Review of the Discrete-Ordinates Method for Particle Transport in Nuclear Energy
Abstract
:1. Introduction
2. Fundamental Theory of the SN Method
2.1. Linear Boltzmann Equation
2.2. Energy Discretization
2.3. Angular Discretization
2.4. Spatial Discretization
2.5. Iterative Methods
3. Applications of the SN Method in Nuclear Energy
4. Advancements in SN Methodology
4.1. Ray Effect Mitigation Schemes
4.2. Enhanced Spatial Discretization Schemes
4.2.1. High-Order Spatial Discretization
4.2.2. Mesh Refinement
4.3. Acceleration Schemes and Techniques
4.3.1. Numerical Acceleration Methods
4.3.2. High-Performance Computing Architectures
- (1)
- The development of asynchronous message passing combined with dynamic task queue management [162] has been implemented to reduce communication latency and improve load balancing.
- (2)
- Advancements in grid allocation optimization have been made through scheduling strategies such as B-LEVEL, BFDS, DFDS, and DFHDS [163]. Notable contributions include the L-B-LEVEL algorithm, which minimizes global information dependency, and the STFC method, which reduces communication delays [164].
- (3)
- The refinement of task dependency graph (TDG) analysis has been achieved, as demonstrated by the PDT framework, which attains 68% parallel efficiency at a 1.5-million-thread scale, and the ARDRA system, which achieves 71% efficiency under similar conditions [142]. A particularly innovative development, the sweep plane data structure (SPDS) [165], integrates KBA with depth-of-graph (DOG) analysis and flux data structure (FLUDS), resolving cyclic dependencies while maintaining 80% efficiency across 100,000 processes in Chi-Tech simulations. Additionally, the unstructured overloading algorithm [166] has significantly improved high-concurrency efficiency through task density optimization.
4.4. Coupling SN with Complementary Methods
5. Challenges and Future Directions
- (1)
- High-fidelity numerical simulation of complex geometries and source terms: The enhancement of geometric fidelity through unstructured grids and adaptive discretization techniques represents a key frontier for accurately representing heterogeneous structures. These advanced meshing approaches enable precise modeling of complex fuel assembly configurations with intricate pin arrangements, multi-scale porous shielding materials containing randomly distributed microstructural features, and curved boundary interfaces between different materials. Simultaneously, the integration of spatially dependent source distributions is being improved through advanced mathematical formulations, such as moment-based expansions for angular-dependent fission sources and hybrid deterministic-stochastic approaches for localized source regions. The combination of these advanced geometric and source term representations is expected to significantly reduce discretization errors while maintaining computational feasibility for practical engineering applications.
- (2)
- Optimization of high-performance numerical computation: Modern computing architectures are being effectively utilized through GPU-accelerated transport sweeps with specialized memory access patterns, distributed memory parallelism via domain decomposition with optimized communication strategies, and heterogeneous computing approaches that leverage CPU–GPU synergies. Solution algorithms are simultaneously being reformulated to enhance scalability, focusing on communication-avoiding variants of traditional sweeping algorithms and asynchronous parallel iteration schemes that reduce synchronization barriers. While hardware optimization progresses, efforts are also directed toward parallel algorithm development to improve overall performance and efficiency. These efforts include sweeping algorithm optimization to restructure computational sequences and minimizing inter-processor communication, alongside asynchronous iteration schemes that allow processors to proceed without waiting at synchronization barriers. To fully leverage exascale computing capabilities, both fault-tolerant algorithms and advanced scheduling strategies are being implemented, dynamic load balancing systems are being developed, and data compression methods are being applied to overcome memory bandwidth constraints. With these computational breakthroughs, real-time solutions of large-scale transport problems at the million-energy cluster level are creating new possibilities for reactor digital twins and industrial-scale applications.
- (3)
- Coupling of multi-physics fields: The SN method serves as the particle transport module, deeply integrated with thermal hydraulics and fuel mechanics modules. This integration facilitates the establishment of a comprehensive multi-physics coupling framework. To further advance this framework, specialized interface treatments should be pursued for the coupling of neutron transport calculations with thermal-hydraulics and fuel mechanics, encompassing the incorporation of temperature-dependent cross-section feedback mechanisms, the development of fluid–structure interaction modeling in advanced cooling systems, and the advancement of material property evolution simulation under radiation damage conditions. Additionally, the formulation of multi-time-scale coupling strategies will be essential for addressing the computational challenges presented by the coexistence of rapid neutronic transients with slower thermal-hydraulic phenomena. The realization of these anticipated advancements in multi-physics integration is expected to provide the foundation for high-fidelity whole-core analyses with comprehensive feedback mechanisms, thereby enabling the enhancement of reactor digital twin technologies and strengthening the design and safety assessment capabilities for next-generation nuclear energy systems.
- (4)
- AI for SN: The application of artificial intelligence to SN methods stands as a prominent frontier, representing a revolutionary transformation in computational particle transport. By learning complex input–output relationships from large datasets, AI techniques are being used to construct highly efficient surrogate models. Surrogate modeling, as a data-driven approach, provides fast approximations of SN solutions, while reduced-order modeling focuses on simplifying the underlying physical models to lower computational complexity. These two approaches are complementary and can be integrated to further enhance computational efficiency. These AI-driven methods are advancing several key areas, including radiation field construction, neutron energy spectrum expansion, neutron and gamma field reconstruction, and acceleration of iterative convergence. In practical reactor analysis, surrogate models have been employed for the rapid prediction of specific reactor parameters such as core eigenvalues, assembly power distributions, and power peaking factors. Deep learning models trained on data from high-fidelity SN simulations can significantly accelerate both steady-state and transient analyses. Furthermore, AI is being leveraged to enhance numerical convergence, for example, through reinforcement learning strategies for optimal selection of iteration parameters and the use of convolutional neural networks to provide improved initial flux estimates. Collectively, these developments are revolutionizing the efficiency and scope of SN-based reactor analysis.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SN | Discrete-Ordinates Method |
LBE | Linear Boltzmann Equation |
FDM | Finite Difference Method |
DD | Diamond Difference |
FEM | Finite Element Method |
DFEM | Discontinuous Finite Element Method |
DGFEM | Discontinuous Galerkin Finite Element Method |
FVM | Finite Volume Method |
DSA | Diffusion Synthetic Acceleration |
TSA | Transport Synthetic Acceleration |
CMFD | Coarse Mesh Finite Difference |
HPC | High-Performance Computing |
KBA | Koch–Baker–Alcouffe algorithm |
AMR | Adaptive Mesh Refinement |
AI | Artificial Intelligence |
References
- Carlson, B. Transport Theory: Discrete Ordinates Quadrature Over The Unit Sphere; University of California: Los Alamos, NM, USA, 1970; LA--4554, 4083770. [Google Scholar]
- Lathrop, K.D.; Carlson, B.G. Discrete Ordinates Angular Quadrature of the Neutron Transport Equation; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1964. [Google Scholar]
- Nuclear Computational Science: A Century in Review. Available online: https://link.springer.com/book/10.1007/978-90-481-3411-3 (accessed on 18 February 2025).
