Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.2.1. Field Measurements of the Three City-Center Sites
2.2.2. Scenarios Setting Based on Field Measurement Results
2.3. ENVI-Met Simulation
2.3.1. ENVI-Met Description
2.3.2. Basic Model Description
2.3.3. Simulation Verification
2.4. GeoDetector
2.4.1. GeoDetector Description
2.4.2. Spatial Heterogeneity Scenario Settings
3. Results
3.1. Characteristics of the Outdoor Thermal Environment Indices from 08:00 to 18:00
3.1.1. TA
3.1.2. WVEL
3.1.3. PET
3.2. Analysis of Interactions
3.2.1. TA
3.2.2. WVEL
3.2.3. PET
4. Discussion
5. Conclusions
- The impact of street geometry on the outdoor thermal environment is significantly higher than that of tree configuration factors. The impacts of street geometry and tree configuration are significantly higher at noon. The importance of street canyon factors in the improvement of outdoor thermal comfort in Busan is as follows: Hb/Ws > Os > Ws > Dt > Ht > Dbt. Particularly, Hb/Ws has the most significant impact on the outdoor thermal environment. The higher the adjacent buildings, the greater the Hb/Ws near the ground-level buildings and street surface. By reducing solar radiation absorption and the release of heat, the TA, MRT, and PET can be reduced. Changes in Hb/Ws can reduce the “Very hot” level for up to 4 h.
- The SENW street is shadowed during the afternoon, effectively reducing the TA and solar radiation on the pedestrian area and offering relatively high thermal comfort. EW streets are directly exposed to the sun after sunrise and before sunset. Thus, MRT and PET values are the highest, and the “Hot” and “Very hot” periods are longer. Improvements to the outdoor thermal environment by improving tree configurations or implementing additional infrastructure are important.
- Shallow street canyons need additional greening to improve their outdoor thermal environment. The tree crowns absorb solar radiation in the morning and reach a saturation state. Thereafter, the decreased radiant heat and the heat from artificial surface reflections together affect the outdoor thermal environment around pedestrian areas at noon and in the afternoon. Smaller Dt and larger Ht values have a significant impact on the outdoor thermal environment, but the impact of the tree settings on street wind resistance should be comprehensively considered. When the tree height is >12 m, the impact on the TA, MRT, and PET is reduced.
- The impact of interactions between any two factors of street geometry on the outdoor thermal environment is much higher than that of interactions between the street geometry and tree configuration factors, or that of interactions between tree configuration factors. Particularly, the interactions between two factors have a small impact on the WVEL, but have a greater impact on the TA, MRT, and PET. The impact of interactions between street geometry factors on the TA gradually strengthens over time, reaching its highest level (approximately 89%) at 18:00. The impact of interactions between Hb/Ws and tree configuration factors on the outdoor thermal environment indicators reaches its highest at 14:00 or 15:00. Additionally, Hb/Ws has a strong spatial autocorrelation with the TA.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Cfa: | humid subtropical climate | SVF: | sky view factor |
Cwa: | dry-winter humid subtropical climate | Pearson’s r: | Pearson’s correlation coefficient |
ASOS: | automated surface observing system | RMSE: | root-mean-square error |
Ws: | street width | TA: | air temperature |
Os: | street orientation | RH: | relative humidity |
Hb/Ws: | the ratio of building height to street width | WVEL: | wind velocity |
Dbt: | distance between buildings and trees | ANOVA: | analysis of variance |
Dt: | planting distance | PET: | physiological equivalent temperature |
Ht: | tree height | SSH: | spatial stratified heterogeneity |
References
- The World Bank Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 18 January 2023).
