Forecasting Oil Prices with Non-Linear Dynamic Regression Modeling
Abstract
:1. Introduction
2. Methodology: Combining the Generalized Additive Model with the Linear Transfer Function
3. Data and Preliminary Results
3.1. Data Input Selection
- (i)
- Balance in the physical market (FUN):
- (ii)
- Speculation in the crude oil market (FIN):
- (iii)
- Realized Volatility (VOL):
- (iv)
- U.S. Dollar (DXY):
3.2. Descriptive Statistics
4. Model Identification and Empirical Results
4.1. Preliminary Analysis
4.2. Sensitivity Analysis
4.3. Forecasting Results
5. Oil Price Scenario Generation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Raw Variable | Frequency | History | Source | Model Variable |
---|---|---|---|---|
Brent | Monthly (average daily data) | from January 1995 | Bloomberg | Fundamental Variable |
Log(Brent) | ||||
Total World Production | Monthly | from January 1995 | U.S. Energy Information Administration | Fundamental Variable |
OPEC Production | ||||
Spare OPEC Production | ||||
Total World Consumption | ||||
OECD Consumption | ||||
China Consumption | ||||
OECD Commercial Inventory | ||||
OECD Total Inventory | ||||
Stocks Consumption Ratio | ||||
Long non-commercial Futures | Monthly (average weekly data) | from January 1995 | Commodity Futures Trading Commission | Financial Variable |
Short non-commercial Futures | ||||
Net non-commercial Futures | ||||
Open Interest Futures | ||||
Long non-commercial F&O | from March 1995 | |||
Short non-commercial F&O | ||||
Net non-commercial F&O | ||||
Open Interest F&O | ||||
DXY | Monthly (average daily data) | from January 1995 | Bloomberg | Dollar |
USD/EUR | ||||
Implied Volatility | Monthly (average daily data) | from January 1995 | Bloomberg | Volatility |
Realized Volatility | Price |
Model Variable (Equation) | Raw Variable | Frequency | History | Source |
---|---|---|---|---|
Fundamental Variable (7) | Total Crude Oil Supply (World) | Monthly | From January 1995 | U.S. Energy Information Administration |
Total Crude Oil Demand (World) | ||||
Total Commercial OECD Stocks | ||||
Financial Variable (8) | Non-Commercial Long Futures WTI | Monthly (average weekly data) | From January 1995 | Commodity Futures Trading Commission |
Non-Commercial Short Futures WTI | ||||
Open Interest Futures WTI | ||||
Volatility Realized | Price First Brent Contract | Monthly (average daily data) | From January 1995 | Price |
Dollar | DXY Index | Monthly (average daily data) | From January 1995 | Bloomberg |
Brent | Log(Brent) | Total World Production | OPEC Production | Spare OPEC Production | Total World Consumption | OECD Consumption | China Consumption | OECD Commercial Inventory | OECD Total Inventory | Stocks Consumption Ratio | Fundamental Variable | Long Non-Commercial Futures | Short Non-Commercial Futures | Net Non-Commercial Futures | Open Interest Futures | Long Non-Commercial F&O | Short Non-Commercial F&O | Net Non-Commercial F&O | Open Interest F&O | Financial Variable Futures | Financial Variable F&O | DXY | USD/EUR | Implied Volatility | Realized Volatility | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brent | 1.00 | 0.96 | 0.63 | 0.66 | −0.15 | 0.66 | −0.15 | 0.60 | 0.00 | 0.36 | −0.79 | −0.81 | 0.51 | 0.53 | 0.41 | 0.61 | 0.53 | 0.46 | 0.48 | 0.73 | 0.44 | 0.36 | −0.57 | 0.55 | −0.23 | −0.24 |
Log(Brent) | 0.96 | 1.00 | 0.74 | 0.74 | −0.16 | 0.77 | −0.10 | 0.70 | 0.11 | 0.49 | −0.86 | −0.89 | 0.60 | 0.64 | 0.49 | 0.71 | 0.62 | 0.56 | 0.56 | 0.81 | 0.51 | 0.45 | −0.52 | 0.49 | −0.18 | −0.21 |
Total World Production | 0.63 | 0.74 | 1.00 | 0.80 | −0.17 | 0.98 | −0.22 | 0.96 | 0.58 | 0.79 | −0.79 | −0.80 | 0.90 | 0.73 | 0.81 | 0.92 | 0.90 | 0.70 | 0.85 | 0.87 | 0.80 | 0.78 | −0.11 | 0.08 | 0.00 | 0.02 |