- Reed, W.H.; Hill, T.R. Triangular Mesh Methods for the Neutron Transport Equation; Los Alamos Scientific Lab.: Los Alamos, NM, USA, 1973. [Google Scholar]
- Reed, W.H. Timex: A Time-Dependent Explicit Discrete Ordinates Program for the Solution of Multigroup Transport Equations; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1972. [Google Scholar]
- Hill, T.R. ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Muitigroup Transport Equation; Los Alamos Scientific Lab.: Los Alamos, NM, USA, 1975. [Google Scholar]
- Rhoades, W.A.; Childs, R.L. The TORT Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1987. [Google Scholar]
- Tomlinson, E.T.; Rhoades, W.A.; Engle, J. Flux Extrapolation Models Used in the DOT IV Discrete Ordinates Neutron Transport Code; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1980. [Google Scholar]
- Rhoades, W.A.; Childs, R.L. The DORT Two-Dimensional Discrete Ordinates Transport Code. Nucl. Sci. Eng. 1988, 99, 88–89. [Google Scholar] [CrossRef]
- Azmy, Y.Y.; Gehin, J.C.; Orsi, R. Dort Solutions to the Two-Dimensional C5G7MOXbenchmark Problem. Prog. Nucl. Energy 2004, 45, 215–231. [Google Scholar] [CrossRef]
- Pautz, A.; Zangenbuch, S.; Seubert, A.; Zwermann, W. Results on the DECD/NEA C5G7-MOX Benchmark Obtainedwith the Discrete Ordinates Code Dort. Prog. Nucl. Energy 2004, 45, 153–168. [Google Scholar] [CrossRef]
- Schunert, S.; Azmy, Y. Using the Cartesian Discrete Ordinates Code DORT for Assembly-Level Calculations. Nucl. Sci. Eng. 2013, 173, 233–258. [Google Scholar] [CrossRef]
- Garat, C.; Rieg, C.-Y. Validation of Neutron Propagation Calculations Using the DORT and DOTSYN Codes and the Special Dosimetry Benchmark Experiment at the French St. Laurent Reactor. Nucl. Eng. Des. 1997, 168, 281–291. [Google Scholar] [CrossRef]
- Konno, C.; Maekawa, F.; Wada, M.; Ikeda, Y.; Takeuchi, H. DORT Analyses of Decay Heat Experiment on Tungsten for ITER. Fusion Eng. Des. 2001, 58–59, 961–965. [Google Scholar] [CrossRef]
- Pautz, A.; Birkhofer, A. DORT-TD: A Transient Neutron Transport Code with Fully Implicit Time Integration. Nucl. Sci. Eng. 2003, 145, 299–319. [Google Scholar] [CrossRef]
- Rhoades, W.A.; Childs, R.L. TORT: A Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code. Nucl. Sci. Eng. 1991, 107, 397–398. [Google Scholar] [CrossRef]
- Rhoades, W.A.; Simpson, D.B. The TORT Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code (TORT Version 3); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1997. [Google Scholar]
- Engle, J. A Users Manual for ANISN: A One Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering; Oak Ridge Gaseous Diffusion Plant (K-25): Oak Ridge, TN, USA, 1967. [Google Scholar]
- Seubert, A.; Zwermann, W.; Langenbuch, S. Solution of the C5G7 3-D Extension Benchmark by the SN Code TORT. Prog. Nucl. Energy 2006, 48, 432–438. [Google Scholar] [CrossRef]
- Orsi, R.H.B. Robinson-2 Pressure Vessel Dosimetry Benchmark: Deterministic Three-Dimensional Analysis with the TORT Transport Code. Nucl. Eng. Technol. 2020, 52, 448–455. [Google Scholar] [CrossRef]
- Kosako, K.; Konno, C. FNSUNCL3: First Collision Source Code for TORT. J. Nucl. Sci. Technol. 2000, 37, 475–478. [Google Scholar] [CrossRef]
- Bernal, A.; Abarca, A.; Barrachina, T.; Miró, R. Methodology to Resolve the Transport Equation with the Discrete Ordinates Code TORT into the IPEN/MB-01 Reactor. Int. J. Comput. Math. 2014, 91, 113–123. [Google Scholar] [CrossRef]
- Tsukiyama, T.; Nemoto, Y.; Hayashi, K. Study for Benchmark Calculation Using TORT Code in BWR Reactor Vessel. J. Nucl. Sci. Technol. 2004, 41, 101–104. [Google Scholar] [CrossRef]
- Brown, P.; Chang, B.; Hanebutte, U. Spherical Harmonic Results for the 3D Kobayashi Benchmark Suite. In Proceedings of the International Conference on Mathematics and Computation, Madrid, Spain, 27–30 September 1999. [Google Scholar]
- Compton, J.; Clouse, C. Domain Decomposition and Load Balancing in the Amtran Neutron Transport Code. In Proceedings of the 15th International Domain Decomposition Conference, Berlin, Germany, 21–25 July 2003. [Google Scholar]
- Bando, M.; Yamamoto, T.; Saito, Y.; Takeda, T. Three-Dimensional Transport Calculation Method for Eigenvalue Problems Using Diffusion Synthetic Acceleration. J. Nucl. Sci. Technol. 1985, 22, 841–850. [Google Scholar] [CrossRef]
- Nishimura, T.; Tada, K.; Yokobori, H.; Sugawara, A. Development of Discrete Ordinates SN Code in Three-Dimensional (X, Y, Z) Geometry for Shielding Design. J. Nucl. Sci. Technol. 1980, 17, 539–558. [Google Scholar] [CrossRef]
- Sjoden, G.E.; Haghighat, A. PENTRAN: A Three-Dimensional Scalable Transport Code with Complete Phase-Space Decomposition. Trans. Am. Nucl. Soc. 1996, 74. [Google Scholar]
- Favorite, J.A. A Brief User’s Guide for PARTISN; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2011. [Google Scholar]
- Favorite, J.A. SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, keff, and α Using PARTISN. Nucl. Sci. Eng. 2018, 192, 80–114. [Google Scholar] [CrossRef]
- Dahl, J.A. PARTISN Results for the OECD/NEA 3-D Extension C5G7 MOX Benchmark. Prog. Nucl. Energy 2006, 48, 401–409. [Google Scholar] [CrossRef]
- Favorite, J.A. (U) A Code System for Cross-Section Uncertainty Propagation for PARTISN; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2024. [Google Scholar]
- Evans, T.M.; Stafford, A.S.; Slaybaugh, R.N.; Clarno, K.T. Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in Scale. Nucl. Technol. 2010, 171, 171–200. [Google Scholar] [CrossRef]
- Evans, T.; Davidson, G. Technical Note, Subject: Parallel Energy Decomposition in Denovo (Rev. 1); Oak Ridge Natl. Lab.: Oak Ridge, TN, USA, 2010. [Google Scholar]
- Slaybaugh, R.N.; Evans, T.M.; Davidson, G.G.; Wilson, P.P.H. Multigrid in Energy Preconditioner for Krylov Solvers. J. Comput. Phys. 2013, 242, 405–419. [Google Scholar] [CrossRef]