- Kim, H.; Jung, Y.; Oh, J.I. Transformation of Urban Heat Island in the Three-Center City of Seoul, South Korea: The Role of Master Plans. Land Use Policy 2019, 86, 328–338. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.; Lee, M.-I.; Kim, D. Impacts of Urbanization on Atmospheric Circulation and Aerosol Transport in a Coastal Environment Simulated by the WRF-Chem Coupled with Urban Canopy Model. Atmos. Environ. 2021, 249, 118253. [Google Scholar] [CrossRef]
- Wang, D.; Lau, K.K.-L.; Ren, C.; Goggins, W.B.I.; Shi, Y.; Ho, H.C.; Lee, T.-C.; Lee, L.-S.; Woo, J.; Ng, E. The Impact of Extremely Hot Weather Events on All-Cause Mortality in a Highly Urbanized and Densely Populated Subtropical City: A 10-Year Time-Series Study (2006–2015). Sci. Total Environ. 2019, 690, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban Flood Impact Assessment: A State-of-the-Art Review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate Change and Human Health: Present and Future Risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Chaseling, G.K.; Iglesies-Grau, J.; Juneau, M.; Nigam, A.; Kaiser, D.; Gagnon, D. Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Can. J. Cardiol. 2021, 37, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Chapin III, F.S.; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The Impacts of Climate Change on Ecosystem Structure and Function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef]
- National Association of City. Transportation Officials Urban Street Design Guide; Island Press: Washington, DC, USA, 2013; ISBN 978-1-61091-534-2. [Google Scholar]
- Gehl, J. Life Between Buildings: Using Public Space, 6th ed.; Island Press: Washington, DC, USA, 2011; ISBN 978-1-59726-827-1. [Google Scholar]
- Li, G.; Ren, Z.; Zhan, C. Sky View Factor-Based Correlation of Landscape Morphology and the Thermal Environment of Street Canyons: A Case Study of Harbin, China. Build. Environ. 2020, 169, 106587. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A Review of Outdoor Thermal Comfort Indices and Neutral Ranges for Hot-Humid Regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: København, Denmark, 1970; ISBN 978-87-571-0341-0. [Google Scholar]
- Höppe, P. The Physiological Equivalent Temperature–A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Lomas, K.J.; Stohrer, M. Computer Prediction of Human Thermoregulatory and Temperature Responses to a Wide Range of Environmental Conditions. Int. J. Biometeorol. 2001, 45, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Fischereit, J.; Schlünzen, K.H. Evaluation of Thermal Indices for Their Applicability in Obstacle-Resolving Meteorology Models. Int. J. Biometeorol. 2018, 62, 1887–1900. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Relationships between the Properties of an Urban Street Canyon and Its Radiant Environment: Introduction of Appropriate Urban Heat Island Mitigation Technologies. Sol. Energy 2012, 86, 2255–2262. [Google Scholar] [CrossRef]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at a City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Bochenek, A.D.; Klemm, K. Effectiveness of Tree Pattern in Street Canyons on Thermal Conditions and Human Comfort. Assessment of an Urban Renewal Project in Historical District in Lodz (Poland). Atmosphere 2021, 12, 751. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, C.; Teng, M.; Lin, Y. Impacts of Tree Canopy Cover on Microclimate and Human Thermal Comfort in a Shallow Street Canyon in Wuhan, China. Atmosphere 2020, 11, 588. [Google Scholar] [CrossRef]
- Kang, G.; Kim, J.-J.; Choi, W. Computational Fluid Dynamics Simulation of Tree Effects on Pedestrian Wind Comfort in an Urban Area. Sustain. Cities Soc. 2020, 56, 102086. [Google Scholar] [CrossRef]
- Jamei, E.; Chau, H.W.; Seyedmahmoudian, M.; Stojcevski, A. Review on the Cooling Potential of Green Roofs in Different Climates. Sci. Total Environ. 2021, 791, 148407. [Google Scholar] [CrossRef]
