu, Z.F.; Tan, H.Z.; Rahman, Z.U.; Vujanovic, M. Chlorine evolution and char characteristics during pyrolysis upgrading of Xinjiang high chlorine coal. Fuel 2025, 379, 133120. [Google Scholar] [CrossRef]
- Zhao, P.T.; Huang, N.; Li, J.W.; Cui, X. Fate of sodium and chlorine during the co-hydrothermal carbonization of high-alkali coal and polyvinyl chloride. Fuel Process. Technol. 2020, 199, 106277. [Google Scholar] [CrossRef]
- Qi, X.B.; Song, G.L.; Yang, S.B.; Yang, Z.; Lyu, Q.G. Migration and transformation of sodium and chlorine in high-sodium high-chlorine Xinjiang lignite during circulating fluidized bed conbustion. J. Energy Inst. 2019, 92, 673–681. [Google Scholar] [CrossRef]
- Wang, Y.F.; Qin, Y.H.; Vassilev, S.V.; He, C.; Vassileva, C.G.; Wei, Y.X. Migration behavior of chlorine and sulfur during gasification and combustion of biomass and coal. Biomass Bioenergy 2024, 182, 107080. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Ohtsuka, S.; Hashimoto, H.; Ohtsuka, Y. Several distinct types of HCl evolution during temperature-programmed pyrolysis of high-rank coals with almost the same carbon contents. Energy Fuels 2004, 18, 1605–1606. [Google Scholar] [CrossRef]
- Schmidt, D.; Yildiz, C.; Ströhle, J.; Epple, B. Release of nitrogen, sulfur and chlorine species from coal in carbon dioxide atmosphere. Fuel 2021, 284, 119279. [Google Scholar] [CrossRef]
- Tian, Z.H.; Zhang, B.; Wang, Q.H.; Jia, R.Q.; Ma, D.; Xie, G.L. Evaluation of the influence of different conditions on the Na/Cl release and characteristics of high-alkali coal pyrolysis products by orthogonal and single-factor experiments. Fuel 2025, 391, 134602. [Google Scholar] [CrossRef]
- Peng, B.X.; Li, X.R. Release and Transformation Characteristics of Modes of Occurrence of Chlorine in Coal Gangue during Combustion. Energy Fuels 2018, 32, 9926–9933. [Google Scholar] [CrossRef]
- Kawahara, Y. Controlling Factors of Localized Corrosion in Boiler Combustion Gas Environments. Oxid. Met. 2016, 85, 127–149. [Google Scholar] [CrossRef]
- Wenga, T.; Wu, X.X.; Xue, Y.X.; Zeng, S.X.; Ma, W.C. High-temperature corrosion mechanisms of a Ni-based alloy in simulated multi-source organic waste co-incineration environments. Fuel 2024, 377, 132784. [Google Scholar] [CrossRef]
- Pereira, É.; Rocha, L.M.; Cadorim, H.R.; Silva, V.D.; Welz, B.; Carasek, E.; de Andrade, J.B. Determination of chlorine in coal via the SrCl molecule using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochim. Acta Part B At. Spectrosc. 2015, 114, 46–50. [Google Scholar] [CrossRef]
- de Gois, J.S.; Pereira, É.; Welz, B.; Borges, D.L.G. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. Anal. Chim. Acta 2014, 852, 82–87. [Google Scholar] [CrossRef]
- Wang, K.C.; Ban, Y.P.; Wu, Y.F.; Jin, L.J.; Hu, H.Q. Synergistic effect and chlorine migration behavior in co-pyrolysis of Pingshuo coal and polyvinyl chloride and directional chlorine enrichment using calcium oxide. Fuel 2023, 349, 128749. [Google Scholar] [CrossRef]
- Ge, H.J.; Shen, L.H.; Song, T.; Yin, S.Y. Study on the Migration Characteristics of Sodium and Chlorine in Chemical Looping Process of ZhunDong Coal with Hematite Oxygen Carrier. Energy Fuels 2019, 33, 1489–1500. [Google Scholar] [CrossRef]
- Ruan, R.H.; Tan, H.Z.; Wang, X.B.; Li, Y.; Li, S.S.; Hu, Z.F.; Wei, B.; Yang, T. Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur. Fuel 2018, 211, 206–213. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.J.; Wei, B.; Liu, K.P.; Ruan, R.H.; Wang, Y.B.; Tan, H.Z.; Zhu, Q.; Wang, S.H. Characteristics of fine particle formation during combustion of high-alkali coal in a new full-scale circulating fluidized bed boiler. J. Energy Inst. 2024, 114, 101631. [Google Scholar] [CrossRef]
