Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review
Abstract
:1. Introduction
2. Historical Overview of Offshore Energy Asset Safety and Reliability
2.1. Developments in Offshore Energy
2.2. Offshore Wind Energy
2.3. Reliability Methods
2.4. Discussion on Recent Developments
3. Advances in DT Development for FOWTs
3.1. Introduction to DT
3.2. DT for Offshore Wind
3.3. Data Acquisition and Integration
3.4. Modelling and Simulation
4. Application of DT on Safety and Reliability
4.1. Real-Time Monitoring and Predictive Analytics
4.2. Further Discussions
- (1)
- A well-defined objective for the DT to meaningfully support engineering decisions.
- (2)
- Strategically designed observations, considering associated costs.
- (3)
- Resolution of boundary conditions subject to parametric variability or uncertainty to allow the reconstruction of structural loads.
- (4)
- A simulator or surrogate model enabling uncertainty propagation in near real-time, feasible with desktop computational resources.
- (5)
- Updatability of the simulator form and parameters based on observations of the physical system.
- (6)
- Interpretability of the simulation model, with a preference for physics-informed simulators.
5. Challenges and Future Directions
6. Summary
- (1)
- First and foremost, there is a critical need to unify data and model standards, along with the development of universal platforms and tools. This standardisation will facilitate seamless data exchange and interoperability among different stakeholders and systems within the offshore wind sector.
- (2)
- Additionally, the establishment of an accessible database for data and model sharing is essential to promote collaboration, transparency, and innovation across the industry.
- (3)
- Furthermore, thorough examinations of data quality and dedicated validation campaigns are imperative to ensure the accuracy and reliability of DT models. Integrating IoT technologies and leveraging ROM techniques will enhance the efficiency and scalability of DT applications.
- (4)
- Investing in computational infrastructure, including fog, cloud, and edge computing, will provide the necessary computational power to support real-time analytics and decision-making processes.
- (5)
- Finally, advanced cyber-security protocols need to be implemented to safeguard DT systems and data from potential cyber threats, ensuring the integrity and confidentiality of sensitive information in the offshore wind environment. By embracing these recommendations, the offshore wind industry can unlock the transformative potential of DT technology, driving innovation, efficiency, and sustainability in wind energy operations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS | American Bureau of Shipping |
AI | Artificial Intelligence |
API | American Petroleum Institute |
ANN | Artificial Neural Network |
BIM | Building Information Modelling |
CAD | Computer-Aided Design |
CDF | Cognite Data Fusion |
CFD | Computational Fluid Dynamics |
CM | Condition Monitoring |
DNV | Det Norske Veritas |
DOF | Degrees of Freedom |
DT | Digital Twin |
ERP | Enterprise Resource Planning |
FE | Finite Element |
FEA | Finite Element Analysis |
FEM | Finite Element Method |
FOM | Full Order Model |
FORM | First Order Reliability Method |
FOSM | First Order Second Moment |
FOWT | Floating Offshore Wind Turbines |
GWEC | Global Wind Energy Council |
IGBT | Insulated-Gate Bipolar Transistor |
IMM | Information Mirroring Model |
IoT | Internet of Things |
IRENA | International Renewable Energy Association |
ISM | International Safety Management |
LIMS | Laboratory Information Management System |
MCS | Monte Carlo Simulation |
ML | Machine Learning |
MR | Mixed Reality |
MSM | Mirrored Spaces Model |
NASA | National Aeronautics and Space Administration |
NFC | Near Field Communication |
NREL | National Renewable Energy Laboratory |
OC4 | Offshore Code Comparison Collaboration Continuation |
O&M | Operation and Maintenance |
OWF | Offshore Wind Farm |
OWT | Offshore Wind Turbine |
PDE | Partial Differential Equation |
PDEF | Pipeline Data Exchange Format |
PLM | Product Lifecycle Management |
PM | Plant Maintenance |
PSF | Partial Safety Factor |
RB | Reduced Basis |
ROM | Reduced Order Modelling |
RSM | Response Surface Method |
RUL | Remaining Useful Life |
SATH | Swinging Around Twin Hull |
SCADA | Supervisory Control and Data Acquisition |
SDG | Sustainable Development Goals |
SIGMA | Subsea Integrity Graph Management Application |
SHM | Structural Health Monitoring |
SORM | Second Order Reliability Method |
TLP | Tension Leg Platform |
UWB | Ultra Wideband |
VR | Virtual Reality |
WO | Work Order |
WoS | Web of Science |