- Chatzinikolaou, E.; Chalkias, C.; Dimopoulou, E. Urban microclimate improvement using envi-met climate model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 69–76. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef]
- Li, K.; Li, X.; Yao, K. Outdoor Thermal Environments of Main Types of Urban Areas during Summer: A Field Study in Wuhan, China. Sustainability 2022, 14, 952. [Google Scholar] [CrossRef]
- Fabbri, K.; Ugolini, A.; Iacovella, A.; Bianchi, A.P. The Effect of Vegetation in Outdoor Thermal Comfort in Archaeological Area in Urban Context. Build. Environ. 2020, 175, 106816. [Google Scholar] [CrossRef]
- Elbondira, T.A.; Tokimatsu, K.; Asawa, T.; Ibrahim, M.G. Impact of Neighborhood Spatial Characteristics on the Microclimate in a Hot Arid Climate–A Field Based Study. Sustain. Cities Soc. 2021, 75, 103273. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Gao, W.; Zhang, Z.; Chen, W.; Peng, W. Simulation on the Impacts of the Street Tree Pattern on Built Summer Thermal Comfort in Cold Region of China. Sustain. Cities Soc. 2018, 37, 563–580. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation Study on the Impact of Tree-Configuration, Planting Pattern and Wind Condition on Street-Canyon’s Micro-Climate and Thermal Comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Wu, J.; Chang, H.; Yoon, S. Numerical Study on Microclimate and Outdoor Thermal Comfort of Street Canyon Typology in Extremely Hot Weather—A Case Study of Busan, South Korea. Atmosphere 2022, 13, 307. [Google Scholar] [CrossRef]
- Thom, J.K.; Coutts, A.M.; Broadbent, A.M.; Tapper, N.J. The Influence of Increasing Tree Cover on Mean Radiant Temperature across a Mixed Development Suburb in Adelaide, Australia. Urban For. Urban Green. 2016, 20, 233–242. [Google Scholar] [CrossRef]
- Chen, T.; Yang, H.; Chen, G.; Lam, C.K.C.; Hang, J.; Wang, X.; Liu, Y.; Ling, H. Integrated Impacts of Tree Planting and Aspect Ratios on Thermal Environment in Street Canyons by Scaled Outdoor Experiments. Sci. Total Environ. 2021, 764, 142920. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate Benefits That Different Street Tree Species Provide to Sidewalk Pedestrians Relate to Differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of Tree Planting Design and Tree Species on Human Thermal Comfort in the Tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P. Urban Development and Pedestrian Thermal Comfort in Melbourne. Sol. Energy 2017, 144, 681–698. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lau, K.K.-L.; Ren, C.; Ng, E. Performance of Hong Kong’s Common Trees Species for Outdoor Temperature Regulation, Thermal Comfort and Energy Saving. Build. Environ. 2018, 137, 157–170. [Google Scholar] [CrossRef]
- Wu, J. Analysis of Microclimate and Thermal Comfort Based on Changes of Street Canyon Pattern in Urban Center; Pusan National University: Busan, Republic of Korea, 2023. [Google Scholar]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.-Y.; Wong, N.H. Impact of Urban Canyon Geometries on Outdoor Thermal Comfort in Central Business Districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H.; Leemans, R. Effects of Urban Green Infrastructure (UGI) on Local Outdoor Microclimate during the Growing Season. Env. Monit. Assess 2015, 187, 732. [Google Scholar] [CrossRef]
- McRae, I.; Freedman, F.; Rivera, A.; Li, X.; Dou, J.; Cruz, I.; Ren, C.; Dronova, I.; Fraker, H.; Bornstein, R. Integration of the WUDAPT, WRF, and ENVI-Met Models to Simulate Extreme Daytime Temperature Mitigation Strategies in San Jose, California. Build. Environ. 2020, 184, 107180. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Haddad, S.; Pignatta, G.; Paolini, R.; Prasad, D.; Santamouris, M. Can Urban Heat Be Mitigated in a Single Urban Street? Monitoring, Strategies, and Performance Results from a Real Scale Redevelopment Project. Sol. Energy 2021, 216, 564–588. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Moeinaddini, M.; Cools, M.; Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): A New Assessment Tool Combining Street Design Measurements and Thermal Comfort. Sci. Total Environ. 2021, 795, 148663. [Google Scholar] [CrossRef]