OPEC Production | 0.66 | 0.74 | 0.80 | 1.00 | −0.56 | 0.78 | 0.03 | 0.65 | 0.35 | 0.63 | −0.71 | −0.72 | 0.64 | 0.76 | 0.49 | 0.70 | 0.66 | 0.73 | 0.56 | 0.77 | 0.53 | 0.48 | −0.38 | 0.35 | −0.08 | −0.06 |
Spare OPEC Production | −0.15 | −0.16 | −0.17 | −0.56 | 1.00 | −0.12 | −0.41 | 0.05 | 0.20 | 0.07 | 0.26 | 0.29 | 0.05 | −0.13 | 0.11 | 0.02 | 0.04 | −0.16 | 0.09 | −0.01 | 0.08 | 0.09 | 0.18 | −0.16 | 0.08 | −0.01 |
Total World Consumption | 0.66 | 0.77 | 0.98 | 0.78 | −0.12 | 1.00 | −0.13 | 0.95 | 0.55 | 0.77 | −0.84 | −0.80 | 0.89 | 0.74 | 0.79 | 0.92 | 0.89 | 0.70 | 0.84 | 0.87 | 0.78 | 0.77 | −0.14 | 0.10 | −0.06 | −0.06 |
OECD Consumption | −0.15 | −0.10 | −0.22 | 0.03 | −0.41 | −0.13 | 1.00 | −0.38 | −0.45 | −0.36 | −0.16 | −0.01 | −0.43 | −0.14 | −0.47 | −0.36 | −0.42 | −0.18 | −0.45 | −0.29 | −0.50 | −0.46 | 0.06 | −0.07 | −0.06 | −0.13 |
China Consumption | 0.60 | 0.70 | 0.96 | 0.65 | 0.05 | 0.95 | −0.38 | 1.00 | 0.64 | 0.80 | −0.72 | −0.71 | 0.93 | 0.68 | 0.87 | 0.95 | 0.93 | 0.65 | 0.91 | 0.86 | 0.85 | 0.85 | −0.09 | 0.07 | −0.01 | 0.00 |
OECD Commercial Inventory | 0.00 | 0.11 | 0.58 | 0.35 | 0.20 | 0.55 | −0.45 | 0.64 | 1.00 | 0.88 | −0.02 | −0.05 | 0.71 | 0.57 | 0.65 | 0.65 | 0.70 | 0.61 | 0.64 | 0.54 | 0.65 | 0.66 | 0.16 | −0.17 | 0.15 | 0.14 |
OECD Total Inventory | 0.36 | 0.49 | 0.79 | 0.63 | 0.07 | 0.77 | −0.36 | 0.80 | 0.88 | 1.00 | −0.38 | −0.41 | 0.85 | 0.81 | 0.73 | 0.85 | 0.85 | 0.81 | 0.76 | 0.81 | 0.75 | 0.74 | −0.16 | 0.13 | 0.07 | 0.05 |
Stocks Consumption Ratio | −0.79 | −0.86 | −0.79 | −0.71 | 0.26 | −0.84 | −0.16 | −0.72 | −0.02 | −0.38 | 1.00 | 0.93 | −0.60 | −0.56 | −0.51 | −0.68 | −0.61 | −0.47 | −0.58 | −0.71 | −0.51 | −0.49 | 0.27 | −0.24 | 0.13 | 0.14 |
Fundamental Variable | −0.81 | −0.89 | −0.80 | −0.72 | 0.29 | −0.80 | −0.01 | −0.71 | −0.05 | −0.41 | 0.93 | 1.00 | −0.59 | −0.56 | −0.50 | −0.67 | −0.60 | −0.48 | −0.56 | −0.73 | −0.50 | −0.46 | 0.28 | −0.26 | 0.02 | 0.04 |
Long non-commercial Futures | 0.51 | 0.60 | 0.90 | 0.64 | 0.05 | 0.89 | −0.43 | 0.93 | 0.71 | 0.85 | −0.60 | −0.59 | 1.00 | 0.67 | 0.96 | 0.97 | 1.00 | 0.66 | 0.98 | 0.85 | 0.94 | 0.93 | −0.13 | 0.10 | −0.10 | −0.05 |
Short non-commercial Futures | 0.53 | 0.64 | 0.73 | 0.76 | −0.13 | 0.74 | −0.14 | 0.68 | 0.57 | 0.81 | −0.56 | −0.56 | 0.67 | 1.00 | 0.44 | 0.73 | 0.68 | 0.96 | 0.52 | 0.83 | 0.49 | 0.47 | −0.35 | 0.32 | 0.14 | 0.10 |
Net non-commercial Futures | 0.41 | 0.49 | 0.81 | 0.49 | 0.11 | 0.79 | −0.47 | 0.87 | 0.65 | 0.73 | −0.51 | −0.50 | 0.96 | 0.44 | 1.00 | 0.90 | 0.95 | 0.44 | 0.99 | 0.72 | 0.95 | 0.95 | −0.03 | 0.00 | −0.18 | −0.10 |
Open Interest Futures | 0.61 | 0.71 | 0.92 | 0.70 | 0.02 | 0.92 | −0.36 | 0.95 | 0.65 | 0.85 | −0.68 | −0.67 | 0.97 | 0.73 | 0.90 | 1.00 | 0.97 | 0.70 | 0.94 | 0.93 | 0.86 | 0.84 | −0.21 | 0.19 | −0.09 | −0.05 |
Long non-commercial F&O | 0.53 | 0.62 | 0.90 | 0.66 | 0.04 | 0.89 | −0.42 | 0.93 | 0.70 | 0.85 | −0.61 | −0.60 | 1.00 | 0.68 | 0.95 | 0.97 | 1.00 | 0.67 | 0.98 | 0.86 | 0.94 | 0.92 | −0.15 | 0.12 | −0.11 | −0.06 |
Short non-commercial F&O | 0.46 | 0.56 | 0.70 | 0.73 | −0.16 | 0.70 | −0.18 | 0.65 | 0.61 | 0.81 | −0.47 | −0.48 | 0.66 | 0.96 | 0.44 | 0.70 | 0.67 | 1.00 | 0.49 | 0.77 | 0.51 | 0.47 | −0.30 | 0.27 | 0.10 | 0.09 |
Net non-commercial F&O | 0.48 | 0.56 | 0.85 | 0.56 | 0.09 | 0.84 | −0.45 | 0.91 | 0.64 | 0.76 | −0.58 | −0.56 | 0.98 | 0.52 | 0.99 | 0.94 | 0.98 | 0.49 | 1.00 | 0.79 | 0.95 | 0.95 | −0.08 | 0.06 | −0.16 | −0.10 |
Open Interest F&O | 0.73 | 0.81 | 0.87 | 0.77 | −0.01 | 0.87 | −0.29 | 0.86 | 0.54 | 0.81 | −0.71 | −0.73 | 0.85 | 0.83 | 0.72 | 0.93 | 0.86 | 0.77 | 0.79 | 1.00 | 0.70 | 0.65 | −0.40 | 0.38 | 0.03 | 0.03 |