- Yesilyurt, G.; Clarno, K.T.; Evans, T.M.; Davidson, G.G.; Fox, P.B. A C5 Benchmark Problem with the Discrete Ordinates Radiation Transport Code Denovo. Nucl. Technol. 2011, 176, 274–283. [Google Scholar] [CrossRef]
- Royston, K.E.; Johnson, S.R.; Evans, T.M.; Mosher, S.W.; Naish, J.; Kos, B. Application of the Denovo Discrete Ordinates Radiation Transport Code to Large-Scale Fusion Neutronics. Fusion Sci. Technol. 2018, 74, 303–314. [Google Scholar] [CrossRef]
- Compton, J.C.; Clouse, C.J. Tiling Models for Spatial Decomposition in AMTRAN. In Proceedings of the Join Russian-American Five-Laboratory Conference on Computational Mathematics/Physics, Vienna, Austria, 19–23 June 2005. [Google Scholar]
- Youssef, M.Z.; Feder, R.; Davis, I.M. Neutronics Analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP “Benchmark CAD Model” with the ATTILA Discrete Ordinance Code. Fusion Eng. Des. 2008, 83, 1661–1668. [Google Scholar] [CrossRef]
- Turner, A.; Pampin, R.; Leichtle, D.; Loughlin, M.J. ATLAS: Accelerated Torus-like Angular Source for Fusion Neutronics Applications. Fusion Eng. Des. 2011, 86, 1825–1829. [Google Scholar] [CrossRef]
- Pampin, R.; Loughlin, M.J. Evaluation of a Three-Dimensional Discrete Ordinates Radiation Transport Tool for the Support of ITER Design. Fusion Eng. Des. 2007, 82, 2008–2014. [Google Scholar] [CrossRef]
- Hong, S.G.; Kim, J.W.; Lee, Y.O. Development of MUST (Multi-Group Unstructured Geometry SN Transport) Code. In Proceedings of the Korean Nuclear Society Autumn Meeting, Gyeongju, Republic of Korea, 29–30 October 2009. [Google Scholar]
- Kim, J.W.; Lee, Y.-O. AETIUS Solutions for Kobayashi 3D Benchmarks with the First Collision Source Method on the Volume Source and Unstructured Tetrahedral Mesh. Ann. Nucl. Energy 2018, 113, 446–469. [Google Scholar] [CrossRef]
- Woo, M.; Hong, S.G. STRAUM-MATXST: A Code System for Multi-Group Neutron-Gamma Coupled Transport Calculation with Unstructured Tetrahedral Meshes. Nucl. Eng. Technol. 2022, 54, 4280–4295. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, B.; Zhang, L.; Zheng, J.; Zheng, Y.; Liu, C. ARES: A Parallel Discrete Ordinates Transport Code for Radiation Shielding Applications and Reactor Physics Analysis. Sci. Technol. Nucl. Install. 2017, 2017, 2596727. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Liu, C.; Zheng, J.; Zheng, Y.; Chen, Y. Calculation of the C5G7 3-D Extension Benchmark by ARES Transport Code. Nucl. Eng. Des. 2017, 318, 231–238. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Zhang, P.; Chen, M.; Zhao, J.; Zhang, S.; Chen, Y. Verification of ARES Transport Code System with TAKEDA Benchmarks. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2015, 797, 297–303. [Google Scholar] [CrossRef]
- Xinyu, W.; Bin, Z.; Yixue, C. Goal-Oriented Multi-Collision Source Algorithm for Discrete Ordinates Transport Calculation. Nucl. Eng. Technol. 2022, 54, 2625–2634. [Google Scholar] [CrossRef]
- Cheng, T.; Mo, Z.; Yang, C.; Wen, L.; Deng, L. JSNT-S: A Parallel 3D Discrete Ordinates Radiation Transport Code on Structured Mesh. In Proceedings of the 2018 26th International Conference on Nuclear Engineering, London, UK, 22–26 July 2018. [Google Scholar]
- Wang, Y.; Zheng, Y.; Xu, L.; Cao, L. NECP-Hydra: A High-Performance Parallel SN Code for Core-Analysis and Shielding Calculation. Nucl. Eng. Des. 2020, 366, 110711. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, B.; Liu, C.; Dai, N.; Chen, Y. Verification of Multi-Group Cross-Section Generation Code ARES-MACXS with Fusion Neutron Shielding Benchmark OKTAVIAN-Fe. Ann. Nucl. Energy 2022, 166, 108739. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z. Marvin: A Parallel Three-Dimensional Transport Code Based on the Discrete Ordinates Method for Reactor Shielding Calculations. Prog. Nucl. Energy 2021, 137, 103786. [Google Scholar] [CrossRef]
- Procassini, R.J.; Chand, K.K.; Clouse, C.J.; Ferencz, R.M.; Grandy, J.M.; Henshaw, W.D.; Kramer, K.J.; Parsons, I.D. Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code for Nuclear Reactor Core Analysis; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2007. [Google Scholar]
- Martineau, R.C. The MOOSE Multiphysics Computational Framework for Nuclear Power Applications: A Special Issue of Nuclear Technology. Nucl. Technol. 2021, 207, 3–8. [Google Scholar] [CrossRef]
- Icenhour, C.; Keniley, S.; DeChant, C.; Permann, C.; Lindsay, A.; Martineau, R.; Curreli, D.; Shannon, S. Multi-Physics Object Oriented Simulation Environment (MOOSE); Idaho National Lab. (INL): Idaho Falls, ID, USA, 2018. [Google Scholar]
- Giudicelli, G.; Kong, F.; Stogner, R.; Harbour, L.; Gaston, D.; Terlizzi, S.; Prince, Z. Data Transfers for Full Core Heterogeneous Reactor High-Fidelity Multiphysics Studies. EPJ Web Conf. 2024, 302, 05006. [Google Scholar] [CrossRef]
- Shemon, E.; Jung, Y.S.; Kumar, S.; Miao, Y.; Mo, K.; Oaks, A.; Richards, S. MOOSE Framework Meshing Enhancements to Support Reactor Analysis; Argonne National Lab. (ANL): Argonne, IL, USA, 2021. [Google Scholar]
- Wang, M.-J.; Sjoden, G.E. Experimental and Computational Dose Rate Evaluation Using SN and Monte Carlo Method for a Packaged 241AmBe Neutron Source. Nucl. Sci. Eng. 2021, 195, 1154–1175. [Google Scholar] [CrossRef]
- Davis, A.; Dudziak, D.J.; Yim, M.-S.; McNelis, D.; Wooten, H.O. Photon Buildup Factors in Laminated Dual-Layer Shields. Nucl. Technol. 2011, 173, 270–288. [Google Scholar] [CrossRef]
- Coissieux, T.; Politello, J.; Vaglio-Gaudard, C.; Ammar, K. Development of a 3D APOLLO3® Neutron Deterministic Calculation Scheme for the CABRI Experimental Reactor. Nucl. Sci. Eng. 2023, 197, 1717–1732. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, M.; Li, H.; Mei, Q.; Deng, L. Application of a 3D Discrete Ordinates-Monte Carlo Coupling Method to Deep-Penetration Shielding Calculation. Nucl. Eng. Des. 2018, 326, 87–96. [Google Scholar] [CrossRef]