- Prismantoko, A.; Karuana, F.; Ghazidin, H.; Ruhiyat, A.S.; Adelia, N.; Prayoga, M.Z.E.; Romelan, R.; Utomo, S.M.; Cahyo, N.; Hartono, J.; et al. Ash deposition behavior during co-combustion of solid recovered fuel with different coals. Therm. Sci. Eng. Prog. 2024, 48, 102404. [Google Scholar] [CrossRef]
- Ma, D.Y.; Ruan, R.H.; Li, Y.D.A.; Zhang, L.; Wang, X.B.; Zi, J.B.; Wang, Y.B.; Li, H.; Wen, H.B.; Tan, H.Z. Characteristics of fine particle formation during combustion of Xinjiang high-chlorine-sodium coal. Fuel 2021, 297, 120772. [Google Scholar] [CrossRef]
- Nomura, S. Behavior of coal chlorine in cokemaking process. Int. J. Coal Geol. 2010, 83, 423–429. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.B.; Kong, R.J. Effect of SO2 and SO3 on the distribution of Na/S/Cl and ashes characteristics of Zhundong coal during circulating fluidized bed O2/CO2 combustion. J. Energy Inst. 2021, 96, 222–233. [Google Scholar] [CrossRef]
- Zi, J.B.; Ma, D.Y.; Rahman, Z.U.; Wang, X.B.; Li, H.; Liao, S.M. Effects of temperature and additives on ash transformation and melting of high-alkali-chlorine coal. Therm. Sci. 2020, 24, 3501–3510. [Google Scholar] [CrossRef]
- Luo, J.Z.; Yang, Q.W.; Wang, J.Q.; Shen, B.X.; Wang, Z.Z.; Shi, Q.Q.; Zhao, Z.; Huang, C.; Xu, J. Migration and transformation of Pb, Cu, and Zn during co-combustion of high-chlorine-alkaline coal and Si/Al dominated coal. J. Environ. Sci. 2024, 141, 26–39. [Google Scholar] [CrossRef]
- Aho, M.; Ferrer, E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass. Fuel 2005, 84, 201–212. [Google Scholar] [CrossRef]
- Yu, S.H.; Zhang, C.; Yuan, C.L.; Xu, H.; Ma, L.; Fang, Q.Y.; Chen, G. Investigation on the influence of sulfur and chlorine on the initial deposition/fouling characteristics of a high-alkali coal. Fuel Process. Technol. 2020, 198, 106234. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liang, B.; Liang, Y.J.; Fan, W.J.; Liu, J.S.; Niu, S.L.; Han, K.H. Investigation on the mechanism of ash deposition formation from mineral components and characteristics of ash deposition on boiler heating surface during co-firing of coal and biomass. J. Energy Inst. 2025, 118, 101921. [Google Scholar] [CrossRef]
- Hariana, H.; Prismantoko, A.; Ghazidin, H.; Ruhiyat, A.S.; Suhendra, N.; Darmawan, A.; Juangsa, F.B.; Indarto, R.; Wang, Y.B.; Aziz, M. Mitigation of ash deposition problem during co-combustion of coal and refuse-derived fuel using aluminium-rich anti-slagging additives. J. Energy Inst. 2025, 120, 102041. [Google Scholar] [CrossRef]
- Fan, H.; Ren, M.L.; Feng, C.Y.; Jiao, Y.; Bai, Y.H.; Ma, Q.X. Pyrolysis Characteristics of Hailar Lignite in the Presence of Polyvinyl Chloride: Products Distribution and Chlorine Migration. Energies 2022, 15, 3377. [Google Scholar] [CrossRef]
- Xu, Y.S.; Liu, X.W.; Zhang, P.H.; Guo, J.Z.; Han, J.K.; Zhou, Z.J.; Xu, M.H. Role of chlorine in ultrafine particulate matter formation during the combustion of a blend of high-Cl coal and low-Cl coal. Fuel 2016, 184, 185–191. [Google Scholar] [CrossRef]