Financial Variable Futures | 0.44 | 0.51 | 0.80 | 0.53 | 0.08 | 0.78 | −0.50 | 0.85 | 0.65 | 0.75 | −0.51 | −0.50 | 0.94 | 0.49 | 0.95 | 0.86 | 0.94 | 0.51 | 0.95 | 0.70 | 1.00 | 0.97 | −0.10 | 0.06 | −0.18 | −0.11 |
Financial Variable F&O | 0.36 | 0.45 | 0.78 | 0.48 | 0.09 | 0.77 | −0.46 | 0.85 | 0.66 | 0.74 | −0.49 | −0.46 | 0.93 | 0.47 | 0.95 | 0.84 | 0.92 | 0.47 | 0.95 | 0.65 | 0.97 | 1.00 | −0.03 | 0.00 | −0.18 | −0.12 |
DXY | −0.57 | −0.52 | −0.11 | −0.38 | 0.18 | −0.14 | 0.06 | −0.09 | 0.16 | −0.16 | 0.27 | 0.28 | −0.13 | −0.35 | −0.03 | −0.21 | −0.15 | −0.30 | −0.08 | −0.40 | −0.10 | −0.03 | 1.00 | −0.98 | 0.26 | 0.26 |
USD/EUR | 0.55 | 0.49 | 0.08 | 0.35 | −0.16 | 0.10 | −0.07 | 0.07 | −0.17 | 0.13 | −0.24 | −0.26 | 0.10 | 0.32 | 0.00 | 0.19 | 0.12 | 0.27 | 0.06 | 0.38 | 0.06 | 0.00 | −0.98 | 1.00 | −0.23 | −0.23 |
Implied Volatility | −0.23 | −0.18 | 0.00 | −0.08 | 0.08 | −0.06 | −0.06 | −0.01 | 0.15 | 0.07 | 0.13 | 0.02 | −0.10 | 0.14 | −0.18 | −0.09 | −0.11 | 0.10 | −0.16 | 0.03 | −0.18 | −0.18 | 0.26 | −0.23 | 1.00 | 0.84 |
Realized Volatility | −0.24 | −0.21 | 0.02 | −0.06 | −0.01 | −0.06 | −0.13 | 0.00 | 0.14 | 0.05 | 0.14 | 0.04 | −0.05 | 0.10 | −0.10 | −0.05 | −0.06 | 0.09 | −0.10 | 0.03 | −0.11 | −0.12 | 0.26 | −0.23 | 0.84 | 1.00 |
Log(Brent) | Fundamental Variable | Financial Variable | Dollar | Realized Volatility | |
---|---|---|---|---|---|
Log(Brent) | - | −0.89 | 0.51 | −0.52 | −0.21 |
Fundamental Variable | −0.89 | - | −0.50 | 0.28 | 0.04 |
Financial Variable | 0.51 | −0.50 | - | −0.10 | −0.11 |
Dollar | −0.52 | 0.28 | −0.10 | - | 0.26 |
Realized Volatility | −0.21 | 0.04 | −0.11 | 0.26 | - |
Sequential F-Statistic Determined Breaks: 5 | |||||
---|---|---|---|---|---|
Break Test | F-Statistics | Scaled F-Statistic | Critical Value ** | Break Dates: | Dates: |
0 vs. 1 * | 1080.393 | 1080.393 | 8.58 | 1 | 09 September |
1 vs. 2 * | 75.975 | 75.975 | 10.13 | 2 | 04 October |
2 vs. 3 * | 55.274 | 55.274 | 11.14 | 3 | 10 August |
3 vs. 4 * | 112.946 | 112.946 | 11.83 | 4 | 14 November |
4 vs. 5 * | 23.992 | 23.992 | 12.25 | 5 | 19 April |
Sequential F-Statistic Determined Breaks: 0 | |||
---|---|---|---|
Break Test | F-Statistics | Scaled F-Statistic | Critical Value ** |
0 vs. 1 | 2.321 | 11.605 | 18.23 |
2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | |
---|---|---|---|---|---|---|---|---|---|
Constant | 4.144 | 8.880 | 18.581 | 15.593 | 8.447 | 6.380 | 8.179 | 13.759 | 6.934 |
Futures | 5.636 | 7.773 | 15.878 | 15.226 | 8.143 | 5.323 | 8.619 | 15.330 | 9.668 |
BBG Analysts Median | 3.579 | 5.715 | 9.903 | 15.761 | 14.872 | 7.939 | 3.620 | 8.961 | 6.447 |
Department of Energy EIA | 4.122 | 7.213 | 16.305 | 17.359 | 12.688 | 9.786 | 3.722 | 11.440 | 5.120 |
GAMLTF Forecasted Inputs | 5.233 | 7.560 | 14.174 | 12.368 | 10.994 | 6.288 | 6.422 | 14.046 | 4.808 |
GAMLTF Actual Inputs | 9.409 | 4.215 | 6.703 | 3.854 | 4.197 | 8.550 | 3.273 | 7.585 | 5.452 |
LTF Actual Inputs No GAM | 10.088 | 5.606 | 6.505 | 7.905 | 6.736 | 16.029 | 2.616 | 2.757 | 4.840 |
2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | |
Constant | 7.253 | 16.155 | 16.047 | 22.900 | 16.258 | 17.497 | 23.071 | 22.156 | 16.696 |
Futures | 7.938 | 15.825 | 13.880 | 20.262 | 12.529 | 15.967 | 20.520 | 21.594 | 21.916 |
BBG Analysts Median | 11.110 | 19.716 | 16.965 | 17.981 | 6.908 | 16.904 | 19.816 | 24.502 | 21.498 |
Department of Energy EIA | 6.009 | 18.994 | 15.179 | 18.653 | 15.237 | 12.696 | 18.851 | 20.654 | 20.239 |
GAMLTF Forecasted Inputs | 7.748 | 17.138 | 20.165 | 17.989 | 16.629 | 14.133 | 8.360 | 6.372 | 11.279 |
