Non-Contact Thermophysical Property Measurements of High-Temperature Corium Through Aerodynamic Levitation
Abstract
1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Measurement Principle
2.3. Sample Preparation
2.4. Image Analysis
3. Results and Discussion
3.1. Density of Liquid ZrO2
3.2. Density of Liquid UO2-ZrO2 Mixture
3.3. Surface Tension of Liquid ZrO2
3.4. Viscosity of Liquid ZrO2
3.5. Viscosity of Liquid UO2-ZrO2 Mixture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Yuan, Y.; Sehgal, B.R. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs. Engineering 2016, 2, 103–111. [Google Scholar] [CrossRef]
- Sehgal, B.R. Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology, 1st ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Delacroix, J.; Journeau, C.; Chikhi, N.; Fouquart, P.; Zhan, D. Measurements of In-Vessel and Ex-Vessel Liquid Corium Surface Tension and Density in the VITI-MBP Test Bench within ALISA Euro-Chinese Project. Mech. Eng. J. 2020, 7, 19-00611. [Google Scholar] [CrossRef]
- Asmolov, V.; Tsurikov, D. MASCA Project: Major Activities and Results. In Proceedings of the CSNI Workshop, MASCA Seminar, Aix-en-Provence, France, 10 June 2004. [Google Scholar]
- Chikhi, N.; Delacroix, J.; Fouquart, P.; Turquais, B. Measurement of Corium Surface Tension Using the Maximum Bubble Pressure. Nucl. Eng. Des. 2021, 379, 111266. [Google Scholar] [CrossRef]
- Asmolov, V. Latest Findings of RASPLAV Project; Nuclear Energy Agency of the OECD: Garching, Germany, 1999. [Google Scholar]
- Abalin, S.S.; Asmolov, V.G.; Daragan, V.D.; D’yakov, E.K.; Merzlyakov, A.V.; Vishnevsky, V.Y. Corium Kinematic Viscosity Measurement. Nucl. Eng. Des. 2000, 200, 107–115. [Google Scholar] [CrossRef]
- Drewitt, J.W.; Emmens, B.; Kong, Z.-H.; Drinkwater, B.W.; Barnes, A.C. MightyLev: An Acoustic Levitator for High-Temperature Containerless Processing of Medium-to High-Density Materials. Rev. Sci. Instrum. 2024, 95, 103903. [Google Scholar] [CrossRef]
- Mohr, M.; Dong, Y.; Bracker, G.P.; Hyers, R.W.; Matson, D.M.; Zboray, R.; Frison, R.; Dommann, A.; Neels, A.; Xiao, X.; et al. Electromagnetic Levitation Containerless Processing of Metallic Materials in Microgravity: Thermophysical Properties. NPJ Microgravity 2023, 9, 34. [Google Scholar] [CrossRef]
- Ishikawa, T.; Paradis, P.-F.; Koyama, C. Thermophysical Property Measurements of Refractory Oxide Melts with an Electrostatic Levitation Furnace in the International Space Station. Front. Mater. 2022, 9, 954126. [Google Scholar] [CrossRef]
- Langstaff, D.; Gunn, M.; Greaves, G.N.; Marsing, A.; Kargl, F. Aerodynamic Levitator Furnace for Measuring Thermophysical Properties of Refractory Liquids. Rev. Sci. Instrum. 2013, 84, 124901. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, L.; Yuan, Y.; Ma, W.; Huang, S. Contactless Surface Tension Measurement of Molten Oxides Using Oscillating Drop Method in an Aerodynamic Levitator. Heliyon 2024, 10, e37992. [Google Scholar] [CrossRef]
- Boland, S.E.; Wilke, S.K.; Scott, J.A.; Schlossberg, S.M.; Ivaschenko, A.; Weber, R.J.K.; Lipke, D.W. A Hyperbaric Aerodynamic Levitator for Containerless Materials Research. Rev. Sci. Instrum. 2023, 94, 053903. [Google Scholar] [CrossRef]
- Fang, Z.; Huang, X.; Taslim, M.E.; Wan, K. Flexural Bending Resonance of Acoustically Levitated Glycerol Droplet. Phys. Fluids 2021, 33, 071701. [Google Scholar] [CrossRef]
- Ushakov, S.V.; Niessen, J.; Quirinale, D.G.; Prieler, R.; Navrotsky, A.; Telle, R. Measurements of Density of Liquid Oxides with an Aero-Acoustic Levitator. Materials 2021, 14, 822. [Google Scholar] [CrossRef] [PubMed]