- Wu, H.; Qin, S.; Li, Y.; Shi, J.; He, Q.; Cao, L. Improving Tally Efficiency and Accuracy of Multi-Group Scattering Matrix Calculations in the Monte Carlo Code NECP-MCX. Nucl. Eng. Technol. 2024, 56, 5305–5312. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Du, X.; Zheng, Y. Development and Verification of the Coupling Code of Discrete Ordinates and Monte Carlo Methods. Ann. Nucl. Energy 2023, 185, 109732. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, S.; Huang, Z. Ray Effects and False Scattering in Improved Discrete Ordinates Method. Energies 2021, 14, 6839. [Google Scholar] [CrossRef]
- Longoni, G. Development of New Quadrature Sets with the “Ordinate Splitting” Technique. In Proceedings of the 2001 ANS International Meeting on Mathematical Methods for Nuclear Applications, Salt Lake City, UT, USA, 9–13 September 2001. [Google Scholar]
- Longoni, G. Advanced Quadrature Sets and Acceleration and Preconditioning Techniques for the Discrete Ordinates Method in Parallel Computing Environments; University of Florida: Gainesville, FL, USA, 2004; ISBN 0-496-91398-0. [Google Scholar]
- Stone, J.C.; Adams, M.L. Progress on Adaptive Discrete-Ordinates Algorithms and Strategies. In Proceedings of the Nuclear Mathematical and Computational Sciences Meeting, Gatlinburg, TN, USA, 6–10 April 2003. [Google Scholar]
- Reed, W.H. Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes. Nucl. Sci. Eng. 1972, 49, 10–19. [Google Scholar] [CrossRef]
- Coppa, G.G.M.; Lapenta, G.; Ravetto, P. Angular Finite Element Techniques in Neutron Transport. Ann. Nucl. Energy 1990, 17, 363–378. [Google Scholar] [CrossRef]
- Jung, J.; Chijiwa, H.; Kobayashi, K.; Nishihara, H. Discrete Ordinate Neutron Transport Equation Equivalent to PL Approximation. Nucl. Sci. Eng. 1972, 49, 1–9. [Google Scholar] [CrossRef]
- Camminady, T.; Frank, M.; Küpper, K.; Kusch, J. Ray Effect Mitigation for the Discrete Ordinates Method through Quadrature Rotation. J. Comput. Phys. 2019, 382, 105–123. [Google Scholar] [CrossRef]
- Frank, M.; Kusch, J.; Camminady, T.; Hauck, C.D. Ray Effect Mitigation for the Discrete Ordinates Method Using Artificial Scattering. Nucl. Sci. Eng. 2020, 194, 971–988. [Google Scholar] [CrossRef]
- Lathrop, K.D. Ray Effects in Discrete Ordinates Equations. Nucl. Sci. Eng. 1968, 32, 357–369. [Google Scholar] [CrossRef]
- Lathrop, K.D. Remedies for Ray Effects. Nucl. Sci. Eng. 1971, 45, 255–268. [Google Scholar] [CrossRef]
- Lathrop, K.D.; Brinkley, F.W.; Rood, P. Theory and Use of the Spherical Harmonics, First Collision Source, and Variable Weight Versions of the Twotran Transport Program; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1972. [Google Scholar]
- Childs, R.; Pace, J. GRTUNCL: An Analytic First Collision Source Code; Oak Ridge Natl. Lab.: Oak Ridge, TN, USA, 1992. [Google Scholar]
- Lillie, R.A. GRTUNCL3D: A Discontinuous Mesh 3-D First Collision Source Code. In Proceedings of the American Nuclear Society Radiation Protection and Shielding Division Topical Conference, Nashville, TN, USA, 19–23 April 1998; pp. 3–6. [Google Scholar]
- Konno, C. TORT Solutions with FNSUNCL3 for Kobayashi’s 3D Benchmarks. Prog. Nucl. Energy 2001, 39, 167–179. [Google Scholar] [CrossRef]
- Filippone, W.L.; Morel, J.E.; Walters, W.F. An Extended First Collision Source Method for Electron Beam Source Problems. Nucl. Sci. Eng. 1992, 112, 1–15. [Google Scholar] [CrossRef]
- Winarno, E.Y. Semi-Analytical Partial n’th Collision Source Correction for Multi-Dimensional S (N) Photon Transport Calculations. Master’s Thesis, The University of Arizona, Tucson, AZ, USA, 1993. [Google Scholar]
- Chen, M.; Zhang, B.; Chen, Y. Verification for Ray Effects Elimination Module of Radiation Shielding Code ARES by Kobayashi Benchmarks. In Proceedings of the 2014 22nd International Conference on Nuclear Engineering, Prague, Czech Republic, 7–11 July 2014. [Google Scholar]
- Zheng, Y.; Zhang, B.; Chen, M.-T.; Zhang, L.; Cao, B.; Chen, Y.-X.; Yin, W.; Liang, T.-J. Application of the First Collision Source Method to CSNS Target Station Shielding Calculation. Chin. Phys. C 2016, 40, 046201. [Google Scholar] [CrossRef]
- Christensen, A.B.; Kunen, A.; Loffeld, J.; Brown, P.; Fratoni, M. A Conservative First-Collision Source Treatment for Ray Effect Mitigation in Discrete-Ordinate Radiation Transport Solutions. J. Comput. Phys. 2024, 509, 113049. [Google Scholar] [CrossRef]
- Zmijarevic, I.; Sciannandrone, D. First Collision Source in the IDT Discrete Ordinates Transport Code. MandC 2017, 2017, cea-02510285. [Google Scholar]
- Stacey, W.M. Nuclear Reactor Physics; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 3-527-41366-9. [Google Scholar]
- Badruzzaman, A. An Efficient Algorithm for Nodal-Transport Solutions in Multidimensional Geometry. Nucl. Sci. Eng. 1985, 89, 281–290. [Google Scholar] [CrossRef]
- Bereznev, V.P. Nodal SN-Method for HEX-Z Geometry. Nucl. Energy Technol. 2016, 2, 20–23. [Google Scholar] [CrossRef]
- Lu, H.; Wu, H. A Nodal SN Transport Method for Three-Dimensional Triangular-z Geometry. Nucl. Eng. Des. 2007, 237, 830–839. [Google Scholar] [CrossRef]
- Khalil, H. A Nodal Diffusion Technique for Synthetic Acceleration of Nodal Sn Calculations. Nucl. Sci. Eng. 1985, 90, 263–280. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, X.; Xu, Z.; Zhou, S.; Liu, Y.; Wan, C.; Xu, L. SARAX: A New Code for Fast Reactor Analysis Part I: Methods. Nucl. Eng. Des. 2018, 340, 421–430. [Google Scholar] [CrossRef]
- Qiao, L.; Zheng, Y.; Wu, H.; Wang, Y.; Du, X. Improved Block-Jacobi Parallel Algorithm for the S Nodal Method with Unstructured Mesh. Prog. Nucl. Energy 2021, 133, 103629. [Google Scholar] [CrossRef]
- Reed, W.H.; Hill, T.R.; Brinkley, F.W.; Lathrop, K.D. TRIPLET: A Two-Dimensional, Multigroup, Triangular Mesh, Planar Geometry, Explicit Transport Code; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1973. [Google Scholar]
- Seed, T.J.; Miller, W.F., Jr.; Brinkley, F.W., Jr. TRIDENT: A Two-Dimensional, Multigroup, Triangular Mesh Discrete Ordinates, Explicit Neutron Transport Code; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1977; LA-6735-M, 7093785. [Google Scholar]