- Muniz-Gäal, L.P.; Pezzuto, C.C.; de Carvalho, M.F.H.; Mota, L.T.M. Urban Geometry and the Microclimate of Street Canyons in Tropical Climate. Build. Environ. 2020, 169, 106547. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y. Effect of Heat Mitigation Strategies on Thermal Environment, Thermal Comfort, and Walkability: A Case Study in Hong Kong. Build. Environ. 2021, 201, 107988. [Google Scholar] [CrossRef]
- Chen, T.; Pan, H.; Lu, M.; Hang, J.; Lam, C.K.C.; Yuan, C.; Pearlmutter, D. Effects of Tree Plantings and Aspect Ratios on Pedestrian Visual and Thermal Comfort Using Scaled Outdoor Experiments. Sci. Total Environ. 2021, 801, 149527. [Google Scholar] [CrossRef] [PubMed]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Mughal, M.O.; Kubilay, A.; Fatichi, S.; Meili, N.; Carmeliet, J.; Edwards, P.; Burlando, P. Detailed Investigation of Vegetation Effects on Microclimate by Means of Computational Fluid Dynamics (CFD) in a Tropical Urban Environment. Urban Clim. 2021, 39, 100939. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Juan, Y.-H.; Wen, C.-Y.; Yang, A.-S. Effects of Building Setback on Thermal Comfort and Air Quality in the Street Canyon. Build. Environ. 2022, 208, 108627. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Hyun, J.H.; Oh, K.; Park, T.Y. Variations in Pedestrian Mean Radiant Temperature Based on the Spacing and Size of Street Trees. Sustain. Cities Soc. 2019, 48, 101521. [Google Scholar] [CrossRef]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Acero, J.A.; Arrizabalaga, J. Evaluating the Performance of ENVI-Met Model in Diurnal Cycles for Different Meteorological Conditions. Theor. Appl. Clim. 2018, 131, 455–469. [Google Scholar] [CrossRef]
- Alznafer, B.M. The Impact of Neighbourhood Geometries on Outdoor Thermal Comfort and Energy Consumption from Urban Dwellings: A Case Study of the Riyadh City, the Kingdom of Saudi Arabia. Phd; Cardiff University: Cardiff, UK, 2014. [Google Scholar]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An Integrated Simulation Method for Building Energy Performance Assessment in Urban Environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Climate Change in South Korea. Available online: https://en.wikipedia.org/wiki/Climate_change_in_South_Korea (accessed on 18 December 2023).
- Taguchi, G. Quality Engineering (Taguchi Methods) for the Development of Electronic Circuit Technology. IEEE Trans. Reliab. 1995, 44, 225–229. [Google Scholar] [CrossRef]
- Sijo, M.T.; Biju, N. Taguchi Method for Optimization of Cutting Parameters in Turning Operations. Int. J. Manuf. Mater. Sci. 2011, 1, 44–46. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating Surface–Plant–Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications–A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-Met; Johannes Gutenberg-Universität Mainz: Mainz, Germany, 2012. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-0-521-84950-0. [Google Scholar]
- Alchapar, N.L.; Correa, E.N. The Use of Reflective Materials as a Strategy for Urban Cooling in an Arid “OASIS” City. Sustain. Cities Soc. 2016, 27, 1–14. [Google Scholar] [CrossRef]
- Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.-F.; Hu, Y. Environmental Health Risk Detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, H. Overview of the Application of Numerical Simulation Tools in the Field of Urban Microclimate Research-taking ENVI-Met Software as an Example. Available online: http://www.chinahvac.com.cn/Article/Index/4671 (accessed on 25 October 2021).