GAMLTF Actual Inputs | 4.120 | 5.043 | 7.977 | 5.408 | 12.576 | 11.860 | 9.243 | 4.998 | 5.232 |
LTF Actual Inputs No GAM | 12.689 | 35.927 | 44.212 | 40.622 | 16.969 | 18.266 | 13.300 | 7.160 | 10.398 |
2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 | TOTAL | ||
Constant | 22.182 | 23.929 | 24.366 | 20.987 | 31.913 | 7.979 | 3.004 | 17.040 | |
Futures | 25.044 | 24.891 | 24.864 | 7.277 | 11.495 | 5.855 | 3.954 | 15.323 | |
BBG Analysts Median | 27.313 | 28.984 | 23.360 | 10.227 | 14.378 | 13.291 | 9.052 | 16.031 | |
Department of Energy EIA | 26.232 | 25.283 | 24.485 | 10.465 | 11.659 | 10.816 | 3.961 | 15.400 | |
GAMLTF Forecasted Inputs | 15.823 | 12.759 | 15.853 | 30.541 | 27.898 | 8.644 | 5.754 | 14.341 | |
GAMLTF Actual Inputs | 16.721 | 17.960 | 22.357 | 25.347 | 18.111 | 8.847 | 3.981 | 11.123 | |
LTF Actual Inputs No GAM | 10.190 | 9.670 | 11.454 | 40.561 | 37.043 | 9.519 | 6.019 | 20.065 |
References
- Weijermars, R.; Sun, Z. Regression analysis of historic oil prices: A basis for future mean reversion prices scenarios. Glob. Financ. J. 2018, 35, 177–201. [Google Scholar] [CrossRef]
- Fabra, N. Reforming European electricity markets: Lessons from the energy crisis. Energy Econ. 2023, 126, 106963. [Google Scholar] [CrossRef]
- Chuliá, H.; Klein, T.; Mendoza, J.A.M.; Uribe, J.M. Vulnerability of European electricity markets: A quantile connectedness approach. Energy Policy 2024, 184, 113862. [Google Scholar] [CrossRef]
- Cervera, I.; Figuerola-Ferretti, I. Credit risk and bubble behavior of credit default swaps in the corporate energy sector. Int. Rev. Econ. Financ. 2023, 89 Pt A, 702–731. [Google Scholar] [CrossRef]
- Alquist, R.; Kilian, L. What Do We Learn from the Price of Crude Oil Futures? J. Appl. Econom. 2010, 25, 539–573. [Google Scholar] [CrossRef]
- Alquist, R.; Kilian, L.; Vigfusson, R.J. Forecasting the Price of Oil. In Handbook of Economic Forecasting; Elliott, G., Timmermann, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2A, pp. 427–507. [Google Scholar]
- Baumeister, C.; Kilian, L. Real-Time Analysis of Oil Price Risks using Forecast Scenarios. IMF Econ. Rev. 2014, 62, 119–145. [Google Scholar] [CrossRef]
- Baumeister, C.; Kilian, L. Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach. J. Bus. Econ. Stat. 2015, 33, 338–351. [Google Scholar] [CrossRef]
- Ferrari, D.; Ravazzolo, F.; Vespignani, J. Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach. CAMA Working Paper No. 90/2019. Energy Econ. 2021, 98, 105268. [Google Scholar] [CrossRef]
- Coppola, A. Forecasting oil price movements: Exploiting the information in the futures market. J. Futures Mark. 2008, 28, 34–56. [Google Scholar] [CrossRef]
- Aliu, F.; Kučera, J.; Hašková, S. Agricultural Commodities in the Context of the Russia-Ukraine War: Evidence from Corn, Wheat, Barley, and Sunflower Oil. Forecasting 2023, 5, 351–373. [Google Scholar] [CrossRef]
- Henderson, B.J.; Person, N.D.; Wang, L. New Evidence on the Financialization of Commodity Markets. Rev. Financ. Stud. 2015, 8, 1285–1311. [Google Scholar] [CrossRef]
- Singleton, K.J. Investor Flows and the 2008 Boom/Bust in Oil Prices. Manag. Sci. 2014, 60, 300–318. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Wu, J.C. Risk premia in crude oil futures prices. J. Int. Money Financ. 2014, 42, 9–37. [Google Scholar] [CrossRef]
- Cheng, I.; Xiong, W. Financialization of Commodity Markets. Annu. Rev. Financ. Econ. 2014, 6, 419–441. [Google Scholar] [CrossRef]
- Baumeister, C.; Korobilis, D.; Lee, T.K. Energy markets and global economic conditions. Rev. Econ. Stat. 2022, 104, 828–844. [Google Scholar] [CrossRef]