- Mordant, M. Some Efficient Lagrangian Mesh Finite Elements Encoded in Zephyr for Two-Dimensional Transport Calculations. Ann. Nucl. Energy 1981, 8, 657–675. [Google Scholar] [CrossRef]
- Wareing, T.A.; McGhee, J.M.; Morel, J.E.; Pautz, S.D. Discontinuous Finite Element S {sub N} Methods on 3-D Unstructured Grids; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1999. [Google Scholar]
- Adams, M.L. Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems. Nucl. Sci. Eng. 2001, 137, 298–333. [Google Scholar] [CrossRef]
- Morel, J.E.; Warsa, J.S. An Sn Spatial Discretization Scheme for Tetrahedral Meshes. Nucl. Sci. Eng. 2005, 151, 157–166. [Google Scholar] [CrossRef]
- Warsa, J.S. A Continuous Finite Element-Based, Discontinuous Finite Element Method for SN Transport. Nucl. Sci. Eng. 2008, 160, 385–400. [Google Scholar] [CrossRef]
- Wang, Y. Adaptive Mesh Refinement Solution Techniques for the Multigroup SN Transport Equation Using a Higher-Order Discontinuous Finite Element Method. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 16 January 2010. [Google Scholar]
- Maginot, P.G.; Ragusa, J.C.; Morel, J.E. Lumping Techniques for DFEM SN Transport in Slab Geometry. Nucl. Sci. Eng. 2015, 179, 148–163. [Google Scholar] [CrossRef]
- Maginot, P.G.; Ragusa, J.C.; Morel, J.E. Discontinuous Finite Element Discretizations for the S N Neutron Transport Equation in Problems with Spatially Varying Cross Sections. Ann. Nucl. Energy 2014, 73, 506–526. [Google Scholar] [CrossRef]
- O’Malley, B.; Kópházi, J.; Eaton, M.D.; Badalassi, V.; Warner, P.; Copestake, A. Discontinuous Galerkin Spatial Discretisation of the Neutron Transport Equation with Pyramid Finite Elements and a Discrete Ordinate (SN) Angular Approximation. Ann. Nucl. Energy 2018, 113, 526–535. [Google Scholar] [CrossRef]
- Calloo, A.; Le Tellier, R.; Labeurthre, D. High-Order Finite Elements for the Neutron Transport Equation on Honeycomb Meshes. EPJ Web Conf. 2021, 247, 03002. [Google Scholar] [CrossRef]
- Lee, D.W.; Joo, H.G. Coarse Mesh Finite Difference Acceleration of Discrete Ordinate Neutron Transport Calculation Employing Discontinuous Finite Element Method. Nucl. Eng. Technol. 2014, 46, 783–796. [Google Scholar] [CrossRef]
- Lee, C.; Jung, Y.S.; Park, H.; Shemon, E.R.; Ortensi, J.; Wang, Y.; Laboure, V.M.; Prince, Z.M. Griffin Software Development Plan; Idaho National Lab. (INL): Idaho Falls, ID, USA; Argonne National Lab. (ANL): Argonne, IL, USA, 2021. [Google Scholar]
- Zhang, G.; Yang, W.S. Quadratic Axial Expansion Function with Sub-Plane Acceleration Scheme for the High-Fidelity Transport Code PROTEUS-MOC. Ann. Nucl. Energy 2020, 148, 107713. [Google Scholar] [CrossRef]
- Olivier, S.; Haut, T.S. High-Order Mixed Finite Element Variable Eddington Factor Methods. J. Comput. Theor. Transp. 2023, 52, 79–142. [Google Scholar] [CrossRef]
- Houston, P.; Hubbard, M.E.; Radley, T.J.; Sutton, O.J.; Widdowson, R.S.J. Efficient High-Order Space-Angle-Energy Polytopic Discontinuous Galerkin Finite Element Methods for Linear Boltzmann Transport. J. Sci. Comput. 2024, 100, 52. [Google Scholar] [CrossRef]
- Kita, E.; Kamiya, N. Error Estimation and Adaptive Mesh Refinement in Boundary Element Method, an Overview. Eng. Anal. Bound. Elem. 2001, 25, 479–495. [Google Scholar] [CrossRef]
- Berger, M.J.; Oliger, J. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. J. Comput. Phys. 1984, 53, 484–512. [Google Scholar] [CrossRef]
- Liu, C.; Wei, J.; Li, J.; Sheng, Z.; Zhang, B.; Tan, S. Multilevel Mesh Adaptivity for Discrete Ordinates Transport Calculation with Spatial-Moment-Ratio Indicators. Ann. Nucl. Energy 2022, 176, 109288. [Google Scholar] [CrossRef]
- Poursalehi, N.; Zolfaghari, A.; Minuchehr, A. An Adaptive Mesh Refinement Approach for Average Current Nodal Expansion Method in 2-D Rectangular Geometry. Ann. Nucl. Energy 2013, 55, 61–70. [Google Scholar] [CrossRef]
- Lathouwers, D. Goal-Oriented Spatial Adaptivity for the SN Equations on Unstructured Triangular Meshes. Ann. Nucl. Energy 2011, 38, 1373–1381. [Google Scholar] [CrossRef]
- Lathouwers, D. Spatially Adaptive Eigenvalue Estimation for the SN Equations on Unstructured Triangular Meshes. Ann. Nucl. Energy 2011, 38, 1867–1876. [Google Scholar] [CrossRef]
- Chevalier, C.; Pellegrini, F. PT-Scotch: A Tool for Efficient Parallel Graph Ordering. Parallel Comput. 2008, 34, 318–331. [Google Scholar] [CrossRef]
- Gunney, B.T.N.; Anderson, R.W. Advances in Patch-Based Adaptive Mesh Refinement Scalability. J. Parallel Distrib. Comput. 2016, 89, 65–84. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Xie, M. Multiblock Adaptive Mesh Refinement for the SN Transport Equation Based on Lattice Boltzmann Method. Nucl. Sci. Eng. 2019, 193, 1219–1237. [Google Scholar] [CrossRef]
- Aussourd, C. Styx: A Multidimensional AMR SN Scheme. Nucl. Sci. Eng. 2003, 143, 281–290. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, B.; Wei, J.; Tan, S. Verification of Multilevel Octree Grid Algorithm of S Transport Calculation with the Balakovo-3 VVER-1000 Neutron Dosimetry Benchmark. Nucl. Eng. Technol. 2023, 55, 756–768. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Yang, S.; Chen, Y. Dynamic Mode Decomposition Coupled with Multilevel Octree Grid Algorithm for Large-Scale Discrete Ordinates Neutron Transport Calculations. Prog. Nucl. Energy 2024, 172, 105210. [Google Scholar] [CrossRef]
- Bader, M. Space-Filling Curves: An Introduction with Applications in Scientific Computing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 9, ISBN 3-642-31045-1. [Google Scholar]
- Haverkort, H.; van Walderveen, F. Locality and Bounding-Box Quality of Two-Dimensional Space-Filling Curves. Comput. Geom. 2010, 43, 131–147. [Google Scholar] [CrossRef]
- Weinzierl, T. The Peano Software—Parallel, Automaton-Based, Dynamically Adaptive Grid Traversals. ACM Trans. Math. Softw. 2019, 45, 1–41. [Google Scholar] [CrossRef]