- Zi, J.B.; Ma, D.Y.; Wang, X.B.; Rahman, Z.U.; Li, H.; Liao, S.M. Slagging behavior and mechanism of high-sodium-chlorine coal combustion in a full-scale circulating fluidized bed boiler. J. Energy Inst. 2020, 93, 2264–2270. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, X.W.; Wu, K.; Zhai, Y.F.; Li, Y.Y. Role of sulphur and chlorine in condensable particulate matter formation during coal combustion. J. Hazard. Mater. 2023, 443, 130317. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Bai, Z.Q.; Guo, Z.X.; Kong, L.X.; Bai, J.; Li, W. Study on the co-pyrolysis interactions and chlorine migration behaviors of polyvinyl chloride and Hami coal. Fuel 2024, 376, 132735. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, Y.M.; Allgurén, T.; Andersson, K.; Wendt, J.O.L. The roles of added chlorine and sulfur on ash deposition mechanisms during solid fuel combustion. Proc. Combust. Inst. 2021, 38, 4309–4316. [Google Scholar] [CrossRef]
- Burmistrz, P.; Kogut, K.; Marczak, M.; Zwozdziak, J. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Process. Technol. 2016, 152, 250–258. [Google Scholar] [CrossRef]
- Wang, Z.A.; Huang, P.; Xie, Y.H.; Ning, J.; Tu, Y.J.; Liu, H.; Yu, D.X. Performance of elemental mercury removal by activated char prepared from high-chlorine Turpan-Hami coal. Fuel 2022, 307, 121817. [Google Scholar] [CrossRef]
- Lyu, Q.; Xin, F. Review on Mercury Control during Co-Firing Coal and Biomass under O2/CO2 Atmosphere. Appl. Sci. 2024, 14, 4209. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Ji, L.; Jiao, T.; Zhang, H.; Li, L.; Liang, P. Influence of Solid Heat Carriers on Mercury Migration Characteristics in Coal Pyrolysis/Circulating Fluidized Bed Combustion-Staged Conversion Process. Energy Fuels 2021, 35, 2485–2492. [Google Scholar] [CrossRef]
- Agyarko, L.B.; Mansoori, G.A. A review of non-renewable energy options in Illinois. Int. J. Oil Gas Coal Technol. 2013, 6, 288–347. [Google Scholar] [CrossRef]
- Liu, K.L.; Gao, Y.; Kellie, S.; Pan, W.P.; Riley, J.T.; Ho, K.K.; Mehta, A.K. A study of mercury removal in FBC systems fired with high chlorine coals. Combust. Sci. Technol. 2001, 164, 145–162. [Google Scholar] [CrossRef]
- Liu, K.L.; Gao, Y.; Riley, J.T.; Pan, W.P.; Mehta, A.K.; Ho, K.K.; Smith, S.R. An investigation of mercury emission from FBC systems fired with high-chlorine coals. Energy Fuels 2001, 15, 1173–1180. [Google Scholar] [CrossRef]
- Agarwal, H.; Romero, C.E.; Stenger, H.G. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species. Fuel Process. Technol. 2007, 88, 723–730. [Google Scholar] [CrossRef]
- Xiao, G.; Zhong, Z.; Jiang, C.; Han, L.; Ma, T.; Zhang, S.; Jin, B. Effect of chlorine addition on mercury precipitation during coal combustion. Chem. Ind. Eng. Prog. 2021, 40, 6557–6563. [Google Scholar]
- Lim, D.H.; Choi, S.; Park, J.; Senthamaraikannan, T.G.; Min, Y.; Lee, S.S. Fundamental Mechanisms of Mercury Removal by FeCl3- and CuCl2-Impregnated Activated Carbons: Experimental and First-Principles Study. Energy Fuels 2020, 34, 16401–16410. [Google Scholar] [CrossRef]
- Wang, F.Y.; Li, G.L.; Wang, S.X.; Wu, Q.R.; Zhang, L. Modeling the heterogeneous oxidation of elemental mercury by chlorine in flue gas. Fuel 2020, 262, 116506. [Google Scholar] [CrossRef]
- Le, L.Y.; Wang, H.; Zeng, Q.S.; Yang, K.; Zhang, Y.W.; Ran, H.Y.; Liu, D. Multiscale Understanding of the Mechanism of Mercury Removal by Acid-Chlorine-Modified Biomass Coke: Experiments and Simulations. Energy Fuels 2023, 37, 14977–14990. [Google Scholar] [CrossRef]
- Lyu, Q.; Wang, C.A.; Liu, X.; Che, D.F. Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler. Energies 2022, 15, 446. [Google Scholar] [CrossRef]