- Figuerola-Ferretti, I.; Rodríguez, A.; Schwartz, E. Oil price analysts’ forecasts. J. Futures Mark. 2021, 41, 1351–1374. [Google Scholar] [CrossRef]
- Miao, H.; Ramchander, S.; Wang, T.; Yang, D. Influential factors in crude oil price forecasting. Energy Econ. 2017, 68, 77–88. [Google Scholar] [CrossRef]
- Chai, J.; Xing, L.M.; Zhou, X.Y.; Zhang, Z.G.; Li, J.X. Forecasting the WTI crude oil price by a hybrid-refined method. Energy Econ. 2018, 71, 114–127. [Google Scholar] [CrossRef]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer Texts in Statistics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Phillips, P.C.B.; Shi, S.-P.; Yu, J. (a) Testing for Multiple Bubbles: Limit Theory of Dating Algorithms. Int. Econ. Rev. 2015, 56, 1043–1098. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Shi, S.-P.; Yu, J. (b) Supplement to two papers on multiple bubbles. Int. Econ. Rev. 2015, 56, 1–99. [Google Scholar]
- Lammerding, M.; Stephan, P.; Trede, M.; Wilfling, B. Speculative bubbles in recent oil price dynamics: Evidence from a Bayesian Markov-switching state-space approach. Energy Econ. 2013, 36, 491–502. [Google Scholar] [CrossRef]
- Svensson, L. Oil prices and ECB monetary policy. In Briefing Paper for the Committee on Economic and Monetary Affairs of the European Parliament; European Parliament: Strasbourg, France, 2005; pp. 1–4. [Google Scholar]
- Wood, S.N.; Goude, Y.; Shaw, S. Generalized additive models for large datasets. J. R. Stat. Soc. 2015, 64, 139–155. [Google Scholar]
- Box, G.; Jenkins, G.; Reinsel, G. Time Series Analysis, Forecasting and Control, 3rd ed.; Prentice Hall: Englwood Cliffs, NJ, USA, 1994. [Google Scholar]
- Liu, L.; Hanssens, D.M. Identification of multiple-input transfer function models. Commun. Stat. Theory Methods 1982, 11, 297–314. [Google Scholar] [CrossRef]
- Figuerola-Ferretti, I.; McCrorie, J.R.; Paraskevopoulos, I. Mild explosivity in recent crude oil prices. Energy Econ. 2020, 87, 104387. [Google Scholar] [CrossRef]
- Figuerola-Ferretti, I.; Gilbert, C.L.; McCrorie, J.R. Testing for mild explosivity and bubbles in LME non-ferrous metals prices. J. Time Ser. Anal. 2015, 36, 763–782. [Google Scholar] [CrossRef]
- Haase, M.; Seiler, Y.; Zimmermann, H. Permanent and transitory price shocks in commodity futures markets and their relation to speculation. Empir. Econ. 2019, 56, 1359–1382. [Google Scholar] [CrossRef]
- Bruno, V.; Büyüksahin, B.; Robe, M.A. The Financialization of Food? Am. J. Agric. Econ. 2017, 99, 243–264. [Google Scholar] [CrossRef]
- Etienne, X.L.; Irwin, S.H.; Garcia, P. Price explosiveness, speculation, and grain futures prices. Am. J. Agric. Econ. 2015, 97, 65–87. [Google Scholar] [CrossRef]
- Calomiris, C.W.; Melek, N.Ç.; Mamaysky, H. Predicting the Oil Market NBER Working Papers 29379; National Bureau of Economic Research: Cambridge, MA, USA, 2021.
- Baumeister, C. Recent Developments in (Modeling) Energy Market Dynamics, Keynote at the Workshop on “Energy and Climate: Macroeconomic Implications”; B.I. Norwegian Business School: Oslo, Norway, 2022. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econ. 1992, 54, 159–178. [Google Scholar]
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Duboue, P. The Art of Feature Engineering: Essentials for Machine Learning; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Garratt, A.; Vahey, S.P.; Zhang, Y. Real-Time Forecast Combinations for the Oil Price. J. Appl. Econom. 2019, 34, 1–22. [Google Scholar] [CrossRef]
- Beckmann, J.; Czudaj, R.; Arora, V. The Relationship between Oil Prices and Exchange Rates: Revisiting theory and evidence. Energy Econ. 2020, 88, 104772. [Google Scholar] [CrossRef]