- Garcia-Fernandez, C.; Velarde, P.; Cotelo, M. Comparison of Acceleration Methods in a Radiation Transport Code With Adaptive Mesh Refinement. IEEE Trans. Plasma Sci. 2010, 38, 2359–2366. [Google Scholar] [CrossRef]
- Kopp, H.J. Synthetic Method Solution of the Transport Equation. Nucl. Sci. Eng. 1963, 17, 65–74. [Google Scholar] [CrossRef]
- Gelbard, E.M.; Hageman, L.A. The Synthetic Method as Applied to the Sn Equations. Nucl. Sci. Eng. 1969, 37, 288–298. [Google Scholar] [CrossRef]
- Larsen, E.W. Diffusion-Synthetic Acceleration Methods for Discrete-Ordinates Problems. Transp. Theory Stat. Phys. 1984, 13, 107–126. [Google Scholar] [CrossRef]
- Adams, M.L.; Martin, W.R. Diffusion Synthetic Acceleration of Discontinuous Finite Element Transport Iterations. Nucl. Sci. Eng. 1992, 111, 145–167. [Google Scholar] [CrossRef]
- Brown, P.N. A Linear Algebraic Development of Diffusion Synthetic Acceleration for Three-Dimensional Transport Equations. SIAM J. Numer. Anal. 2006, 32, 179–214. [Google Scholar] [CrossRef]
- Warsa, J.S.; Wareing, T.A.; Morel, J.E. Krylov Iterative Methods and the Degraded Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN Calculations in Problems with Material Discontinuities. Nucl. Sci. Eng. 2004, 147, 218–248. [Google Scholar] [CrossRef]
- Ward, R.C.; Baker, R.S.; Morel, J.E. A Diffusion Synthetic Acceleration Method for Block Adaptive Mesh Refinement. Nucl. Sci. Eng. 2006, 152, 164–179. [Google Scholar] [CrossRef]
- Févotte, F. Piecewise Diffusion Synthetic Acceleration Scheme for Neutron Transport Simulations in Optically Thick Systems. Ann. Nucl. Energy 2018, 118, 71–80. [Google Scholar] [CrossRef]
- Muhammad, H.; Hong, S.G. Diffusion Synthetic Acceleration with the Fine Mesh Rebalance of the Subcell Balance Method with Tetrahedral Meshes for SN Transport Calculations. Nucl. Eng. Technol. 2020, 52, 485–498. [Google Scholar] [CrossRef]
- Southworth, B.S.; Holec, M.; Haut, T.S. Diffusion Synthetic Acceleration for Heterogeneous Domains, Compatible with Voids. Nucl. Sci. Eng. 2021, 195, 119–136. [Google Scholar] [CrossRef]
- Haut, T.S.; Southworth, B.S.; Maginot, P.G.; Tomov, V.Z. Diffusion Synthetic Acceleration Preconditioning for Discontinuous Galerkin Discretizations of $S_N$Transport on High-Order Curved Meshes. SIAM J. Sci. Comput. 2020, 42, B1271–B1301. [Google Scholar] [CrossRef]
- Ramone, G.L.; Adams, M.L.; Nowak, P.F. A Transport Synthetic Acceleration Method for Transport Iterations. Nucl. Sci. Eng. 1997, 125, 257–283. [Google Scholar] [CrossRef]
- Zika, M.R.; Adams, M.L. Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems. Nucl. Sci. Eng. 2000, 134, 135–158. [Google Scholar] [CrossRef]
- Zika, M.R.; Adams, M.L. Transport Synthetic Acceleration with Opposing Reflecting Boundary Conditions. Nucl. Sci. Eng. 2000, 134, 159–170. [Google Scholar] [CrossRef]
- Chang, J.; Adams, M. Analysis of Transport Synthetic Acceleration for Highly Heterogeneous Problems. In Proceedings of the Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, Gatlinburg, TN, USA, 6–11 April 2003; Volume 1, p. 16. [Google Scholar]
- Rosa, M.; Warsa, J.S.; Chang, J.H. Fourier Analysis of Inexact Parallel Block-Jacobi Splitting with Transport Synthetic Acceleration. Nucl. Sci. Eng. 2010, 164, 248–263. [Google Scholar] [CrossRef]
- Smith, K.S. Nodal Method Storage Reduction by Nonlinear Iteration. Trans. Am. Nucl. Soc. 1983, 44, 265–266. [Google Scholar]
- Smith, K.S.; Rhodes, J.D., III. Full-Core, 2-D, LWR Core Calculations with CASMO-4E-13A-04. In Proceedings of the International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing, Seoul, Republic of Korea, 7–10 October 2002. [Google Scholar]
- Jarrett, M.; Kochunas, B.; Zhu, A.; Downar, T. Analysis of Stabilization Techniques for CMFD Acceleration of Neutron Transport Problems. Nucl. Sci. Eng. 2016, 184, 208–227. [Google Scholar] [CrossRef]
- Lee, D.; Downar, T.J.; Kim, Y. Convergence Analysis of the Nonlinear Coarse-Mesh Finite Difference Method for One-Dimensional Fixed-Source Neutron Diffusion Problem. Nucl. Sci. Eng. 2004, 147, 127–147. [Google Scholar] [CrossRef]
- Lee, D. Convergence Analysis of the Coarse Mesh Finite Difference Method. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2003. [Google Scholar]
- Cho, N.-Z.; Lee, G.S.; Park, C.J. Partial Current-Based CMFD Acceleration of the 2D/1D Fusion Method for 3D Whole-Core Transport Calculations. Trans. Am. Nucl. Soc. 2003, 88, 594. [Google Scholar]
- Zhu, A.; Jarrett, M.; Xu, Y.; Kochunas, B.; Larsen, E.; Downar, T. An Optimally Diffusive Coarse Mesh Finite Difference Method to Accelerate Neutron Transport Calculations. Ann. Nucl. Energy 2016, 95, 116–124. [Google Scholar] [CrossRef]
- Zhong, Z.; Downar, T.J.; Xu, Y.; DeHart, M.D.; Clarno, K.T. Implementation of Two-Level Coarse-Mesh Finite Difference Acceleration in an Arbitrary Geometry, Two-Dimensional Discrete Ordinates Transport Method. Nucl. Sci. Eng. 2008, 158, 289–298. [Google Scholar] [CrossRef]
- Yuk, S.; Cho, N.Z. Improved Two-Level p-CMFD Acceleration in Neutron Transport Calculation. In Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Republic of Korea, 16–20 April 2017. [Google Scholar]
- Hackemack, M.W.; Becker, T.L.; Douglass, S.J. Arbitrary-Level Coarse Mesh Finite Difference Acceleration with Hierarchical Coarsening in Space and Energy. Ann. Nucl. Energy 2020, 147, 107687. [Google Scholar] [CrossRef]
- Yoo, H.J.; Imron, M.; Cho, N.Z. Whole-Core Transport Solution via Deterministic SN Transport/p-CMFD Overlapping Local/Global Calculation in Hexagonal Geometry Problem. Ann. Nucl. Energy 2015, 75, 468–475. [Google Scholar] [CrossRef]
- Jung, Y.S.; Yang, W.S. A Consistent CMFD Formulation for the Acceleration of Neutron Transport Calculations Based on the Finite Element Method. Nucl. Sci. Eng. 2017, 185, 307–324. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, S. A Linear Prolongation Approach to Stabilizing CMFD. Nucl. Sci. Eng. 2018, 190, 45–55. [Google Scholar] [CrossRef]
