Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Effects of Different Hydrogenous Species Additions on the Adiabatic Flame Temperature and Laminar Flame Speed
3.2. Effects of Different Hydrogenous Species Additions on Heat Release Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CO | Carbon monoxide |
CH4 | Methane |
H2 | Hydrogen |
H2O | Water vapor |
Mole fraction of species i | |
Laminar flame speed | |
Mixture equivalence ratio | |
Species addition ratio | |
Adiabatic flame temperature | |
HRR | Heat release rate |
HPR | Heat production rate |
Temperature gradient | |
Flame thickness |
References
- Majstorović, A.; Babić, V.; Todić, M. Carbon monoxide in the process of uncontrolled combustion-occurrence, hazards and first aid. J. Phys. Conf. Ser. 2020, 1426, 012008. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Z.; Dou, Z.; Zhang, C. Premixed CO/air combustion in a closed duct with inhibition. Energy 2021, 230, 120782. [Google Scholar] [CrossRef]
- Chen, G.B.; Li, Y.H.; Cheng, T.S.; Chao, Y.C. Chemical effect of hydrogen peroxide addition on characteristics of methane-air combustion. Energy 2013, 55, 564–570. [Google Scholar] [CrossRef]
- Von Elbe, G.; Lewis, B. Free-radical reactions in glow and explosion of carbon monoxide-oxygen mixtures. Combust. Flame 1986, 63, 135–150. [Google Scholar] [CrossRef]
- Hadman, G.; Thompson, H.W.; Hinshelwood, C.N. The explosive oxidation of carbon monoxide at lower pressures. Proc. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 1932, 138, 297–311. [Google Scholar] [CrossRef]
- Leah, A.; Watson, H. Radiation from explosion flames of carbon monoxide. Combust. Flame 1959, 3, 169–186. [Google Scholar] [CrossRef]
- Wang, W.; Rogg, B. Reduced kinetic mechanisms and their numerical treatment I: Wet CO flames. Combust. Flame 1993, 94, 271–292. [Google Scholar] [CrossRef]
- Rightley, M.; Williams, F. Analytical approximations for structures of wet CO flames with one-step reduced chemistry. Combust. Flame 1995, 101, 287–301. [Google Scholar] [CrossRef]
- Rightley, M.L.; Williams, F.A. Burning velocities of CO flames. Combust. Flame 1997, 110, 285–297. [Google Scholar] [CrossRef]
- Taek Kim, G.; Park, J.; Ho Chung, S.; Sang Yoo, C. Effects of water vapor addition on downstream interaction in CO/O2 counterflow premixed flames. Fuel 2023, 342, 127888. [Google Scholar] [CrossRef]
- Davis, S.G.; Joshi, A.V.; Wang, H.; Egolfopoulos, F. An optimized kinetic model of H2/CO combustion. Proc. Combust. Inst. 2005, 30, 1283–1292. [Google Scholar] [CrossRef]
- Kéromnès, A.; Metcalfe, W.K.; Heufer, K.A.; Donohoe, N.; Das, A.K.; Sung, C.J.; Herzler, J.; Naumann, C.; Griebel, P.; Mathieu, O.; et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 2013, 160, 995–1011. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathieu, O.; Petersen, E.L.; Bourque, G.; Curran, H.J. Assessing the predictions of a NOx kinetic mechanism on recent hydrogen and syngas experimental data. Combust. Flame 2017, 182, 122–141. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Moffat, H.K.; Schoegl, I.; Speth, R.L.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 3.1.0. 2024. Available online: https://zenodo.org/records/14455267 (accessed on 7 May 2025).
- Williams, F. The San Diego Mechanism, Chemical-Kinetic Mechanisms for Combustion Applications; Combustion Research Group: San Diego, CA, USA, 2018; Available online: http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html (accessed on 30 September 2024).
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI-Mech 3.0. 1999. Available online: http://combustion.berkeley.edu/gri-mech/ (accessed on 30 September 2024).
- Dong, C.; Zhou, Q.; Zhao, Q.; Zhang, Y.; Xu, T.; Hui, S. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel 2009, 88, 1858–1863. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Jomaas, G.; Law, C. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc. Combust. Inst. 2007, 31, 439–446. [Google Scholar] [CrossRef]
- Tang, C.; Huang, Z.; Law, C. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon–air mixtures. Proc. Combust. Inst. 2011, 33, 921–928. [Google Scholar] [CrossRef]
- Fauzy, A.; Chen, G.B.; Lin, T.H. Numerical Analysis of Hydrogen Peroxide Addition and Oxygen-Enriched Methane Combustion. ACS Omega 2023, 8, 16094–16105. [Google Scholar] [CrossRef]
- Chen, G.B.; Wu, F.H. Numerical Simulation of Ammonia Combustion at Different Hydrogen Peroxide Concentrations. Int. J. Energy Res. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Glassman, I.; Yetter, R.A. Combustion, 4th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar] [CrossRef]
- Chen, K.; Tan, K.; Wei, Z.; Kahangamage, U. Numerical investigation of laminar flame speed and NO emission of hydrogen-enriched ammonia at elevated pressures or temperatures. Fuel 2025, 386, 134337. [Google Scholar] [CrossRef]
- Lafay, Y.; Renou, B.; Cabot, G.; Boukhalfa, M. Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness. Combust. Flame 2008, 153, 540–561. [Google Scholar] [CrossRef]
- Portarapillo, M.; Sanchirico, R.; Luciani, G.; Di Benedetto, A. Flame propagation of combustible dusts: A Mallard-Le Chatelier inspired model. Combust. Flame 2023, 251, 112737. [Google Scholar] [CrossRef]
Reaction Number | Reaction Equation | A (m3·kmol−3·s−1) | E (J·kmol−1) |
---|---|---|---|
R0 | H + O2 ⇌ O + OH | ||
R8 | H + O2 (+M) ⇌ HO2 (+M) | 0 | |
M = H2O, C2H6, He, CO, CO2, Ar, H2 | |||
R23 | CO + O (+M) ⇌ CO2 (+M) | ||
M = H2O, He, CO, CO2, Ar, H2 | |||
R24 | CO + OH ⇌ CO2 + H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzy, A.; Chen, G.-B.; Lin, T.-H. Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame. Energies 2025, 18, 3003. https://doi.org/10.3390/en18123003
Fauzy A, Chen G-B, Lin T-H. Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame. Energies. 2025; 18(12):3003. https://doi.org/10.3390/en18123003
Chicago/Turabian StyleFauzy, Annas, Guan-Bang Chen, and Ta-Hui Lin. 2025. "Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame" Energies 18, no. 12: 3003. https://doi.org/10.3390/en18123003
APA StyleFauzy, A., Chen, G.-B., & Lin, T.-H. (2025). Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame. Energies, 18(12), 3003. https://doi.org/10.3390/en18123003