Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review
Abstract
:1. Background
2. Steel Metallurgy Process System and System Boundaries
2.1. Steel Metallurgy System and Its Boundary Delineated Through Material Flow Analysis
2.2. Iron and Steel Metallurgy System and Its Boundary Delineated Through Energy Flow Analysis
3. Energy-Saving Technologies for High Temperature Thermal Processes
3.1. Energy-Saving in Coking Process
3.1.1. Strategies for Optimizing Energy Utilization Efficiency in the Coking Process Operations
3.1.2. The Direction of Improving the Material Conversion Rate in the Coking Process
3.1.3. Summary and Prospect
3.2. Energy-Saving in Sintering Process
3.2.1. Directions for Improving Energy Utilization Efficiency in the Sintering Process
3.2.2. Directions for Improving Ore Quality and Production Output in the Sintering Process
3.2.3. Summary and Prospect
3.3. Energy-Saving in Ironmaking Process
3.3.1. High-Efficiency Pulverized Coal Injection
3.3.2. Fine Material Technology for Ironmaking in Blast Furnaces
3.3.3. Others
3.3.4. Summary and Prospect
3.4. Energy-Saving in Steelmaking Process
3.4.1. High-Efficiency Continuous Casting Technology
3.4.2. Converter Flue Gas Waste Heat Recovery Technology
3.4.3. Others
3.4.4. Summary and Prospect
4. Breakthrough in Compact Process Integration Technology
4.1. Energy-Saving in Continuous Casting and Rolling Process
4.2. Energy-Saving in Other Energy and Power Processes
4.2.1. Energy-Saving of High-Efficiency Combustion Technology in Metallurgy
4.2.2. Waste Heat Recovery and Utilization
4.2.3. Computer Control Technology
4.2.4. Summary and Prospect
5. System Energy-Saving Theory and Application
6. Conclusions
Funding
Conflicts of Interest
References
- Du, Z.; Lin, B. Analysis of carbon emissions reduction of China’s metallurgical industry. J. Clean. Prod. 2018, 176, 1177–1184. [Google Scholar] [CrossRef]
- Yu, X.; Tan, C. China’s pathway to carbon neutrality for the iron and steel industry. Glob. Environ. Chang. 2022, 76, 102574. [Google Scholar] [CrossRef]
- Kobori, S. When Energy Efficiency Begets Air Pollution: Fuel Conservation in Japan’s Steel Industry, 1945–1960. Technol. Cult. 2022, 63, 401–426. [Google Scholar] [CrossRef]
- Zhang, C.; He, W.; Hao, R. Comparative analysis of asian main iron and steel countries’ total factor energy efficiency. Curr. Sci. 2017, 112, 2226–2233. [Google Scholar] [CrossRef]
- Brunke, J.-C.; Blesl, M. A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry. Energy Policy 2014, 67, 431–446. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Li, C. Progress on Efficient Utilization of Energy Resources of Steel Industry Home and Abroad. J. Eng. Stud. 2022, 9, 68–77. [Google Scholar] [CrossRef]
- Zeng, D.-L.; Hu, Y.; Gao, S.; Liu, J.-Z. Modelling and control of pulverizing system considering coal moisture. Energy 2015, 80, 55–63. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, L.; Zhang, S.; Dong, G.; Wang, Y.; Wang, G.; Kang, J.; Chen, L.; Zhang, J. Comprehensive Technologies for Iron Ore Sintering with a Bed Height of 1000 mm to Improve Sinter Quality, Enhance Productivity and Reduce Fuel Consumption. ISIJ Int. 2020, 60, 2400–2407. [Google Scholar] [CrossRef]
- Wu, P.; Yang, C.-J. Identification and control of blast furnace gas top pressure recovery turbine unit. ISIJ Int. 2012, 52, 96–100. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, L.W.; Xia, X.X.; Zhou, N.J. Dynamic test on waste heat recovery system with organic Rankine cycle. J. Cent. South Univ. 2014, 21, 4607–4612. [Google Scholar] [CrossRef]