- Pankratz, A. Forecasting with Dynamic Regression Models; Wiley-Interscience: Hoboken, NJ, USA, 1991. [Google Scholar]
- Kaufmann, R.K.; Ullman, B. Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices. Energy Econ. 2009, 31, 550–558. [Google Scholar] [CrossRef]
Variables | n | Mean | Median | Std | Skew | Kurtosis | Min | Max |
---|---|---|---|---|---|---|---|---|
Brent | 348 | 58.18 | 56.81 | 32.28 | 0.353 | −0.972 | 10.19 | 133.81 |
log(Brent) | 348 | 1.68 | 1.75 | 0.28 | −0.442 | −0.947 | 1.01 | 2.13 |
Fun | 348 | 2.05 | 2.03 | 0.09 | 0.673 | −0.336 | 1.88 | 2.28 |
Fin | 348 | 0.03 | 0.02 | 0.03 | 0.476 | −0.869 | −0.03 | 0.11 |
Vol | 348 | 0.32 | 0.30 | 0.16 | 2.788 | 14.452 | 0.08 | 1.54 |
DXY | 348 | 92.29 | 92.83 | 10.69 | 0.366 | −0.428 | 72.08 | 119.04 |
Variables | Jarque-B | Ljung–Box | ADF | PP | KPSS |
---|---|---|---|---|---|
Brent | 21.06 *** | 338.26 *** | −2.85 | −2.51 | 1.04 *** |
log(Brent) | 24.39 *** | 340.21 *** | −2.51 | −2.22 | 1.38 *** |
Fun | 28.42 *** | 338.99 *** | −3.48 ** | −2.80 | 0.89 *** |
Fin | 24.21 *** | 322.99 *** | −3.19 * | −3.99 *** | 1.04 *** |
Vol | 3489.10 *** | 129.37 *** | −9.15 *** | −9.07 *** | 0.13 |
DXY | 10.49 *** | 339.84 *** | −1.77 | −1.60 | 1.09 *** |
Approximate Significance of Smooth Terms: | |||||
---|---|---|---|---|---|
Variable: | Edf | Ref Edf | F | p-Value | |
Fundamental | 1.00 | 1.00 | 293.16 | <2 × 10−16 | *** |
Financial | 3.015 | 3.985 | 17.20 | 7.5 × 10−13 | *** |
Volatility | 4.385 | 5.471 | 13.34 | 1.57 × 10−12 | *** |
Dollar | 3.713 | 4.900 | 14.34 | 2.11 × 10−12 | *** |
Signif. Codes: 0 ‘***’, 0.001, ‘.’ 0.1″ | |||||
R-sq- (adj) = 0.883 | Deviance explained = 88.8% | ||||
fREML = −637.32 | Scale est. = 0.0035994 | ||||
Box–Pierce test = 294.28, df = 1, p-value < 2.2 × 10−16 |
Approximate Significance of Smooth Terms: | |||||
---|---|---|---|---|---|
Variable: | Estimate | Std Error | Z Value | p-Value | |
ar | 0.268 | 0.057 | 4.741 | 2.12 × 10−16 | *** |
f(Fundamental) | 0.51 | 0.110 | 4.654 | <2 × 10−16 | *** |
f(Financial) | 1.125 | 0.106 | 10.622 | <2.11 × 10−12 | *** |
f(Volatility) | 0.882 | 0.097 | 9.088 | <7.5 × 10−12 | *** |
f(Dollar) | 0.510 | 0.137 | 3.710 | <1.57 × 10−12 | *** |
Signif. Codes: 0 ‘***’, 0.001, ‘.’ 0.1″ | |||||
Box–Pierce test = 0.000040065, df = 1, p-value = 0.984 |
2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | |
---|---|---|---|---|---|---|---|---|---|
Constant | 6.19% | 10.09% | 24.62% | 20.06% | 10.14% | 7.30% | 10.47% | 20.80% | 9.96% |
Futures | 9.84% | 10.29% | 20.53% | 19.21% | 9.45% | 5.91% | 11.75% | 23.31% | 14.37% |
BBG Analysts Median | 6.50% | 8.77% | 12.08% | 20.77% | 19.48% | 8.73% | 3.96% | 13.30% | 9.48% |
Department of Energy EIA | 5.72% | 9.81% | 20.50% | 22.63% | 16.15% | 12.05% | 4.66% | 16.99% | 5.68% |
GAMLTF Forecasted Inputs | 5.78% | 9.75% | 18.72% | 15.58% | 14.05% | 7.10% | 8.49% | 21.33% | 6.41% |
GAMLTF Actual Inputs | 16.11% | 6.15% | 8.86% | 4.80% | 5.78% | 11.45% | 3.86% | 11.30% | 7.72% |
LTF Actual Inputs No GAM | 17.65% | 6.32% | 8.13% | 9.07% | 9.27% | 22.79% | 3.65% | 4.13% | 7.09% |
2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | |
Constant | 9.83% | 29.17% | 34.49% | 54.64% | 24.77% | 22.29% | 30.57% | 28.53% | 15.94% |
Futures | 10.87% | 29.24% | 29.81% | 48.13% | 20.86% | 19.84% | 26.89% | 27.36% | 22.64% |
BBG Analysts Median | 16.04% | 39.54% | 35.67% | 42.36% | 10.02% | 25.24% | 26.14% | 33.24% | 23.26% |
Department of Energy EIA | 7.38% | 37.00% | 32.62% | 43.62% | 32.28% | 16.61% | 25.21% | 24.85% | 20.14% |
GAMLTF Forecasted Inputs | 10.39% | 30.62% | 42.76% | 42.15% | 29.97% | 23.36% | 10.80% | 7.59% | 13.10% |