- Du, S.; Zhang, X.; Jin, X.; Zhou, X.; Shi, X. A Review of Multi-Scale Modelling, Assessment, and Improvement Methods of the Urban Thermal and Wind Environment. Build. Environ. 2022, 213, 108860. [Google Scholar] [CrossRef]
- Qin, H.; Hong, B.; Huang, B.; Cui, X.; Zhang, T. How Dynamic Growth of Avenue Trees Affects Particulate Matter Dispersion: CFD Simulations in Street Canyons. Sustain. Cities Soc. 2020, 61, 102331. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Wang, C.; Zhou, D.; Zhou, N.; Feng, W.; Ji, H. Coupling Relationships between Urban Form and Performance of Outdoor Environment at the Pedestrian Level. Build. Environ. 2022, 213, 108514. [Google Scholar] [CrossRef]
- Wang, Y.; Zacharias, J. Landscape Modification for Ambient Environmental Improvement in Central Business Districts–A Case from Beijing. Urban For. Urban Green. 2015, 14, 8–18. [Google Scholar] [CrossRef]
- Unger, J. Intra-Urban Relationship between Surface Geometry and Urban Heat Island: Review and New Approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef]
- Johansson, E. Influence of Urban Geometry on Outdoor Thermal Comfort in a Hot Dry Climate: A Study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Andreou, E. Thermal Comfort in Outdoor Spaces and Urban Canyon Microclimate. Renew. Energy 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, A.; Morakinyo, T.E.; Yung, E.H.K.; Chan, E.H.W. Assessing the Mitigation Performance of Building Setback from Street and the Combination with Roadside Tree Planting. Build. Environ. 2022, 212, 108814. [Google Scholar] [CrossRef]
- Mballo, S.; Herpin, S.; Manteau, M.; Demotes-Mainard, S.; Bournet, P.E. Impact of Well-Watered Trees on the Microclimate inside a Canyon Street Scale Model in Outdoor Environment. Urban Clim. 2021, 37, 100844. [Google Scholar] [CrossRef]
- Huang, K.-T.; Li, Y.-J. Impact of Street Canyon Typology on Building’s Peak Cooling Energy Demand: A Parametric Analysis Using Orthogonal Experiment. Energy Build. 2017, 154, 448–464. [Google Scholar] [CrossRef]
- Milošević, D.D.; Bajšanski, I.V.; Savić, S.M. Influence of Changing Trees Locations on Thermal Comfort on Street Parking Lot and Footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; McNulty, S.; Wang, P. The Mitigation Strategy of Automobile Generated Fine Particle Pollutants by Applying Vegetation Configuration in a Street-Canyon. J. Clean. Prod. 2020, 274, 122941. [Google Scholar] [CrossRef]
Site ID | OC1 | OC2 | OC3 | OC4 | CC1 | CC2 | CC3 | CC4 |
Image | ||||||||
Street length (m) | 105 | 137 | 148 | 156 | 146 | 154 | 211 | 170 |
Ws (m) | 17 | 41 | 36 | 21 | 20 | 33 | 49 | 25 |
Os | S by E 18° | E by S 16° | E by N 18° | E by N 16° | S by E 34° | N by E 32° | E | E |