- Chan, Y.; Xiao, S. Convergence Study of CMFD and lpCMFD Acceleration Schemes for k-Eigenvalue Neutron Transport Problems in 2-D Cartesian Geometry with Fourier Analysis. Ann. Nucl. Energy 2019, 133, 327–337. [Google Scholar] [CrossRef]
- Shen, Q.; Xu, Y.; Downar, T. Stability Analysis of the CMFD Scheme with Linear Prolongation. Ann. Nucl. Energy 2019, 129, 298–307. [Google Scholar] [CrossRef]
- Chan, Y.; Xiao, S. Numerical Stability Analysis of Lp-CMFD Acceleration for the Discrete Ordinates Neutron Transport Calculation Discretized with Discontinuous Galerkin Finite Element Method. Ann. Nucl. Energy 2021, 153, 108036. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, H.; Cao, L.; Zheng, Y. Unstructured Coarse Mesh Finite Difference Method to Accelerate k-Eigenvalue and Fixed Source Neutron Transport Calculations. Ann. Nucl. Energy 2018, 120, 367–377. [Google Scholar] [CrossRef]
- Chan, Y.; Xiao, S. Convergence Study of Variants of CMFD Acceleration Schemes for Fixed Source Neutron Transport Problems in 2D Cartesian Geometry with Fourier Analysis. Ann. Nucl. Energy 2019, 134, 273–283. [Google Scholar] [CrossRef]
- Baker, R.S. An SN Algorithm for Modern Architectures. Nucl. Sci. Eng. 2017, 185, 107–116. [Google Scholar] [CrossRef]
- Baker, R.S.; Koch, K.R. An Sn Algorithm for the Massively Parallel CM-200 Computer. Nucl. Sci. Eng. 1998, 128, 312–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X. Parallel Jacobian-Free Newton Krylov Discrete Ordinates Method for Pin-by-Pin Neutron Transport Models. Front. Energy Res. 2023, 10, 1101050. [Google Scholar] [CrossRef]
- Plimpton, S.; Hendrickson, B.; Burns, S.; McLendon, W. Parallel Algorithms for Radiation Transport on Unstructured Grids. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, 4–10 November 2000. [Google Scholar]
- Pautz, S.D. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes. Nucl. Sci. Eng. 2002, 140, 111–136. [Google Scholar] [CrossRef]
- Liu, J.; Lihua, C.; Qing Lin, W.; Chunye, G.; Jie, J.; Xinbiao, G.; Shengguo, L.; Hu, Q.; Masterson, T. Parallel Sn Sweep Scheduling Algorithm on Unstructured Grids for Multigroup Time-Dependent Particle Transport Equations. Nucl. Sci. Eng. 2016, 184, 527–536. [Google Scholar] [CrossRef]
- Vermaak, J.I.C.; Ragusa, J.C.; Adams, M.L.; Morel, J.E. Massively Parallel Transport Sweeps on Meshes with Cyclic Dependencies. J. Comput. Phys. 2021, 425, 109892. [Google Scholar] [CrossRef]
- Pautz, S.D.; Bailey, T.S. Parallel Deterministic Transport Sweeps of Structured and Unstructured Meshes with Overloaded Mesh Decompositions. Nucl. Sci. Eng. 2017, 185, 70–77. [Google Scholar] [CrossRef]
- Deakin, T.; McIntosh-Smith, S.; Lovegrove, J.; Smedley-Stevenson, R.; Hagues, A. Reviewing the Computational Performance of Structured and Unstructured Grid Deterministic SN Transport Sweeps on Many-Core Architectures. J. Comput. Theor. Transp. 2020, 49, 121–143. [Google Scholar] [CrossRef]
- Searles, R.; Chandrasekaran, S.; Joubert, W.; Hernandez, O. Abstractions and Directives for Adapting Wavefront Algorithms to Future Architectures. In Proceedings of the Platform for Advanced Scientific Computing Conference, Basel, Switzerland, 2–4 July 2018; pp. 1–10. [Google Scholar]
- Searles, R.; Chandrasekaran, S.; Joubert, W.; Hernandez, O. MPI + OpenACC: Accelerating Radiation Transport Mini-Application, Minisweep, on Heterogeneous Systems. Comput. Phys. Commun. 2019, 236, 176–187. [Google Scholar] [CrossRef]
- Bailey, T.S.; Falgout, R.D. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2009. [Google Scholar]
- Xu, X. Implicit Discrete Ordinates Discontinuous Galerkin Method for Radiation Problems on Shared-Memory Multicore CPU/Many-Core GPU Computation Architecture. Numer. Heat Transf. Part B Fundam. 2021, 79, 165–188. [Google Scholar] [CrossRef]
- Zong, Z.-W.; Cheng, M.-S.; Yu, Y.-C.; Dai, Z.-M. A Multithreaded Parallel Upwind Sweep Algorithm for the SN Transport Equations Discretized with Discontinuous Finite Elements. Nucl. Sci. Tech. 2023, 34, 200. [Google Scholar] [CrossRef]
- Deakin, T.; McIntosh-Smith, S.; Martineau, M.; Gaudin, W. An Improved Parallelism Scheme for Deterministic Discrete Ordinates Transport. Int. J. High Perform. Comput. Appl. 2018, 32, 555–569. [Google Scholar] [CrossRef]
- Emmett, M.B.; Burgart, C.E.; Hoffman, T.J. DOMINO, a General Purpose Code for Coupling Discrete Ordinates and Monte Carlo Radiation Transport Calculations; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1973. [Google Scholar]
- Emmett, M.B. DOMINO-II, a General Purpose Code for Coupling DOT-IV Discrete Ordinates and Monte Carlo Radiation Transport Calculations; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1981. [Google Scholar]
- Eggleston, J.E.; Abdou, M.A.; Youssef, M.Z. The Use of MNCP for Neutronics Calculations within Large Buildings of Fusion Facilities. Fusion Eng. Des. 1998, 42, 281–288. [Google Scholar] [CrossRef]
- Kurosawa, M. TORT/MCNP Coupling Method for the Calculation of Neutron Flux around a Core of BWR. Radiat. Prot. Dosim. 2005, 116, 513–517. [Google Scholar] [CrossRef]
- Smith, L.E.; Gesh, C.J.; Pagh, R.T.; McConn, R.J.; Ellis, J.E.; Kaye, W.R.; Meriwether, G.H.; Miller, E.; Shaver, M.W.; Starner, J.R.; et al. Deterministic Transport Methods for the Simulation of Gamma-Ray Spectroscopy Scenarios. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–1 November 2006; Volume 1, pp. 588–592. [Google Scholar]
- Kulesza, J. A New Method for Coupling 2D and 3D Deterministic and Stochastic Radiation Transport Calculations. Master’s Thesis, The University of Tennessee, Knoxville, TN, USA, 2011. [Google Scholar]
- Han, J.R. Development of Three-Dimensional Monte Carlo-Discrete Ordinates Bidirectional Coupled Shielding Calculation Method. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2012. [Google Scholar]
- Cho, N. Fusion of Method of Characteristics and Nodal Method for 3-D Whole-Core Transport Calculation. Trans. Am. Nucl. Soc. 2002, 86, 322. [Google Scholar]