GAMLTF Actual Inputs | 5.86% | 9.83% | 16.25% | 12.47% | 19.46% | 17.67% | 12.96% | 5.95% | 3.79% |
LTF Actual Inputs No GAM | 14.35% | 63.13% | 93.00% | 94.80% | 27.15% | 27.26% | 17.22% | 8.85% | 13.11% |
2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 | TOTAL | ||
Constant | 16.66% | 21.17% | 22.66% | 20.27% | 36.84% | 8.48% | 3.10% | 19.96% | |
Futures | 19.15% | 21.30% | 23.45% | 6.74% | 13.33% | 5.29% | 4.55% | 18.16% | |
BBG Analysts Median | 23.92% | 26.33% | 22.15% | 5.12% | 16.60% | 14.79% | 10.73% | 18.97% | |
Department of Energy EIA | 19.95% | 20.19% | 23.10% | 10.64% | 13.21% | 12.29% | 3.86% | 18.29% | |
GAMLTF Forecasted Inputs | 11.98% | 9.50% | 13.59% | 32.05% | 32.49% | 8.98% | 5.86% | 17.30% | |
GAMLTF Actual Inputs | 11.72% | 14.91% | 21.22% | 26.12% | 20.87% | 9.29% | 4.12% | 11.54% | |
LTF Actual Inputs No GAM | 8.31% | 8.27% | 9.96% | 43.39% | 42.51% | 11.08% | 5.30% | 23.03% |
No-Change | Futures | BBG | Department of Energy EIA | GAMLTF with Forecasted Inputs | GAMLTF with Actual Inputs | LTF with Actual Inputs No GAM | |
---|---|---|---|---|---|---|---|
1Q Forecast | 8.1% | 11.6% | 10.2% | 9.5% | 7.7% | 6.0% | 8.2% |
2Q Forecast | 19.8% | 21.3% | 18.2% | 19.5% | 17.7% | 11.0% | 23.1% |
3Q Forecast | 24.8% | 25.0% | 22.6% | 22.2% | 21.1% | 12.0% | 31.3% |
4Q Forecast | 30.4% | 28.8% | 26.9% | 27.2% | 25.1% | 12.5% | 39.4% |
1st Quarter Forecast | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 Quarter Rolling from | 2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 |
to | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 |
Futures | 1.28 | 1.167 | 1.317 | 1.447 | 1.35 | 1.447 | 1.568 | 1.595 | 1.712 | 1.589 | 1.629 | 1.434 | 1.135 | 1.272 | 0.927 | 0.937 | 1.115 | 0.930 | 0.892 | 0.943 |
BBG | 1.511 | 1.62 | 1.204 | 1.283 | 1.158 | 1.17 | 1.029 | 0.749 | 0.89 | 1.152 | 1.181 | 1.150 | 1.346 | 2.095 | 1.914 | 1.371 | 1.818 | 1.507 | 1.550 | 1.571 |
DoE | 1.281 | 1.295 | 1.231 | 1.316 | 1.196 | 1.191 | 1.145 | 0.836 | 1.309 | 1.386 | 1.448 | 1.123 | 1.134 | 1.605 | 0.655 | 0.645 | 0.682 | 0.609 | 0.630 | 0.643 |
GAMLTF Forecasted Inputs | 1.024 | 1.011 | 0.999 | 1.013 | 0.993 | 0.893 | 0.774 | 0.736 | 0.854 | 1.138 | 1.061 | 0.956 | 1.224 | 1.810 | 1.256 | 0.848 | 1.198 | 1.386 | 1.127 | 1.018 |
GAMLTF Actual Inputs | 0.878 | 0.746 | 0.651 | 0.661 | 0.77 | 0.745 | 0.796 | 0.567 | 0.649 | 0.726 | 0.709 | 0.707 | 0.595 | 0.821 | 0.658 | 0.665 | 0.799 | 0.763 | 0.787 | 0.838 |
LTF Actual Imputs no GAM | 1.423 | 1.187 | 0.899 | 0.931 | 0.897 | 0.765 | 0.474 | 0.72 | 0.993 | 1.139 | 1.104 | 1.048 | 1.255 | 1.637 | 1.388 | 0.919 | 1.518 | 1.916 | 1.951 | 1.857 |
2nd Quarter Forecast | ||||||||||||||||||||
6 Quarter Rolling from | 2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 |
to | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 |
Futures | 1.155 | 1.178 | 1.143 | 1.204 | 1.276 | 1.316 | 1.457 | 1.072 | 1.03 | 0.995 | 0.963 | 0.968 | 0.935 | 0.964 | 1.011 | 1.027 | 0.930 | 0.769 | 0.654 | 0.645 |
BBG | 1.093 | 0.951 | 0.816 | 0.832 | 0.905 | 0.89 | 0.891 | 0.918 | 0.864 | 0.955 | 0.899 | 0.889 | 0.909 | 1.050 | 1.243 | 1.165 | 1.083 | 0.864 | 0.884 | 0.906 |
DoE | 1.216 | 1.173 | 1.051 | 1.064 | 1.063 | 1.048 | 0.908 | 0.898 | 1.005 | 0.996 | 0.961 | 0.914 | 0.948 | 1.071 | 0.917 | 0.964 | 0.914 | 0.762 | 0.755 | 0.760 |
GAMLTF Forecasted Inputs | 0.873 | 0.935 | 0.939 | 0.931 | 1.006 | 0.966 | 1.104 | 0.992 | 1.016 | 1.11 | 0.997 | 0.883 | 0.889 | 0.826 | 0.649 | 0.562 | 0.749 | 0.915 | 0.802 | 0.843 |
GAMLTF Actual Inputs | 0.795 | 0.583 | 0.512 | 0.57 | 0.616 | 0.693 | 0.714 | 0.449 | 0.446 | 0.475 | 0.521 | 0.456 | 0.388 | 0.535 | 0.538 | 0.555 | 0.649 | 0.740 | 0.792 | 0.869 |