- Wan, G.; Chen, T.; Xu, L.L.; Sun, L.S. Elemental mercury removal by copper-containing brominated pyrolytic chars derived from waste printed circuit boards. Fuel 2024, 372, 132212. [Google Scholar] [CrossRef]
- Sun, R.Z.; Luo, G.Q.; Wu, H.; Li, X.; Tian, H.; Yao, H. Insight into mercury-laden activated carbon adsorbent product bonding nature by DFT calculations. Chem. Eng. J. 2022, 433, 134461. [Google Scholar] [CrossRef]
- Zhang, T.L.; Zhang, J.Y.; Wei, S.Z.; Xiong, Z.; Xiao, R.H.; Chuai, X.; Zhao, Y.C. Effect of hydrothermal pretreatment on mercury removal performance of modified biochar prepared from corn straw. Fuel 2023, 339, 126958. [Google Scholar] [CrossRef]
- Zeng, Q.S.; Wang, H.; Wu, J.M.; Ran, H.Y.; Yang, K.; Wu, J.F. Comprehensive analysis of acid gases on mercury removal by CuCl2 modified char exposure to oxy-fuel environment: Experiment and XPS perception. Korean J. Chem. Eng. 2023, 40, 2855–2865. [Google Scholar] [CrossRef]
- Chen, C.; Duan, Y.F.; Huang, T.F.; Zhu, M.Q.; Liu, X.S.; Wei, H.Q. Regeneration Characteristics of Elemental Sulfur-Modified Activated Carbon for Mercury Removal. Energy Fuels 2021, 35, 9497–9508. [Google Scholar] [CrossRef]
- Zheng, J.M.; Shah, K.J.; Zhou, J.S.; Pan, S.Y.; Chiang, P.C. Impact of HCl and O2 on removal of elemental mercury by heat-treated activated carbon: Integrated X-ray analysis. Fuel Process. Technol. 2017, 167, 11–17. [Google Scholar] [CrossRef]
- Zhao, H.B.; Wang, J.X. Chemical-looping combustion of plastic wastes for in situ inhibition of dioxins. Combust. Flame 2018, 191, 9–18. [Google Scholar] [CrossRef]
- Paradiz, B.; Dilara, P.; Umlauf, G.; Bajsic, I.; Butala, V. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence. Therm. Sci. 2015, 19, 295–304. [Google Scholar] [CrossRef]
- Wang, L.C.; Lee, W.J.; Lee, W.S.; Chang-Chien, G.P.; Tsai, P.J. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci. Total Environ. 2003, 302, 185–198. [Google Scholar] [CrossRef]
- Lin, X.Q.; Ma, Y.F.; Chen, Z.L.; Li, X.D.; Lu, S.Y.; Yan, J.H. Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator. Environ. Pollut. 2020, 265, 114888. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.H.; Liu, M.J.; Li, L.; Yan, D.H.; Chen, C.; Wang, M.W.; Wang, J.Y.; Huang, Q.F. Effects of increasing chlorine concentration in feedstock on the emission and distribution characteristic of dioxins in circular fluidized bed boiler. Environ. Sci. Pollut. Res. 2023, 30, 10202–10212. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.H.; Yan, D.H.; Liu, M.J.; Wang, J.; Chen, C.; Li, L.; Li, X.Y. Emission and distribution characteristics of PCDD/Fs during the co-processing of various solid wastes in coal-fired boilers in China. Environ. Pollut. 2024, 356, 124260. [Google Scholar] [CrossRef] [PubMed]
- Son, J.I.; Lee, S.J.; Park, S.I.; Kwon, E.H.; Namkung, H.; Kang, J.G.; Lee, W. Emission Characteristics of Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans (PCDD/DFs) in Commercial Bio-SRF and SRF Incineration Plants. Energies 2022, 15, 2787. [Google Scholar] [CrossRef]
- Ying, Y.X.; Ma, Y.F.; Wang, X.X.; Wu, J.Y.; Lin, X.Q.; Li, X.D.; Yan, J.H. Incineration-source fingerprints and emission spectrums of dioxins with diagnostic application. Environ. Int. 2024, 188, 108746. [Google Scholar] [CrossRef]
- Pongpiachan, S.; Wiriwutikorn, T.; Sbrilli, A.; Gobbi, M.; Hashmi, M.Z.; Centeno, C. Influence of Fuel Type on Emission Profiles of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Industrial Boilers. Polycycl. Aromat. Compd. 2021, 41, 498–510. [Google Scholar] [CrossRef]