- Price, D.L. High-Temperature Levitated Materials; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Rayleigh, L. On the Capillary Phenomena of Jets. Proc. R. Soc. Lond. 1879, 29, 71–97. [Google Scholar]
- Lamb, H. On the Oscillations of a Viscous Spheroid. Proc. Lond. Math. Soc. 1881, 1, 51–70. [Google Scholar] [CrossRef]
- Weber, J.K.R.; Felten, J.J.; Nordine, P.C. Laser Hearth Melt Processing of Ceramic Materials. Rev. Sci. Instrum. 1996, 67, 522–524. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, L.; Yuan, Y.; Ma, W.; Huang, S.; Li, C.; Yin, B.; Wang, X.; Ren, J.; Qu, Z.; et al. Thermophysical Properties of UO2-ZrO2 Melt Measured by Aerodynamic Levitation. J. Nucl. Mater. 2024, 602, 155356. [Google Scholar] [CrossRef]
- Millot, F.; Sarou-Kanian, V.; Rifflet, J.-C.; Vinet, B. The Surface Tension of Liquid Silicon at High Temperature. Mat. Sci. Eng. A 2008, 495, 8–13. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, L.; Yuan, Y.; Guo, Q.; Ma, W.; Huang, S. Viscosity Measurement of Molten Alumina and Zirconia Using Aerodynamic Levitation, Laser Heating and Droplet Oscillation Techniques. Heliyon 2023, 9, e22424. [Google Scholar] [CrossRef]
- McCardell, R.K.; Russell, M.L.; Akers, D.W.; Olsen, C.S. Summary of TMI-2 Core Sample Examinations. Nucl. Eng. Des. 1990, 118, 441–449. [Google Scholar] [CrossRef]
- Akers, D.W.; Jensen, S.M.; Schuetz, B.K. Examination of Relocated Fuel Debris Adjacent to the Lower Head of the TMI-2 Reactor Vessel; Nuclear Regulatory Commission: Rockville, MD, USA, 1994.
- Hagrman, D.L.; Reymann, G.A. MATPRO-Version 11: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior; Idaho National Laboratory: Idaho Falls, ID, USA, 1979.
- Kindred, T. Modular Accident Analysis Program 5 (MAAP5) Applications Guidance: Desktop Reference for Using MAAP5 Software-Phase 3 Report; Electric Power Research Institute: Palo Alto, CA, USA, 2017. [Google Scholar]
- Hong, Q.J.; Ushakov, S.V.; Kapush, D.; Benmore, C.J.; Navrotsky, A. Combined Computational and Experimental Investigation of High Temperature Thermodynamics and Structure of Cubic ZrO2 and HfO2. Sci. Rep. 2018, 8, 14962. [Google Scholar] [CrossRef]
- Alderman, O.L.G.; Benmore, C.J.; Weber, J.K.R.; Skinner, L.B.; Tamalonis, A.J.; Sendelbach, S.; Hebden, A.; Williamson, M.A. Corium Lavas: Structure and Properties of Molten UO2-ZrO2 under Meltdown Conditions. Sci. Rep. 2018, 8, 2434. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Muta, H.; Kurosaki, K.; Kargl, F.; Yamaji, A.; Furuya, M.; Ohishi, Y. Density and Viscosity of Liquid ZrO2 Measured by Aerodynamic Levitation Technique. Heliyon 2019, 5, e02049. [Google Scholar] [CrossRef] [PubMed]
- Kohara, S.; Akola, J.; Patrikeev, L.; Ropo, M.; Ohara, K.; Itou, M.; Fujiwara, A.; Yahiro, J.; Okada, J.T.; Ishikawa, T. Atomic and Electronic Structures of an Extremely Fragile Liquid. Nat. Commun. 2014, 5, 5892. [Google Scholar] [CrossRef] [PubMed]
- Denier, C.; Zhang, Z.; De Bilbao, E.; Delacroix, J.; Piluso, P. Thermophysical Properties of Liquid Zirconia Measured by Aerodynamic Levitation at High Temperature. Int. J. Thermophys. 2023, 44, 127. [Google Scholar] [CrossRef]
- Borgard, J.-M.; Soldi, L.; Quaini, A.; Alpettaz, T.; Stéphane, G. Simulation of an Aerodynamic Furnace for Thermodynamic Data Acquisition. In Proceedings of the 2018 COMSOL Conference, Lausanne, Switzerland, 22 October 2018. [Google Scholar]
- Asmolov, V.G.; Abalin, S.S.; Merzlyakov, A.V. Physical Properties Measurements Within MASCA Project; OCED/NEA: Paris, France, 2004.