- Guthrie, R.I.L.; Isac, M.M. Continuous casting practices for steel: Past, present and future. Metals 2022, 12, 862. [Google Scholar] [CrossRef]
- Yan, M.; Song, X.; Tian, J.; Lv, X.; Zhang, Z.; Yu, X.; Zhang, S. Construction of a New Type of Coal Moisture Control Device Based on the Characteristic of Indirect Drying Process of Coking Coal. Energies 2020, 13, 4162. [Google Scholar] [CrossRef]
- Jiang, L. Application of Glass Plate Tubular Air Preheater on the Heating Furnace of Delayed Coking Unit. J Qilu Petrochemical Industry. J. Cent. South Univ. 2019, 47, 129–132, 141. [Google Scholar]
- Liu, C.; Xie, Z.; Sun, F.; Chen, L. Exergy analysis and optimization of coking process. Energy 2017, 139, 694–705. [Google Scholar] [CrossRef]
- Ergul, M.; Selimli, S. An applied study on energy analysis of a coke oven. Sci. Technol. Energy Transit. 2024, 79, 1. [Google Scholar] [CrossRef]
- Wang, J.-G.; Wang, Y.; Yao, Y.; Yang, B.-H.; Ma, S.-W. Stacked autoencoder for operation prediction of coke dry quenching process. Control. Eng. Pract. 2019, 88, 110–118. [Google Scholar] [CrossRef]
- Sun, K.; Tseng, C.-T.; Wong, D.S.-H.; Shieh, S.-S.; Jang, S.-S.; Kang, J.-L.; Hsieh, W.-D. Model predictive control for improving waste heat recovery in coke dry quenching processes. Energy 2015, 80, 275–283. [Google Scholar] [CrossRef]
- Wenping, P.; Zhiping, J.; Gailin, L.; Tao, B.; Lixing, Z.; Congxiu, G. Dynamic Heat Transfer Characteristic of Heat Exchanger for Sensible Heat Recovery of Raw Coke Oven Gas. J. Therm. Sci. Eng. Appl. 2022, 14, 121009. [Google Scholar] [CrossRef]
- Yi, Q.; Wu, G.-S.; Gong, M.-H.; Huang, Y.; Feng, J.; Hao, Y.-H.; Li, W.-Y. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas. Appl. Energy 2017, 193, 149–161. [Google Scholar] [CrossRef]
- Tsuda, K. Reduction in coke oven heat consumption through improved fuel valve adjustment. IFAC Proc. Vol. 2012, 45, 132–133. [Google Scholar] [CrossRef]
- Kato, K. Development of Next-Generation Coke Manufacturing Technology (SCOPE21). Tetsu-to-Hagané 2010, 96, 196–200. [Google Scholar] [CrossRef]
- Peng, R.; Yang, X.; Guo, L.; Xiao, W. Production Practice of High-efficiency Utilization of Waste Heat from Sintering Ring Cooling Machine. J. Min. Metall. 2021, 30, 134–138. [Google Scholar]
- Fan, X.; Wong, G.; Gan, M.; Chen, X.; Yu, Z.; Ji, Z. Establishment of refined sintering flue gas recirculation patterns for gas pollutant reduction and waste heat recycling. J. Clean. Prod. 2019, 235, 1549–1558. [Google Scholar] [CrossRef]
- Li, Q. The Application of Liquid-sealed Ring Cooling Technology. Tianjin Metall. 2018, 38, 21–23. [Google Scholar]
- Wu, Y.; Gan, M.; Ji, Z.; Fan, X.; Zhao, G.; Zhou, H.; Zheng, H.; Wang, X.; Liu, L.; Li, J. New approach to improve heat energy utilization efficiency in iron ore sintering: Exploration of surface fuel addition. Process. Saf. Environ. Prot. 2024, 190, 125–137. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Wang, Y.; Niu, L.; Dai, Y.; Hu, W.; Liu, Z. Structural Characteristics of Active Quicklime Flux and Optimization of Quasiparticle Granulation Performance in Thick-Bed Sintering. Steel Res. Int. 2024, 96, 2400660. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, D.; Pan, J.; Wei, Z.; Yang, C.; Guo, Z.; Zhang, W.; Ruan, Z.; Jiang, L. Study on Sintering Technology of Manganese Ore Fines Strengthened by Pellet-Sintering Process. J. Sustain. Met. 2024, 10, 1415–1427. [Google Scholar] [CrossRef]