- He, F.Y.; Wang, F.; Peng, Y.Q.; Cui, H.B.; Lv, G.J. Insight into the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in hazardous waste incineration and incinerators: Formation process and reduction strategy. J. Environ. Manag. 2023, 345, 108746. [Google Scholar] [CrossRef]
- Strezov, V.; Zhou, X.T.; Evans, T.; Kan, T.; Taylor, M.P. Investigation of the effect of chlorine in different additives on dioxin formation during high temperature processing of iron ore. Ecotoxicol. Environ. Saf. 2024, 288, 117406. [Google Scholar] [CrossRef]
- Gulyurtlu, I.; Cruieira, A.T.; Abelha, P.; Cabrita, I. Measurements of dioxin emissions during co-firing in a fluidised bed. Fuel 2007, 86, 2090–2100. [Google Scholar] [CrossRef]
- Wei, J.X.; Li, H.; Liu, J.G. Phase distribution of PCDD/Fs in flue gas from municipal solid waste incinerator with ultra-low emission control in China. Chemosphere 2021, 276, 130166. [Google Scholar] [CrossRef]
- Bei, J.Y.; Xu, X.; Zhan, M.X.; Li, X.D.; Jiao, W.T.; Khachatryan, L.; Wu, A.J. Revealing the Mechanism of Dioxin Formation from Municipal Solid Waste Gasification in a Reducing Atmosphere. Environ. Sci. Technol. 2022, 56, 14539–14549. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.J.; Yan, F.; Cai, J.J.; Xie, F.; Shen, X.H.; Wei, X.K.; Yang, G.D.; Zhong, R.G.; Huang, J.B.; Li, Z.Z.; et al. Emission levels and phase distributions of PCDD/Fs in a full-scale municipal solid waste incinerator: The impact of wet scrubber system. J. Clean. Prod. 2022, 337, 130468. [Google Scholar] [CrossRef]
- Han, Y.; Liu, W.B.; Li, H.F.; Lei, R.R.; Gao, L.R.; Su, G.J.; Liu, G.R. Gas-Particle Partitioning of Polychlorinated Dibenzo-&ITp&IT-dioxins, Dibenzofurans, and Biphenyls in Flue Gases from Municipal Solid Waste Incinerators. Aerosol Air Qual. Res. 2017, 17, 2847–2857. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, J.; Wang, X.; Zhu, T.Y. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant. Chemosphere 2015, 133, 90–96. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, X.; Wang, H.H.; Yang, T.H.; Li, R.D. Gas phase migration of Cl during thermal conversion of municipal solid waste. Energy Sources Part A-Recovery Util. Environ. Eff. 2020, 42, 153–160. [Google Scholar] [CrossRef]
- Wang, P.J.; Yan, F.; Xie, F.; Cai, J.J.; Shen, X.H.; Wei, X.K.; Huang, J.B.; Li, Z.Z.; Zhong, R.G.; Zhang, Z.T. The co-removal of PCDD/Fs by SCR system in a full-scale municipal solid waste incinerator: Migration-transformation and decomposition pathways. Sci. China-Technol. Sci. 2022, 65, 2429–2441. [Google Scholar] [CrossRef]
- Ying, Y.X.; Wang, X.X.; Song, W.L.; Ma, Y.F.; Yu, H.; Lin, X.Q.; Lu, S.Y.; Li, X.D.; Huang, W.; Zhong, L. Assessment of PCDD/Fs Emission during Industrial-Organic-Solid-Waste Incineration Process in a Fluidized-Bed Incinerator. Processes 2023, 11, 251. [Google Scholar] [CrossRef]
- Zhong, R.G.; Cai, J.J.; Yan, F.; Liu, Q.C.; Zhang, Z.T. Process tracing and partitioning behaviors of PCDD/Fs in the post-combustion zone from a full-scale municipal solid waste incinerator in southern China. Environ. Technol. Innov. 2021, 23, 101789. [Google Scholar] [CrossRef]
- Yan, M.; Zhou, X.Y.; Zhang, S.C.; Liao, W.J.; Zhu, G.J.; Wang, J.Y.; Kanchanatip, E.; Khan, M.S. Municipal solid waste pyrolysis under circulated pyrolytic gas atmosphere. J. Mater. Cycles Waste Manag. 2021, 23, 1141–1151. [Google Scholar] [CrossRef]