- Breitung, W.; Reil, K.O. The Density and Compressibility of Liquid (U, Pu)-Mixed Oxide. Nucl. Eng. Des. 1990, 105, 205–217. [Google Scholar] [CrossRef]
- Fink, J.K. Thermophysical Properties of Uranium Dioxide. J. Nucl. Mater. 2000, 279, 1–18. [Google Scholar] [CrossRef]
- Verma, S.; Gahlyan, S.; Bhagat, P.; Rani, M.; Bhagat, M.; Rana, S.; Rattan, V.K.; Lee, Y.; Maken, S. Thermodynamic Study of Mesitylene + Alkanol Mixtures: Insights into Molecular Interactions. J. Mol. Liq. 2023, 386, 122498. [Google Scholar] [CrossRef]
- Kondo, T.; Muta, H.; Ohishi, Y. Droplet Impingement Method to Measure the Surface Tension of Molten Zirconium Oxide. J. Nucl. Sci. Technol. 2020, 57, 889–897. [Google Scholar] [CrossRef]
- Andrade, E.D.C. A Theory of the Viscosity of Liquids.-Part I. Philos. Mag. 1934, 17, 497–511. [Google Scholar] [CrossRef]
- Kim, W.K.; Shim, J.H.; Kaviany, M. Thermophysical Properties of Liquid UO2, ZrO2 and Corium by Molecular Dynamics and Predictive Models. J. Nucl. Mater. 2017, 491, 126–137. [Google Scholar] [CrossRef]
- Woodley, R.E. The Viscosity of Molten Uranium Dioxide. J. Nucl. Mater. 1974, 50, 103–106. [Google Scholar] [CrossRef]
- Romberger, K.A.; Baes, C.F.; Stone, H.H. Phase Equilibrium Studies in the UO2-ZrO2 System. J. Inorg. Nucl. Chem. 1967, 29, 1619–1630. [Google Scholar] [CrossRef]
Source | Equation (g/cm3) | Temperature (K) | Method |
---|---|---|---|
This study | 2750–3200 | ADL | |
Denier | 2988–3233 | ADL | |
Kondo | 2753–3273 | ADL | |
Kohara | 2988–3273 | ADL | |
Hong | 3100–3400 | MD | |
Alderman | 2670–3670 | MD |
Source | Equation (mPa·s) | Temperature (K) | Method |
---|---|---|---|
This study | 3183–3420 | ADL | |
Denier | 2988–3173 | ADL | |
Kondo | 3170–3471 | ADL | |
Kim | 3000–5000 | MD | |
MAAP5 | - | - | |
SCDAP/RELAP | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Zhang, L.; Yuan, Y.; Ma, W. Non-Contact Thermophysical Property Measurements of High-Temperature Corium Through Aerodynamic Levitation. Energies 2025, 18, 136. https://doi.org/10.3390/en18010136
Gong Y, Zhang L, Yuan Y, Ma W. Non-Contact Thermophysical Property Measurements of High-Temperature Corium Through Aerodynamic Levitation. Energies. 2025; 18(1):136. https://doi.org/10.3390/en18010136
Chicago/Turabian StyleGong, Yaopeng, Li Zhang, Yidan Yuan, and Weimin Ma. 2025. "Non-Contact Thermophysical Property Measurements of High-Temperature Corium Through Aerodynamic Levitation" Energies 18, no. 1: 136. https://doi.org/10.3390/en18010136
APA StyleGong, Y., Zhang, L., Yuan, Y., & Ma, W. (2025). Non-Contact Thermophysical Property Measurements of High-Temperature Corium Through Aerodynamic Levitation. Energies, 18(1), 136. https://doi.org/10.3390/en18010136