Numerical Simulation and Optimized Field-Driven Design of Triple Periodic Minimal Surface Structure Liquid-Cooling Radiator
Abstract
:1. Introduction
2. Materials and Methods
2.1. TPMS Structure Heat Sink Model
2.2. Numerical Model
2.3. Boundary Conditions
2.4. Model Convergence Test
3. Results
3.1. Analysis of the Thermal Performance of Channels with Different Porosities
3.2. Field-Driven Design for Optimizing Flow Path
3.3. Thermal Performance Analysis of the Optimized Channels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
the magnitude factor | |
the kth lattice vector in reciprocal space | |
velocity of the fluid | |
the pressure | |
the volume force. | |
h | heat transfer coefficient (W/(m2·K)) |
k | thermal conductivity (W/(m·K)) |
K | turbulent kinetic energy |
L | characteristic length (mm) |
Nu | Nusselt number |
P | Pressure (Pa) |
ΔP | Pressure drop |
r | the location vector |
Re | Reynolds number |
t | seconds |
T | Temperature (K) |
Velocity (m/s) | |
the wave length of periods | |
the phase shift | |
Gradient | |
Sub and superscripts | |
in | inlet of porous matrix |
m | index of mesh independent test |
max | maximum value |
out | outlet of porous matrix |
Greek symbols | |
density (kg/m3) | |
Thermal conductivity (W/(m·K)) | |
dynamic viscosity (mPa·s) | |
turbulent dissipation rate | |
Abbreviations | |
CFD | Computational Fluid Dynamics |
TPMS | Triple Periodic Minimal Surface |
References
- Murshed, S.M.S.; de Castro, C.A.N. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sust. Energ. Rev. 2017, 78, 821–833. [Google Scholar] [CrossRef]
- Pan, M.Q.; Hu, M.L.; Wang, H.Q. Study of the performance of an integrated liquid cooling heat sink for high-power IGBTs. Appl. Therm. Eng. 2021, 190, 116827. [Google Scholar] [CrossRef]
- Ranganayakulu, C.; Seetharamu, K. The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers. Int. Commun. Heat Mass Transf. 1999, 26, 669–678. [Google Scholar] [CrossRef]
- Chiu, H.C.; Hsieh, R.H.; Wang, K.; Jang, J.H.; Yu, C.R. The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int. Commun. Heat. Mass. Transf. 2017, 86, 174–180. [Google Scholar] [CrossRef]
- Feng, J.W.; Fu, J.Z.; Yao, X.H.; He, Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int. J. Extrem. Manuf. 2022, 4, 022001. [Google Scholar] [CrossRef]
- Baobaid, N.; Ali, M.I.; Khan, K.A.; Al-Rub, R.K.A. Fluid flow and heat transfer of porous TPMS architected heat sinks in free convection environment. Case Stud. Therm. Eng. 2022, 33, 101944. [Google Scholar] [CrossRef]
- Huang, M.; Mi, X.; Xiliang, L. Multiscale isogeometric topology optimization of cellular structures for heat dissipation. J. Mech. Eng. 2024, 60, 54–64. [Google Scholar]
- Li, W.H.; Yu, G.P.; Yu, Z.B. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO cycles. Appl. Therm. Eng. 2020, 179, 115686. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Xu, R.N.; Jiang, P.X. Morphology, flow and heat transfer in triply periodic minimal surface based porous structures. Int. J. Heat. Mass. Tran. 2021, 170, 120902. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. Flow and thermal transport characteristics of Triply-Periodic Minimal Surface (TPMS)-based gyroid and Schwarz-P cellular materials. Numer. Heat Transf. Part A Appl. 2021, 79, 553–569. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Rovira, M.; Duwig, C. Design analysis of the “Schwartz D” based heat exchanger: A numerical study. Int. J. Heat Mass. Tran. 2021, 177, 121415. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Li, X.Y.; Xu, R.N.; Jiang, P.X. Investigations on porous media customized by triply periodic minimal surface: Heat transfer correlations and strength performance. Int. Commun. Heat Mass Transf. 2021, 129, 105713. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Ali, M.; Khalil, M.; Rowshan, R.; Khan, K.A.; Abu Al-Rub, R.K. Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces. J. Therm. Sci. Eng. Appl. 2021, 13, 021010. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Xu, R.N.; Jiang, P.X. Transpiration cooling with phase change by functionally graded porous media. Int. J. Heat Mass. Tran. 2023, 205, 123862. [Google Scholar] [CrossRef]
- Tel, A.; Kornfellner, E.; Moscato, F.; Vinayahalingam, S.; Xi, T.; Arboit, L.; Robiony, M. Optimizing efficiency in the creation of patient-specific plates through field-driven generative design in maxillofacial surgery. Sci. Rep. 2023, 13, 12082. [Google Scholar] [CrossRef]