- Pal, J.; Ghorai, S.; Venkatesh, P.; Goswami, M.C.; Bandyopadhyay, D.; Ghosh, S. Development of fluxed micropellets for sintering utilising iron oxide waste fines. Ironmak. Steelmak. 2013, 40, 498–504. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Y.; Ji, Z.; Gan, M.; Li, Q.; He, S. The Influence and Mechanism of Intensive Mixing on the Sintering of High-proportion Concentrates. J. Iron Steel Res. 2021, 33, 25–31. [Google Scholar]
- Pal, J.; Ghorai, S.; Goswami, M.C.; Prakash, S.; Venugopalan, T. Development of Pellet-Sinter Composite Agglomerate for Blast Furnace. ISIJ Int. 2014, 54, 620–627. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, G.; Ning, X.; Zhang, J.; Wang, C. Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace. Fuel 2020, 278, 118267. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, L.; Xu, R.; Zhao, P.; Yu, Y.; Guo, P.; Li, T.; Wang, Y.; Zhu, J. Effects of Hydrogen-Rich Gas Composition on Energy Consumption and the Raceway State of Oxygen Blast Furnace. Met. Mater. Trans. B 2024, 56, 499–514. [Google Scholar] [CrossRef]
- Onarheim, K.; Arasto, A. Staged implementation of alternative processes in an existing integrated steel mill for improved performance and reduced CO2 emissions—Part I: Technical concept analysis. Int. J. Greenh. Gas. Control. 2016, 45, 163–171. [Google Scholar] [CrossRef]
- Sohn, H.Y. Energy Consumption and CO2 Emissions in Ironmaking and Development of a Novel Flash Technology. Metals 2020, 10, 54. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, K.; Zhang, J.; Wang, R. Comprehensive Research about Critical Interaction Region Named Cohesive Zone in Series of Dissected Blast Furnaces. ISIJ Int. 2021, 61, 1758–1767. [Google Scholar] [CrossRef]
- Pinegar, H.K.; Moats, M.S.; Sohn, H.Y. Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 1—Flowsheet and simulation for ironmaking with reformerless natural gas. Ironmak. Steelmak. 2013, 39, 398–408. [Google Scholar] [CrossRef]
- He, J.; Zhang, W.; Na, H.; Sun, J.; Yuan, Y.; Qiu, Z.; Yan, T.; Du, T. Optimization and Analysis of Minimizing Exergy Loss in Ironmaking System. Energy Technol. 2021, 9, 2000838. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, T.; Zhou, B.; Ma, C.; Dong, Y. Exergy analysis of a novel ironmaking process combining coal gasification with the smelting reduction of iron ore. Fuel 2024, 372, 132261. [Google Scholar] [CrossRef]
- Tan, X.; Li, H.; Guo, J.; Gu, B.; Zeng, Y. Energy-saving and emission-reduction technology selection and CO2 emission reduction potential of China’s iron and steel industry under energy substitution policy. J. Clean. Prod. 2019, 222, 823–834. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Zheng, Z.; Zhu, M.-M.; Zhang, K.-T.; Gao, X.-Q. An integrated production batch planning approach for steelmaking-continuous casting with cast batching plan as the core. Comput. Ind. Eng. 2022, 173, 108636. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, D.; Wang, L. Analysis of the Energy-saving Path in the Steelmaking Process. J. Metall. Equip. 2023, 288, 74–76. [Google Scholar]
- Ren, B.; Wang, G.; Zuo, H.; Xue, Q.; She, X.; Wang, J. In-situ catalytic reforming of converter gas in converter flue based on thermochemical energy storage: Kinetics and numerical simulation. J. Energy Storage 2022, 48, 103693. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, J.; Xie, J.; Liu, Z.; Zhang, H.; Zhou, L. Numerical and experimental investigations of converter gas improvement inside a flue using its waste heat and CO2 by pulverized coal injection. Environ. Prog. Sustain. Energy 2017, 37, 1503–1512. [Google Scholar] [CrossRef]