LTF Actual Imputs no GAM | 1.078 | 0.876 | 0.663 | 0.696 | 0.572 | 0.631 | 0.921 | 1.522 | 1.629 | 1.77 | 1.625 | 1.413 | 1.298 | 0.777 | 0.617 | 0.469 | 0.684 | 1.030 | 1.026 | 1.038 |
3rd Quarter Forecast | ||||||||||||||||||||
6 Quarter Rolling from | 2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 |
to | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 |
Futures | 1.089 | 1.026 | 1.047 | 1.152 | 1.214 | 1.425 | 1.097 | 1.05 | 0.983 | 0.956 | 0.943 | 0.877 | 0.906 | 0.958 | 1.024 | 1.051 | 0.949 | 0.790 | 0.646 | 0.578 |
BBG | 0.878 | 0.757 | 0.784 | 0.996 | 1.118 | 1.075 | 1.05 | 1.044 | 0.963 | 0.947 | 0.9 | 0.888 | 0.867 | 0.962 | 1.109 | 1.115 | 0.980 | 0.800 | 0.787 | 0.742 |
DoE | 1.075 | 0.995 | 0.973 | 0.943 | 0.824 | 0.879 | 0.828 | 0.861 | 0.904 | 0.904 | 0.898 | 0.868 | 0.906 | 0.972 | 0.985 | 1.038 | 1.002 | 0.844 | 0.819 | 0.750 |
GAMLTF Forecasted Inputs | 0.861 | 0.876 | 0.904 | 0.922 | 1.012 | 0.978 | 1.094 | 1.009 | 1.043 | 1.049 | 0.928 | 0.817 | 0.662 | 0.620 | 0.521 | 0.443 | 0.645 | 0.780 | 0.831 | 0.909 |
GAMLTF Actual Inputs | 0.616 | 0.402 | 0.445 | 0.597 | 0.806 | 0.763 | 0.503 | 0.394 | 0.449 | 0.494 | 0.454 | 0.406 | 0.376 | 0.479 | 0.474 | 0.462 | 0.625 | 0.703 | 0.828 | 0.835 |
LTF Actual Imputs no GAM | 0.715 | 0.435 | 0.445 | 0.63 | 0.858 | 1.27 | 1.815 | 2.027 | 2.053 | 1.965 | 1.73 | 1.540 | 1.065 | 0.672 | 0.548 | 0.410 | 0.654 | 0.824 | 0.796 | 0.958 |
4th Quarter Forecast | ||||||||||||||||||||
6 Quarter Rolling from | 2017Q1 | 2017Q2 | 2017Q3 | 2017Q4 | 2018Q1 | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 |
to | 2018Q2 | 2018Q3 | 2018Q4 | 2019Q1 | 2019Q2 | 2019Q3 | 2019Q4 | 2020Q1 | 2020Q2 | 2020Q3 | 2020Q4 | 2021Q1 | 2021Q2 | 2021Q3 | 2021Q4 | 2022Q1 | 2022Q2 | 2022Q3 | 2022Q4 | 2023Q1 |
Futures | 0.871 | 0.885 | 0.901 | 0.95 | 1.197 | 1.095 | 1.065 | 1.012 | 0.976 | 0.957 | 0.875 | 0.863 | 0.912 | 0.970 | 1.028 | 1.068 | 0.954 | 0.786 | 0.750 | 0.665 |
BBG | 0.781 | 0.728 | 0.745 | 0.876 | 1.034 | 1.051 | 1.063 | 1.051 | 0.981 | 0.95 | 0.889 | 0.805 | 0.818 | 0.881 | 1.028 | 1.083 | 0.925 | 0.779 | 0.710 | 0.641 |
DoE | 0.998 | 0.889 | 0.859 | 0.76 | 0.687 | 0.89 | 0.924 | 0.955 | 0.938 | 0.93 | 0.92 | 0.853 | 0.852 | 0.894 | 0.972 | 1.058 | 1.003 | 0.848 | 0.832 | 0.749 |
GAMLTF Forecasted Inputs | 0.925 | 0.832 | 0.858 | 0.873 | 0.954 | 0.975 | 1.042 | 0.985 | 0.979 | 0.937 | 0.835 | 0.675 | 0.503 | 0.514 | 0.413 | 0.371 | 0.576 | 0.700 | 0.851 | 0.929 |
GAMLTF Actual Inputs | 0.578 | 0.434 | 0.449 | 0.488 | 0.568 | 0.395 | 0.312 | 0.321 | 0.385 | 0.394 | 0.367 | 0.367 | 0.418 | 0.484 | 0.458 | 0.503 | 0.682 | 0.762 | 0.861 | 0.882 |
LTF Actual Imputs no GAM | 0.849 | 0.714 | 0.59 | 0.674 | 1.236 | 1.76 | 1.944 | 1.963 | 1.985 | 1.864 | 1.679 | 1.253 | 0.825 | 0.615 | 0.506 | 0.426 | 0.610 | 0.708 | 0.824 | 0.916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, P.; Figuerola-Ferretti, I.; Muñoz, A. Forecasting Oil Prices with Non-Linear Dynamic Regression Modeling. Energies 2024, 17, 2182. https://doi.org/10.3390/en17092182
Moreno P, Figuerola-Ferretti I, Muñoz A. Forecasting Oil Prices with Non-Linear Dynamic Regression Modeling. Energies. 2024; 17(9):2182. https://doi.org/10.3390/en17092182
Chicago/Turabian StyleMoreno, Pedro, Isabel Figuerola-Ferretti, and Antonio Muñoz. 2024. "Forecasting Oil Prices with Non-Linear Dynamic Regression Modeling" Energies 17, no. 9: 2182. https://doi.org/10.3390/en17092182
APA StyleMoreno, P., Figuerola-Ferretti, I., & Muñoz, A. (2024). Forecasting Oil Prices with Non-Linear Dynamic Regression Modeling. Energies, 17(9), 2182. https://doi.org/10.3390/en17092182