- Baladés, N.; Remigio, P.; Sales, D.L.; Moreno, D.; López, J.M.; Molina, S.I. Experimental and simulated study of 3D-printed couplings’ suitability for industrial application. Int. J. Adv. Manuf. Technol. 2023, 127, 665–676. [Google Scholar] [CrossRef]
- Liu, F.Y.; Chen, M.; Wang, L.Z.; Luo, T.H.; Chen, G. Stress-field driven conformal lattice design using circle packing algorithm. Heliyon 2023, 9, e14448. [Google Scholar] [CrossRef]
- Dezaki, M.L.; Bodaghi, M.; Serjouei, A.; Zolfagharian, A. Green 3D-printed lattice-shaped suspension arms for RC cars. Prog. Addit. Manuf. 2024, 9, 69–83. [Google Scholar] [CrossRef]
- Costa, J. Topology optimization applied to additive-manufactured hydrofoil wing components. Acad. Mater. Sci. 2024, 1. [Google Scholar] [CrossRef]
- García-Avila, J.; Cuan-Urquizo, E.; Ramírez-Cedillo, E.; Rodríguez, C.A.; Vargas-Martínez, A. Novel porous structures with non-cubic symmetry: Synthesis, elastic anisotropy, and fatigue life behavior. Math. Mech. Solids 2023, 28, 943–972. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Weems, E.; Hu, H. Coupled Field-Driven Design and Numerical Simulation for Engineering Education. In Proceedings of the 2023 ASEE Midwest Section Conference, Baltimore, MD, USA, 25–28 June 2023. [Google Scholar]
- Weems, E. Experimental and Numerical Investigation of Air-Cooled Heat Sinks. Bachelor’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2024. [Google Scholar]
- Wang, S.L.; Zhang, L.C.; Tang, M.K.; Cai, C.; Wu, J.X.; Zhang, Z.H.; Shi, Y.S. Field-driven design and performance evaluation of dual functionally graded triply periodic minimal surface structures for additive manufacturing. Mater. Design 2023, 233, 112257. [Google Scholar] [CrossRef]
- Yoo, D.J. Computer-aided Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces. Int. J. Precis. Eng. Man. 2011, 12, 61–71. [Google Scholar] [CrossRef]
- Barakat, A.; Sun, B.B. Enhanced convective heat transfer in new triply periodic minimal surface structures: Numerical and experimental investigation. Int. J. Heat. Mass. Tran. 2024, 227, 125538. [Google Scholar] [CrossRef]
- McDonough, J.M. Introductory Lectures on Turbulence: Physics, Mathematics and Modeling; University of Kentucky: Lexington, KY, USA, 2007. [Google Scholar]
- Kanti, P.; Sharma, K.; Said, Z.; Kesti, V. Entropy generation and friction factor analysis of fly ash nanofluids flowing in a horizontal tube: Experimental and numerical study. Int. J. Therm. Sci. 2021, 166, 106972. [Google Scholar] [CrossRef]
Parameter Type | Setting |
---|---|
Heat source power | 2500 W |
Radiator Material | Aluminum alloy |
Coolant | Water |
Inlet temperature | 25 °C |
Entrance speed | 1.75 m/s |
Turbulence model | k-epsilon |
Contact surface setting | Coupled |
Wall conditions | No slip |
Solution method | SIMPLE |
Initialization methods | Hybrid initialization |
Mesh | Elements | [Pa] | [°C] | ||
---|---|---|---|---|---|
Mesh1 | 267,291 | 4211.22 | ---- | 76.11 | ---- |
Mesh2 | 557,938 | 4226.52 | 0.36% | 76.03 | 0.09% |
Mesh3 | 623,678 | 4236.92 | 0.25% | 76.02 | 0.01% |
Mesh4 | 736,501 | 4250.53 | 0.32% | 75.98 | 0.05% |
Mesh5 | 1,023,642 | 4246.67 | 0.09% | 75.85 | 0.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Chai, X.; Wei, F.; Yang, H.; Wu, C.; Shi, J. Numerical Simulation and Optimized Field-Driven Design of Triple Periodic Minimal Surface Structure Liquid-Cooling Radiator. Energies 2025, 18, 2536. https://doi.org/10.3390/en18102536
Lv Z, Chai X, Wei F, Yang H, Wu C, Shi J. Numerical Simulation and Optimized Field-Driven Design of Triple Periodic Minimal Surface Structure Liquid-Cooling Radiator. Energies. 2025; 18(10):2536. https://doi.org/10.3390/en18102536
Chicago/Turabian StyleLv, Zhuopei, Xinbo Chai, Fuyin Wei, Hongkai Yang, Chao Wu, and Jianping Shi. 2025. "Numerical Simulation and Optimized Field-Driven Design of Triple Periodic Minimal Surface Structure Liquid-Cooling Radiator" Energies 18, no. 10: 2536. https://doi.org/10.3390/en18102536
APA StyleLv, Z., Chai, X., Wei, F., Yang, H., Wu, C., & Shi, J. (2025). Numerical Simulation and Optimized Field-Driven Design of Triple Periodic Minimal Surface Structure Liquid-Cooling Radiator. Energies, 18(10), 2536. https://doi.org/10.3390/en18102536