- Zhou, J.; Song, W.; Li, Y.; Wang, B.; Cheng, R. High-quality syngas production: The green and efficient utilization of waste tire and waste heat from the steelmaking converter process. Waste Manag. 2021, 131, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Zheng, Z.; Wang, C.; Gao, X. An energy-efficient hybrid flow shop scheduling problem in steelmaking plants. Comput. Ind. Eng. 2021, 162, 107683. [Google Scholar] [CrossRef]
- Su, P.; Zhou, Y.; Wu, J. Multi-objective scheduling of a steelmaking plant integrated with renewable energy sources and energy storage systems: Balancing costs, emissions and make-span. J. Clean. Prod. 2023, 428, 139350. [Google Scholar] [CrossRef]
- Arvedi, G.; Mazzolari, F.; Bianchi, A.; Holleis, G.; Siegl, J.; Angerbauer, A. The Arvedi Endless Strip Production line (ESP): From liquid steel to hot-rolled coil in seven minutes. Rev. Métallurgie 2008, 105, 398–407. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, J.; Huang, H. Product Characteristics of the Hazelett Continuous Casting and Rolling Production Line and Its Demonstration Significance in Energy Conservation and Emission Reduction. J. Light. Metals. 2011, 325–328. [Google Scholar] [CrossRef]
- Mihailov, E.; Petkov, V.; Ivanova, M.; Stoyanova, B. Possibilities for saving energy in ferrous metallurgy: Integration of technological processes. Therm. Sci. 2016, 20, 623–636. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, T.; Lv, Z. Research on Continuous Casting–Hot Rolling Scheduling Model Involving Reheating Furnace Conversion Mode and Improved Bat Optimization Solution Algorithm. Appl. Sci. 2024, 14, 4494. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Liu, S. Integrated Scheduling for Steelmaking Continuous Casting— Hot Rolling Processes considering Hot Chain Logistics. Math. Probl. Eng. 2020, 2020, 6902934. [Google Scholar] [CrossRef]
- Qi, L.; Guo, J.; Wang, Q.; Dai, W.; Bai, H.; Cang, D. High-efficient combustion of gas-fired furnace with 21∼36% oxygen-enriched air. Met. Res. Technol. 2018, 115, 613. [Google Scholar] [CrossRef]
- Qi, F.; Shan, J.; Li, B.; Baleta, J. Numerical study on ladle baking process of oxy-fuel combustion. Therm. Sci. 2020, 24 Pt A, 3511–3520. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Q.; Peng, J.; Hu, X.; Duan, W. Thermal energy recovery from high-temperature blast furnace slag particles. Int. Commun. Heat Mass. Transf. 2015, 69, 23–28. [Google Scholar] [CrossRef]
- Duan, W.; Yu, Q.; Zuo, Z.; Qin, Q.; Li, P.; Liu, J. The technological calculation for synergistic system of BF slag waste heat recovery and carbon resources reduction. Energy Convers. Manag. 2014, 87, 185–190. [Google Scholar] [CrossRef]
- Feng, Y.-H.; Zhang, Z.; Qiu, L.; Zhang, X.-X. Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM. Energy 2019, 186, 115876. [Google Scholar] [CrossRef]
- Chistyakova, T.; Novozhilova, I.; Kozlov, V.; Shevchik, A. Resource and energy saving control of the steelmaking converter process, taking into account waste recycling. Energies 2023, 16, 1302. [Google Scholar] [CrossRef]
- ISO 14405-2; Geometrical Product Specifications (GPS)—Dimensional Tolerancing—Part 2: Dimensions Other Than Linear or Angular Sizes. ISO: Geneva, Switzerland, 2018.