- Cho, J.Y.; Joo, H.G. Solution of the C5G7MOX Benchmark Three-Dimensional Extension Problems by the DeCART Direct Whole Core Calculation Code. Prog. Nucl. Energy 2006, 48, 456–466. [Google Scholar] [CrossRef]
- Jung, Y.S.; Shim, C.B.; Lim, C.H.; Joo, H.G. Practical Numerical Reactor Employing Direct Whole Core Neutron Transport and Subchannel Thermal/Hydraulic Solvers. Ann. Nucl. Energy 2013, 62, 357–374. [Google Scholar] [CrossRef]
- Kochunas, B.; Collins, B.; Jabaay, D.; Downar, T.J.; Martin, W.R. Overview of Development and Design of MPACT: Michigan Parallel Characteristics Transport Code; American Nuclear Society—ANS: La Grange Park, IL, USA, 2013. [Google Scholar]
- Collins, B.; Shane, S.; Godfrey, A.; Kochunas, B.; Downar, T. Assessment of The 2D/1D Implementation in MPACT. In Proceedings of the International Conference on Physics of Reactors (PHYSOR2014), Kyoto, Japan, 28 September–3 October 2014. [Google Scholar]
- Stimpson, S.G.; Collins, B.S.; Downar, T.J. Axial Transport Solvers for the 2D/1D Scheme in MPACT. In Proceedings of the Physor, Kyoto, Japan, 28 September–3 October 2014. [Google Scholar]
- Collins, B.; Stimpson, S.; Kelley, B.W.; Young, M.T.H.; Kochunas, B.; Graham, A.; Larsen, E.W.; Downar, T.; Godfrey, A. Stability and Accuracy of 3D Neutron Transport Simulations Using the 2D/1D Method in MPACT. J. Comput. Phys. 2016, 326, 612–628. [Google Scholar] [CrossRef]
- Stimpson, S.; Collins, B.; Downar, T. A 2-D/1-D Transverse Leakage Approximation Based on Azimuthal, Fourier Moments. Nucl. Sci. Eng. 2017, 185, 243–262. [Google Scholar] [CrossRef]
- Kong, B.; Zhu, K.; Zhang, H.; Hao, C.; Guo, J.; Li, F. Convergence Study of Traditional 2D/1D Coupling Method for k-Eigenvalue Neutron Transport Problems with Fourier Analysis. Nucl. Eng. Technol. 2023, 55, 1350–1364. [Google Scholar] [CrossRef]
- Kong, B.; Zhu, K.; Zhang, H.; Hao, C.; Guo, J.; Li, F. Convergence Study of DGFEM SN Based 2D/1D Coupling Method for Solving Neutron Transport k-Eigenvalue Problems with Fourier Analysis. Ann. Nucl. Energy 2022, 177, 109327. [Google Scholar] [CrossRef]
- Young, M.T.H.; Collins, B.; Martin, W. 2-D/3-D Coupling between the Method of Characteristics and Discrete Ordinates. Trans. Am. Nucl. Soc. 2013, 109, 699–702. [Google Scholar]
- Liu, Z.; Zhang, S.; Zhou, X.; Cao, L. A New Coupling Method Based on MOC and the SN Nodal Method for the Neutron Transport Calculations. Ann. Nucl. Energy 2022, 174, 109173. [Google Scholar] [CrossRef]
Symbol | Description | Unit |
---|---|---|
neutron speed | ||
macroscopic total cross-section | ||
macroscopic scattering cross-section | ||
macroscopic fission cross-section | ||
fission neutron energy spectrum (probability density at with energy within about ) | - | |
delayed neutron source | - | |
delayed neutron groups (representing all delayed neutron precursors) | - | |
concentration of the k-th group delayed neutron precursor | ||
decay constant | ||
delayed neutron yield of the k-th group | - | |
total delayed neutron yield | - |
Matrix Type | Method | Applicable Problem Types | Key Characteristics |
---|---|---|---|
Symmetric | CG | Symmetric positive definite systems (e.g., diffusion equations, Poisson problems) | Optimal convergence |
MINRES | Symmetric indefinite systems (including problems with negative eigenvalues) | Guaranteed residual monotonic decrease | |
SYMMLQ | Symmetric indefinite systems (when minimal error solution is preferred over minimal residual) | Alternative to MINRES for specific cases | |
SQMR | Symmetric indefinite systems (when avoiding transpose operations) | Symmetric version of BiCG | |
Nonsymmetric | CGS | Nonsymmetric systems (for fast convergence with possible oscillations) | Squared residual convergence |
BiCGSTAB | Nonsymmetric systems (when stable convergence is needed) | Stabilized version of CGS | |
TFQMR | Nonsymmetric systems (when smooth convergence is preferred) | Alternative stabilized CGS variant | |
GMRES | General nonsymmetric systems (e.g., transport equations, advection-diffusion problems) | Optimal residual reduction, high memory | |
FOM | Nonsymmetric systems (when exact subspace solution is required) | Similar to GMRES without minimal residual guarantee | |
BiCG | Nonsymmetric systems (when matrix transpose is available | ||
FGMRES | Nonsymmetric systems (with variable preconditioning) | Flexible GMRES variant | |
Normal Equations | CGLS | formulation) | Implicit normal equations solver |
LSQR | Ill-conditioned least squares problems (when numerical stability is critical) | More stable than CGLS |
Method | Stability Characteristics | Optimal Optical Thickness (τ) Range | Performance Characteristics |
---|---|---|---|
Conventional CMFD | Conditionally stable (τ < 1) | <1 | Non-convergence for τ > 2 under high scattering ratios |
odCMFD | Unconditionally stable | ||
lpCMFD | Unconditionally stable | >1 | Superior convergence performance among variants at τ > 1 |
pCMFD | Unconditionally stable | Less efficient at intermediate thicknesses | Comparative underperformance for intermediate τ range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; He, X.; Cheng, M.; Dai, Z. Review of the Discrete-Ordinates Method for Particle Transport in Nuclear Energy. Energies 2025, 18, 2880. https://doi.org/10.3390/en18112880
Yu Y, He X, Cheng M, Dai Z. Review of the Discrete-Ordinates Method for Particle Transport in Nuclear Energy. Energies. 2025; 18(11):2880. https://doi.org/10.3390/en18112880
Chicago/Turabian StyleYu, Yingchi, Xin He, Maosong Cheng, and Zhimin Dai. 2025. "Review of the Discrete-Ordinates Method for Particle Transport in Nuclear Energy" Energies 18, no. 11: 2880. https://doi.org/10.3390/en18112880
APA StyleYu, Y., He, X., Cheng, M., & Dai, Z. (2025). Review of the Discrete-Ordinates Method for Particle Transport in Nuclear Energy. Energies, 18(11), 2880. https://doi.org/10.3390/en18112880