Ave. Hb/Ws | 0.9 | 0.8 | 0.5 | 1.3 | 1.5 | 1.7 | 1.6 | 1.2 |
Ave. Dbt (m) | 3.8 | 6.1 | 6 | - | 4.3 | 5.2 | 7.5 | 3.8 |
Ave. Dt (m) | 8 | 12 | 10.7 | - | 6.2 | 9.6 | 13.2 | 10.2 |
Ave. Ht (m) | 12.2 | 15.4 | 14.7 | - | 7.3 | 17.4 | 13.8 | 15.6 |
Tree species | Gingko | Gingko | Gingko | - | Zelkova | Platanus | Zelkova | Gingko |
Site ID | CC5 | CC6 | NC1 | NC2 | NC3 | NC4 | NC5 | |
Image | ||||||||
Street length (m) | 142 | 122 | 171 | 202 | 284 | 212 | 333 | |
Ws (m) | 25 | 33 | 34 | 36 | 44 | 38 | 67 | |
Os | S | S | S by E 34° | E by N 35° | E by S 29° | E by N 34° | E by N 34° | |
Ave. Hb/Ws | 1 | 1.3 | 1.2 | 2.8 | 1.4 | 2.5 | 1.3 | |
Ave. Dbt (m) | 5.7 | 4.8 | 10.3 | 8.1 | 9.2 | 7.6 | 16.3 | |
Ave. Dt (m) | 9.9 | 10.3 | 6.5 | 8.1 | 7.9 | 7.4 | 7 | |
Ave. Ht (m) | 12.9 | 16.4 | 9.2 | 8.6 | 9 | 9.2 | 10.4 | |
Tree species | Platanus | Gingko | Zelkova | Zelkova | Zelkova | Zelkova | Zelkova |
Factors | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|
Street geometry | Ws | 24 m | 36 m | 48 m | 60 m |
Os | NS | EW | NESW | SENW | |
Hb/Ws | 0.5 | 1.5 | 2.5 | 3.5 | |
Tree configuration | Dbt | 4 m | 8 m | 12 m | 16 m |
Dt | 5 m | 7 m | 9 m | 11 m | |
Ht | 6 m | 9 m | 12 m | 15 m |
No. | Os | Ws (m) | Hb/Ws | Dbt (m) | Dt (m) | Ht (m) | No. | Os | Ws (m) | Hb/Ws | Dbt (m) | Dt (m) | Ht (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NS | 24 | 0.5 | 4 | 5 | 6 | 17 | NS | 24 | 0.5 | 12 | 7 | 12 |
2 | EW | 24 | 1.5 | 8 | 7 | 9 | 18 | EW | 24 | 2.5 | 16 | 5 | 15 |
3 | NESW | 24 | 2.5 | 12 | 9 | 12 | 19 | NESW | 24 | 1.5 | 4 | 11 | 6 |
4 | SENW | 24 | 3.5 | 16 | 11 | 15 | 20 | SENW | 24 | 3.5 | 8 | 9 | 9 |
5 | NS | 36 | 1.5 | 12 | 9 | 12 | 21 | NS | 36 | 1.5 | 4 | 11 | 6 |
6 | EW | 36 | 0.5 | 16 | 11 | 15 | 22 | EW | 36 | 0.5 | 8 | 9 | 9 |
7 | NESW | 36 | 3.5 | 4 | 5 | 6 | 23 | NESW | 36 | 3.5 | 12 | 7 | 12 |
8 | SENW | 36 | 2.5 | 8 | 7 | 9 | 24 | SENW | 36 | 2.5 | 16 | 5 | 15 |
9 | NS | 48 | 2.5 | 8 | 5 | 9 | 25 | NS | 48 | 2.5 | 16 | 7 | 15 |
10 | EW | 48 | 3.5 | 4 | 7 | 6 | 26 | EW | 48 | 3.5 | 12 | 5 | 12 |
11 | NESW | 48 | 0.5 | 16 | 9 | 15 | 27 | NESW | 48 | 0.5 | 8 | 11 | 9 |
12 | SENW | 48 | 1.5 | 12 | 11 | 12 | 28 | SENW | 48 | 1.5 | 4 | 9 | 6 |
13 | NS | 60 | 3.5 | 16 | 9 | 15 | 29 | NS | 60 | 3.5 | 8 | 11 | 9 |
14 | EW | 60 | 2.5 | 12 | 11 | 12 | 30 | EW | 60 | 2.5 | 4 | 9 | 6 |
15 | NESW | 60 | 1.5 | 8 | 5 | 9 | 31 | NESW | 60 | 1.5 | 16 | 7 | 15 |
16 | SENW | 60 | 0.5 | 4 | 7 | 6 | 32 | SENW | 60 | 0.5 | 12 | 5 | 12 |
General Simulation Settings | Parameter |
---|---|
Location | Busan, South Korea: 35.05° N, 128.35° E |
Simulation dates | 13–14 August 2016 |
Nesting grids | 5 |
Grid size | 2 m × 2 m × 2 m |
Initial wind speed | 2.8 m/s |
Wind direction (N = 0°, E = 90°…) | 200° |
Roughness length | 0.1 |