- Guang, D. Anshan Iron and Steel Company applies the theory of systems engineering to do a good job in system energy conservation. J. Metall. Energy 1987, 40, 4–6. [Google Scholar]
- Hongfu, L. Discussion and Application Practice of the Energy Saving Theory and Methods for the Iron and Steel Manufacturing Process System. J. Energy Metall. Ind. 2020, 39, 59. [Google Scholar]
- Nan, J.; Rao, Z.; Liu, X.; He, H.; Liao, S. Research Progress on Monitoring and Simulation Technologies of Metallurgical Processes Based on System Energy Saving. J. Process Eng. 2014, 14, 708–714. [Google Scholar]
- Wu, S.; Wang, Y.; Huang, Q. Progress in the Application of Low-carbon Emission Reduction Technologies in the Hot Rolling Process of Strip Steel. J. Ind. Heat. 2023, 52, 54–58. [Google Scholar]
- Chengquan, Z. System energy conservation is an important way to deepen energy conservation management: On the application of systems engineering in energy conservation management. J. Energy Eng. 1990, 10, 4–8. [Google Scholar]
- Zhang, Q.; Xu, J.; Zhao, X. Energy and exergy analyses of an integrated iron and steel making process. J. Energy Eng. 2018, 26, 454–480. [Google Scholar] [CrossRef]
- Shen, X.; Chen, L.; Xia, S.; Xie, Z.; Qin, X. Burdening proportion and new energy-saving technologies analysis and optimization for iron and steel production system. J. Clean. Prod. 2018, 172, 2153–2166. [Google Scholar] [CrossRef]
- Xu, M.; Li, S.; Wang, Y.; Liu, Q. Towards Green and Low-Carbon Transformation via Optimized Polygeneration System: A Case Study of the Iron and Steel Industry. Appl. Sci. 2024, 14, 8052. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, C. Discussion on energy conservation strategies for steel industry: Based on a Chinese firm. J. Clean. Prod. 2017, 166, 66–80. [Google Scholar] [CrossRef]
- Lin, B.; Wang, X. Exploring energy efficiency in China’s iron and steel industry: A stochastic frontier approach. Energy Policy 2014, 72, 87–96. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Yao, J.; Dinga, C.D. Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China’s iron and steel industry under uncertainty. Renew. Sustain. Energy Rev. 2020, 134, 110128. [Google Scholar] [CrossRef]
Process Stage | Energy-Saving Technology | Energy Reduction Percentage |
---|---|---|
Coking | Coal moisture control (CMC) | 15% |
Coke dry quenching (CDQ) | 20–25% | |
Sintering | Thick-layer sintering | 12–15% |
Flue gas recirculation (FGR) | 8–10% | |
Ironmaking | High-efficiency pulverized coal injection (PCI) | 8.5% |
Hydrogen-enriched blast injection | 18% | |
Steelmaking | Integrated casting-rolling technology (ESP) | 30–50% |
Continuous casting and rolling | Thin slab continuous casting and rolling (TSCCR) | 25–30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Meng, G.; Zhang, K.; Zuo, Z.; Song, X.; Zhao, Y.; Luo, S. Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review. Energies 2025, 18, 2473. https://doi.org/10.3390/en18102473
Cui J, Meng G, Zhang K, Zuo Z, Song X, Zhao Y, Luo S. Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review. Energies. 2025; 18(10):2473. https://doi.org/10.3390/en18102473
Chicago/Turabian StyleCui, Jiacheng, Gang Meng, Kaiqiang Zhang, Zongliang Zuo, Xiangyu Song, Yuhan Zhao, and Siyi Luo. 2025. "Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review" Energies 18, no. 10: 2473. https://doi.org/10.3390/en18102473
APA StyleCui, J., Meng, G., Zhang, K., Zuo, Z., Song, X., Zhao, Y., & Luo, S. (2025). Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review. Energies, 18(10), 2473. https://doi.org/10.3390/en18102473