- Yaqub, Z.T.; Oboirien, B.O.; Leion, H. Chemical looping combustion (CLC) of municipal solid waste (MSW). J. Mater. Cycles Waste Manag. 2023, 25, 1900–1920. [Google Scholar] [CrossRef]
- Chi, K.H.; Chang, M.B.; Chang-Chien, G.P.; Lin, C. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Sci. Total Environ. 2005, 347, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Q.; Wang, X.X.; Ying, Y.X.; Wu, A.J.; Chen, Z.L.; Wang, L.; Yu, H.; Zhang, H.; Ruan, A.Z.; Li, X.D.; et al. Formation pathways, gas-solid partitioning, and reaction kinetics of PCDD/Fs associated with baghouse filters operated at high temperatures: A case study. Sci. Total Environ. 2023, 857, 159551. [Google Scholar] [CrossRef] [PubMed]
- Krol, D.; Motyl, P.; Poskrobko, S. Chlorine Corrosion in a Low-Power Boiler Fired with Agricultural Biomass. Energies 2022, 15, 382. [Google Scholar] [CrossRef]
- Hruska, J.; Mlnarik, J.; Cizner, J. High-Temperature Corrosion of Nickel-Based Coatings for Biomass Boilers in Chlorine-Containing Atmosphere. Coatings 2022, 12, 116. [Google Scholar] [CrossRef]
- Liu, Y.C.; Fan, W.D.; Guo, H. A calculation model for the overall process of high temperature corrosion mechanism induced by firing coal with high chlorine and sodium content. Energy 2020, 205, 118073. [Google Scholar] [CrossRef]
- Zhang, S.H.; Hu, K.; Liu, X.; Yang, Y. Corrosion Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler. Acta Metall. Sin. 2022, 58, 272–294. [Google Scholar] [CrossRef]
- Karuana, F.; Prismantoko, A.; Jatisukamto, G.; Tambunan, B.; Suhendra, N.; Syahril, M.; Rahayu, S.; Darmawan, A.; Darmadi, D.B.; Aziz, M.; et al. Degradation of the protective layer on stainless steel by chlorine variation under high-temperature conditions. Mater. Today Commun. 2024, 40, 109981. [Google Scholar] [CrossRef]
- Zi, J.; Wang, X.; Shao, P.; Liao, S. Design and Operation Analysis of CFB Boiler Burning High Sodium and Chlorine Coal. J. Eng. Therm. Energy Power 2021, 36, 98–104. [Google Scholar]
- Tillman, D.A.; Duong, D.; Miller, B. Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers—Sources, Forms, Reactions, and Consequences: A Literature Review. Energy Fuels 2009, 23, 3379–3391. [Google Scholar] [CrossRef]
- Guo, H.; Fan, W.D.; Liu, Y.C.; Zhang, X.; Liu, S.L.; Wu, X.F.; Chen, J.; Liu, Z.; Wang, X.; Ma, R. Dynamic simulation on high-temperature corrosion behaviour of tube surface with fouling in utility boiler fired by high-chlorine coal. J. Energy Inst. 2021, 95, 120–131. [Google Scholar] [CrossRef]
- Zhang, Q. Effects of High Chlorine Oil-based Cuttings on the Operation of a Boiler. J. Chin. Soc. Power Eng. 2020, 40, 707–712. [Google Scholar]
- Maj, I.; Kalisz, S.; Wejkowski, R.; Pronobis, M.; Golombek, K. High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel 2022, 324, 124749. [Google Scholar] [CrossRef]
- Ma, W.C.; Wenga, T.; Zhang, N.; Chen, G.Y.; Yan, B.B.; Zhou, Z.H.; Wu, X. Full-scale experimental investigation of deposition and corrosion of pre-protector and 3rd superheater in a waste incineration plant. Sci. Rep. 2017, 7, 17549. [Google Scholar] [CrossRef] [PubMed]
- Varis, T.; Bankiewicz, D.; Yrjas, P.; Oksa, M.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmström, S. High temperature corrosion of thermally sprayed NiCr and FeCr coatings covered with a KCl-K2SO4 salt mixture. Surf. Coat. Technol. 2015, 265, 235–243. [Google Scholar] [CrossRef]
- von Bohnstein, M.; Yildiz, C.; Frigge, L.; Ströhle, J.; Epple, B. Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor. Energies 2020, 13, 4523. [Google Scholar] [CrossRef]