Lateral boundary conditions | Forced using TA and RH (Table 5) |
Time | 0:00 | 1:00 | 2:00 | 3:00 | 4:00 | 5:00 | 6:00 | 7:00 |
TA (°C) | 29.7 | 29.4 | 28.9 | 28.6 | 28.7 | 28.8 | 28.6 | 29.5 |
RH (%) | 62.5 | 65.3 | 69.1 | 70.9 | 70.0 | 71.2 | 71.6 | 69.2 |
Time | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 |
TA (°C) | 31.2 | 33.0 | 34.3 | 35.1 | 36.6 | 36.4 | 35.7 | 34.5 |
RH (%) | 63.1 | 57.8 | 54.5 | 51.8 | 47.5 | 49.4 | 51.7 | 56.2 |
Time | 16:00 | 17:00 | 18:00 | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 |
TA (°C) | 34.0 | 32.9 | 32.6 | 31.3 | 30.7 | 30.5 | 30.5 | 30.3 |
RH (%) | 57.0 | 62.6 | 63.6 | 68.2 | 70.5 | 71.9 | 70.1 | 69.4 |
Measurement Instruments | Parameter Measured | Accuracy |
---|---|---|
Testo CO₂ probe (digital) with Bluetooth®, including a temperature and humidity sensor | TA | ±0.5 °C |
RH | ±3%RH (10 to 35%RH) ±2%RH (35 to 65%RH) ±3%RH (65 to 90%RH) ±5%RH (remaining range) | |
Testo 417 | WVEL | ±(0.1 m/s + 1.5% of mv) |
Testo 440 | Data logger | Logging interval: 1 s to 16 min |
Site | Current Layout | ENVI-Met Model |
---|---|---|
Nampodong | ||
Centum City |
District | Nampodong | Centum City |
---|---|---|
Location in ENVI-met | Busan, South Korea: 35.05° N, 128.35° E | |
Simulation dates | 28~29 July 2022 | 05~06 August 2022 |
Analysis time | 06:00~18:00, 29 July 2022 | 06:00~18:00, 06 August 2022 |
Nesting grids | 5 | |
Grid size | 2 m × 2 m × 2 m | |
TA and RH | Meteorological data from ASOS | |
Initial wind speed | 3.6 m/s | 2.6 m/s |
Wind direction (N = 0°, E = 90°…) | 180° | 90° |
Roughness length | 0.1 | 0.1 |
Lateral boundary conditions | Full forcing |
Nampodong | Point 1 | Point 2 | Point 3 | Point-4 |
Fisheye image | ||||
SVFreal | 0.43 | 0.22 | 0.46 | 0.26 |
SVFmodel | 0.42 | 0.23 | 0.46 | 0.24 |
Centum City | Point 1 | Point 2 | Point 3 | Point-4 |
Fisheye image | ||||
SVFreal | 0.13 | 0.40 | 0.44 | 0.14 |
SVFmodel | 0.15 | 0.38 | 0.49 | 0.16 |
Factor | Os | Ws | Hb/Ws | Dbt | Dt | Ht | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
8:00 | 24.795 | 0.000 | 1.010 | 0.428 | 39.262 | 0.000 | 0.723 | 0.561 | 4.194 | 0.037 | 0.638 | 0.608 |
9:00 | 21.185 | 0.000 | 0.676 | 0.586 | 163.524 | 0.000 | 0.313 | 0.816 | 5.896 | 0.014 | 3.516 | 0.057 |
10:00 | 26.570 | 0.000 | 3.103 | 0.076 | 300.111 | 0.000 | 0.270 | 0.845 | 7.038 | 0.008 | 11.970 | 0.001 |
11:00 | 10.566 | 0.002 | 6.828 | 0.009 | 144.112 | 0.000 | 0.312 | 0.816 | 4.064 | 0.040 | 5.645 | 0.016 |
12:00 | 11.177 | 0.002 | 6.650 | 0.010 | 123.280 | 0.000 | 0.480 | 0.703 | 4.876 | 0.024 | 4.944 | 0.023 |
13:00 | 27.973 | 0.000 | 12.258 | 0.001 | 200.661 | 0.000 | 0.645 | 0.604 | 4.751 | 0.026 | 6.111 | 0.012 |
14:00 | 26.168 | 0.000 | 25.321 | 0.000 | 263.025 | 0.000 | 0.744 | 0.550 | 4.096 | 0.039 | 4.561 | 0.029 |
