Advances in Numerical Heat Transfer and Fluid Flow
1. Introduction
2. Review of New Advances
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, O. On the dynamical theory on incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. 1895, 186, 123–164. [Google Scholar] [CrossRef]
- Prandtl, L. Bemerkung uber den warmeubergang in rohr. Phys. Z. 1928, 29, 487–489. [Google Scholar]
- Karman, T. Mechanische ähnlichkeit und turbulenz. Nachr. Gesselsch. Wiss. Göttingen Math. Phys. 1930, 322, 58–76. [Google Scholar]
- Karman, T. Some aspects of the theory of turbulent motion. In Proceedings of the Fourth International Congress for Applied Mechanics, Cambridge, UK, 3–9 July 1934. [Google Scholar]
- Kolmogorov, A.N. Equations of turbulent motion of an incompressible fluid. Izviestia AN SSSR Ser. Fiz. 1942, VI, 56–58. [Google Scholar]
- Van Driest, E.R. On turbulent flow near a wall. J. Aeronaut. Sci. 1956, 23, 1007–1011. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. Heat and Mass Transfer in Boundary Layers; Morgan-Grampian: London, UK, 1967. [Google Scholar]
- Spalding, D.B. Turbulence Models for Heat Transfer; Report HTS/78/2; Department of Mechanical Engineering, Imperial College London: London, UK, 1978. [Google Scholar]
- Spalding, D.B. Turbulence Models—A Lecture Course; Report HTS/82/4; Department of Mechanical Engineering, Imperial College London: London, UK, 1983. [Google Scholar]
- Holešová, N.; Lenhard, R.; Kaduchová, K.; Holubčík, M. Application of Particle Image Velocimetry and Computational Fluid Dynamics Methods for analysis of natural convection over a horizontal heating source. Energies 2023, 16, 4066. [Google Scholar] [CrossRef]
- Ahn, J. Large Eddy Simulation of flow and heat transfer in a ribbed channel for the internal cooling passage of a gas turbine blade: A Review. Energies 2023, 16, 3656. [Google Scholar] [CrossRef]
- Kim, M.-K.; Chang, C.-H.; Nam, S.-H.; Yoon, H.-S. Large Eddy Simulation of forced convection around wavy cylinders with different axes. Energies 2024, 17, 894. [Google Scholar] [CrossRef]
- Usov, L.; Troshin, A.; Anisimov, K.; Sabelnikov, V. Calibration of a near-wall differential Reynolds Stress Model using the updated Direct Numerical Simulation data and its assessment. Energies 2023, 16, 6826. [Google Scholar] [CrossRef]
- Jakirlić, S.; Maduta, R. Extending the bounds of ‘steady’ RANS closures: Toward an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 2015, 51, 175–194. [Google Scholar] [CrossRef]
- Estupinan-Campos, J.; Quitiaquez, W.; Nieto-Londono, C.; Quitiaquez, P. Numerical simulation of the heat transfer inside a shell and tube heat exchanger considering different variations in the geometric parameters of the design. Energies 2024, 17, 691. [Google Scholar] [CrossRef]
- Biçer, N.; Engin, T.; Yaşar, H.; Büyükkaya, E.; Aydın, A.; Topuz, A. Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and Taguchi method. Int. J. Therm. Sci. 2020, 155, 106417. [Google Scholar] [CrossRef]
- Afsahnoudeh, R.; Wortmeier, A.; Holzmüller, M.; Gong, Y.; Homberg, W.; Kenig, E.Y. Thermo-hydraulic performance of pillowplate heat exchangers with secondary structuring: A numerical analysis. Energies 2023, 16, 7284. [Google Scholar] [CrossRef]
- Bartosik, A.S. Effect of the solid particle diameter on frictional loss and heat exchange in a turbulent slurry flow: Experiments and predictions in a vertical pipe. Energies 2023, 16, 6451. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, K.; Kan, Q.; Yin, H.; Sun, Q. Ul-tra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling. Appl. Phys. Lett. 2019, 115, 093902. [Google Scholar] [CrossRef]
- Tušek, J.; Engelbrecht, K.; Mikkelsen, L.P.; Pryds, N. Elastocaloric effect of Ni-Ti wire for application in a cooling device. J. Appl. Phys. 2015, 117, 124901. [Google Scholar] [CrossRef]
- Wang, R.; Fang, S.; Xiao, Y.; Gao, E.; Jiang, N.; Li, Y.; Mou, L.; Shen, Y.; Zhao, W.; Li, S.; et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 2019, 366, 216–221. [Google Scholar] [CrossRef]
- Greibich, F.; Schwödiauer, R.; Mao, G.; Wirthl, D.; Drack, M.; Baumgartner, R.; Kogler, A.; Stadlbauer, J.; Bauer, S.; Arnold, N.; et al. Elastocaloric heat pump with specific cooling power of 20.9 Wg–1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 2021, 6, 260–267. [Google Scholar] [CrossRef]
- Ahcin, Ž.; Kabirifar, P.; Porenta, L.; Brojan, M.; Tušek, J. Numerical modeling of shell-and-tube-like elastocaloric regenerator. Energies 2022, 15, 9253. [Google Scholar] [CrossRef]
- Zhu, Y.; Tsuruta, R.; Gupta, R.; Nam, T. Feasibility investigation of attitude control with shape memory alloy actuator on a tethered wing. Energies 2023, 16, 5691. [Google Scholar] [CrossRef]
- Cirillo, L.; Greco, A.; Masselli, C. Cooling through barocaloric effect: A review of the state of the art up to 2022. Therm. Sci. Eng. Prog. 2022, 33, 101380. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor com-pression cooler. Energy 2020, 190, 116404. [Google Scholar] [CrossRef]
- Cirillo, L.; Greco, A.; Masselli, C. The Application of Barocaloric Solid-State Cooling in the Cold Food Chain for Carbon Footprint Reduction. Energies 2023, 16, 6436. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, G.; Zhao, J.; Gu, L. Heat production capacity simulation and parameter sensitivity analysis in the process of thermal reservoir development. Energies 2023, 16, 7258. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Liu, Y.; Sheng, C.; Cheng, X.; Chen, Z. Optical analysis of a hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique. Sci. China Technol. Sci. 2013, 56, 1387–1394. [Google Scholar] [CrossRef]
- Liu, M.; Du, M.; Long, G.; Wang, H.; Qin, W.; Zhang, D.; Ye, S.; Liu, S.; Shi, J.; Liang, Z.; et al. Iron/Quinone-based all-in-one solar rechargeable flow cell for highly efficient solar energy conversion and storage. Nano Energy 2020, 76, 104907. [Google Scholar] [CrossRef]
- Lu, L.; Tian, R.; Han, X. Optimization of nanofluid flow and temperature uniformity in the spectral beam splitting module of PV/T system. Energies 2023, 16, 4666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartosik, A.S. Advances in Numerical Heat Transfer and Fluid Flow. Energies 2024, 17, 2108. https://doi.org/10.3390/en17092108
Bartosik AS. Advances in Numerical Heat Transfer and Fluid Flow. Energies. 2024; 17(9):2108. https://doi.org/10.3390/en17092108
Chicago/Turabian StyleBartosik, Artur S. 2024. "Advances in Numerical Heat Transfer and Fluid Flow" Energies 17, no. 9: 2108. https://doi.org/10.3390/en17092108
APA StyleBartosik, A. S. (2024). Advances in Numerical Heat Transfer and Fluid Flow. Energies, 17(9), 2108. https://doi.org/10.3390/en17092108