- Kaniowski, W.; Taler, J.; Wang, X.B.; Kalemba-Rec, I.; Gajek, M.; Mlonka-Medrala, A.; Nowak-Wozny, D.; Magdziarz, A. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel 2022, 326, 125122. [Google Scholar] [CrossRef]
- Zeng, Z.T.; Natesan, K.; Cai, Z.H.; Gosztola, D.J. Effects of Chlorine in Ash on the Corrosion Performance of Ni-Based Alloys in a Simulated Oxy-Fuel Environment. Energy Fuels 2018, 32, 10502–10512. [Google Scholar] [CrossRef]
- Wang, L.W.; Hou, D.Y.; Cao, Y.N.; Ok, Y.S.; Tack, F.M.G.; Rinklebe, J.; O’Connor, D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ. Int. 2020, 134, 105281. [Google Scholar] [CrossRef]
- Jin, W.Y.; Yan, Y.L.; Qiu, X.H.; Peng, L.; Li, Z.; Tang, Y.Y. Characterizing full-phase chlorine species emissions from domestic coal combustion in China: Implications for significant impacts on air pollution and ozone-layer depletion. Environ. Pollut. 2025, 372, 126043. [Google Scholar] [CrossRef]
- Peng, X.; Wang, W.H.; Xia, M.; Chen, H.; Ravishankara, A.R.; Li, Q.Y.; Saiz-Lopez, A.; Liu, P.F.; Zhang, F.; Zhang, C.L.; et al. An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. Natl. Sci. Rev. 2021, 8, nwaa304. [Google Scholar] [CrossRef]
- Liu, Y.M.; Fan, Q.; Chen, X.Y.; Zhao, J.; Ling, Z.H.; Hong, Y.Y.; Li, W.B.; Chen, X.L.; Wang, M.J.; Wei, X.L. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmos. Chem. Phys. 2018, 18, 2709–2724. [Google Scholar] [CrossRef]
- Yin, S.J.; Yi, X.; Li, L.; Huang, L.; Ooi, M.C.G.; Wang, Y.J.; Allen, D.T.; Streets, D.G. An Updated Anthropogenic Emission Inventory of Reactive Chlorine Precursors in China. ACS Earth Space Chem. 2022, 6, 1846–1857. [Google Scholar] [CrossRef]
Country/Region | Main Controlling Geological Factors | Dominant Occurrence Forms | Release Mechanism Characteristics |
---|---|---|---|
Germany/Norway | Marine sedimentation, volcanic ash intrusion | Organic-bound state + volcanic glass adsorption | High-temperature volatilization-dominated |
US, Illinois | Transgression–regression cycles, saline lacustrine environment | Inorganic chlorides + organic complexation | Significant water-driven desorption |
Spain, Puertollano | Volcanic ash (tonstein) input | Clay mineral adsorption + microporous retention | Ion exchange-mediated release |
Australia, Surat | Residual basin brine, microbial activity | Free water phase + organic matter-bound | Pressure-driven seepage release |
Poland Hard Coal | Terrigenous clastic input, weathering–leaching | Clay mineral adsorption + pore water occurrence | Significant particle size effect |
UK Coalfield | Marine sedimentation, deep hydrothermal activity | Pore water occurrence + humic acid complexation | Metamorphic degree-controlled release modulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.; Zhou, T.; Zhang, M.; Zeng, Y.; Li, W.; Yang, H. Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects. Energies 2025, 18, 3011. https://doi.org/10.3390/en18123011
Hong K, Zhou T, Zhang M, Zeng Y, Li W, Yang H. Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects. Energies. 2025; 18(12):3011. https://doi.org/10.3390/en18123011
Chicago/Turabian StyleHong, Kang, Tuo Zhou, Man Zhang, Yuyang Zeng, Weicheng Li, and Hairui Yang. 2025. "Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects" Energies 18, no. 12: 3011. https://doi.org/10.3390/en18123011
APA StyleHong, K., Zhou, T., Zhang, M., Zeng, Y., Li, W., & Yang, H. (2025). Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects. Energies, 18(12), 3011. https://doi.org/10.3390/en18123011