15:00 | 38.915 | 0.000 | 31.189 | 0.000 | 349.979 | 0.000 | 1.962 | 0.184 | 5.675 | 0.016 | 5.170 | 0.021 |
16:00 | 45.142 | 0.000 | 29.800 | 0.000 | 342.313 | 0.000 | 2.129 | 0.160 | 7.508 | 0.006 | 2.982 | 0.083 |
17:00 | 26.008 | 0.000 | 17.997 | 0.000 | 205.829 | 0.000 | 0.772 | 0.536 | 5.116 | 0.021 | 0.944 | 0.456 |
18:00 | 15.415 | 0.000 | 12.365 | 0.001 | 108.858 | 0.000 | 0.338 | 0.799 | 4.131 | 0.038 | 0.447 | 0.725 |
Factor | Difference | F | p-Value |
---|---|---|---|
Os | 0.5 | 11.047 | 0.002 |
Ws | 0.5 | 8.832 | 0.004 |
Hb/Ws | 0.5 | 11.952 | 0.001 |
Dbt | 0.3 | 3.416 | 0.061 |
Dt | 0.2 | 1.306 | 0.326 |
Ht | 0.1 | 1.045 | 0.414 |
Factor | Os | Ws | Hb/Ws | Dbt | Dt | Ht | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
8:00 | 30.648 | 0.000 | 2.357 | 0.133 | 43.061 | 0.000 | 2.589 | 0.111 | 5.843 | 0.014 | 2.329 | 0.136 |
9:00 | 21.240 | 0.000 | 3.838 | 0.046 | 91.971 | 0.000 | 2.235 | 0.147 | 5.033 | 0.022 | 3.083 | 0.077 |
10:00 | 7.748 | 0.006 | 7.362 | 0.007 | 50.425 | 0.000 | 0.427 | 0.738 | 3.270 | 0.067 | 6.711 | 0.009 |
11:00 | 3.201 | 0.071 | 3.747 | 0.049 | 16.722 | 0.000 | 0.077 | 0.971 | 0.887 | 0.481 | 1.841 | 0.203 |
12:00 | 4.633 | 0.028 | 7.316 | 0.007 | 52.581 | 0.000 | 0.086 | 0.966 | 2.470 | 0.122 | 3.542 | 0.056 |
13:00 | 10.075 | 0.002 | 20.460 | 0.000 | 146.193 | 0.000 | 0.183 | 0.905 | 3.727 | 0.049 | 11.930 | 0.001 |
14:00 | 16.795 | 0.000 | 27.143 | 0.000 | 147.296 | 0.000 | 0.414 | 0.747 | 5.959 | 0.013 | 4.907 | 0.024 |
15:00 | 22.193 | 0.000 | 9.095 | 0.003 | 113.378 | 0.000 | 1.220 | 0.353 | 5.026 | 0.022 | 2.336 | 0.135 |
16:00 | 20.728 | 0.000 | 4.800 | 0.025 | 100.720 | 0.000 | 1.286 | 0.332 | 5.186 | 0.020 | 1.293 | 0.330 |
17:00 | 23.720 | 0.000 | 1.433 | 0.291 | 31.960 | 0.000 | 1.375 | 0.306 | 4.334 | 0.034 | 1.613 | 0.248 |
18:00 | 1.832 | 0.205 | 1.253 | 0.342 | 21.962 | 0.000 | 0.230 | 0.874 | 4.789 | 0.026 | 0.081 | 0.969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, Y.; Li, S.; Wu, Q.; Lee, T.; Yoon, S. Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment. Energies 2024, 17, 2223. https://doi.org/10.3390/en17092223
Wu J, Wang Y, Li S, Wu Q, Lee T, Yoon S. Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment. Energies. 2024; 17(9):2223. https://doi.org/10.3390/en17092223
Chicago/Turabian StyleWu, Jindong, Yu Wang, Shuhua Li, Qitao Wu, Taecheol Lee, and Seonghwan Yoon. 2024. "Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment" Energies 17, no. 9: 2223. https://doi.org/10.3390/en17092223
APA StyleWu, J., Wang, Y., Li, S., Wu, Q., Lee, T., & Yoon, S. (2024). Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment. Energies, 17(9), 2223. https://doi.org/10.3390/en17092223