XML | Extensible Markup Language |
References
- Voigt, C. The power of the Paris Agreement in international climate litigation. Rev. Eur. Comp. Int. Environ. Law 2023, 32, 237–249. [Google Scholar] [CrossRef]
- Miller, A.; Atakhanov, A.; Guliyev, M.; Azizov, T.; Huseynova, K.H. The economic effect of the measures provided for by the Kyoto Protocol by region (as of the 2020s). Sci. Horiz. 2023, 26, 136–145. [Google Scholar] [CrossRef]
- Jansen, M.; Staffell, I.; Kitzing, L.; Quoilin, S.; Wiggelinkhuizen, E.; Bulder, B.; Riepin, I.; Müsgens, F. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 2020, 5, 614–622. [Google Scholar] [CrossRef]
- Zavvar, E.; Abdelwahab, H.S.; Uzunoglu, E.; Chen, B.Q.; Guedes Soares, C. Stress distribution on the preliminary structural design of the CENTEC-TLP under still water and wave-induced loads. J. Mar. Sci. Eng. 2023, 11, 951. [Google Scholar] [CrossRef]
- Global Wind Energy Council. GWEC Global Wind Report 2023; GWEC: Brussels, Belgium, 2023. [Google Scholar]
- International Renewable Energy Association. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (a Global Energy Transformation Paper); IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, C.; Hnydiuk-Stefan, A.; Feng, S.; Atilla, I.; Li, Z. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions. Ocean Eng. 2021, 232, 109168. [Google Scholar] [CrossRef]
- Karlõševa, A.; Nõmmann, S.; Nõmmann, T.; Urbel-Piirsalu, E.; Budziński, W.; Czajkowski, M.; Hanley, N. Marine trade-offs: Comparing the benefits of offshore wind farms and marine protected areas. Energy Econ. 2016, 55, 127–134. [Google Scholar] [CrossRef]
- Kang, J.; Sun, L.; Guedes Soares, C. Fault Tree Analysis of floating offshore wind turbines. Renew. Energy 2019, 133, 1455–1467. [Google Scholar] [CrossRef]
- Branlard, E.; Jonkman, J.; Brown, C.; Zang, J. A digital-twin solution for floating offshore wind turbines validated using a full-scale prototype. Wind Energy Sci. 2023, 9, 1–24. [Google Scholar] [CrossRef]
- Liu, Y.; Fontanella, A.; Wu, P.; Ferrari, R.M.; van Wingerden, J.W. Fault detection of the mooring system in floating offshore wind turbines based on the wave-excited linear model. J. Phys. Conf. Ser. 2020, 1618, 022049. [Google Scholar] [CrossRef]
- Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, W.; Dong, W.; Gao, Z.; Ren, Z. Structural reliability analysis of wind turbines: A review. Energies 2017, 10, 2099. [Google Scholar] [CrossRef]
- Gentils, T.; Wang, L.; Kolios, A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl. Energy 2017, 199, 187–204. [Google Scholar] [CrossRef]
- Tran, T.T.; Kim, D.H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach. Renew. Energy 2016, 92, 244–261. [Google Scholar] [CrossRef]
- Salvação, N.; Guedes Soares, C. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 2018, 145, 276–287. [Google Scholar] [CrossRef]
- Li, H.; Díaz, H.; Guedes Soares, C. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Eng. 2021, 234, 109261. [Google Scholar] [CrossRef]
- Yeter, B.; Garbatov, Y. Optimal life extension management of offshore wind farms based on the modern portfolio theory. Oceans 2021, 2, 566–582. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.D.J. Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- van der Tempel, J.; Diepeveen, N.F.B.; Salzmann, D.J.C.; de Vries, W.E. Design of support structures for offshore wind turbines. In Wind Power Generation and Wind Turbine Design; Tong, W., Ed.; WIT Press: Southampton, UK, 2010; Volume 44, pp. 559–591. [Google Scholar] [CrossRef]
- Chen, B.Q.; Videiro, P.M.; Guedes Soares, C. Opportunities and challenges to develop digital twins for subsea pipelines. J. Mar. Sci. Eng. 2022, 10, 739. [Google Scholar] [CrossRef]
- Bull, A.S.; Love, M.S. Worldwide oil and gas platform decommissioning: A review of practices and reefing options. Ocean Coast. Manag. 2019, 168, 274–306. [Google Scholar] [CrossRef]
- Parra, F. Oil Politics: A Modern History of Petroleum; I.B. Tauris: London, UK, 2003. [Google Scholar]
- Cullen, L. The public inquiry into the Piper Alpha disaster. Drill. Contract. 1993, 49, 43–190. [Google Scholar]
- Paté-Cornell, M.E. Learning from the Piper Alpha accident: A postmortem analysis of technical and organizational factors. Risk Anal. 1993, 13, 215–232. [Google Scholar] [CrossRef]
- Covello, V.T.; Mumpower, J. Risk analysis and risk management: An historical perspective. Risk Anal. 1985, 5, 103–120. [Google Scholar] [CrossRef]
- Dionne, G. Risk management: History, definition, and critique. Risk Manag. Insur. Rev. 2013, 16, 147–166. [Google Scholar] [CrossRef]
- Batalden, B.M.; Sydnes, A.K. Maritime safety and the ISM code: A study of investigated casualties and incidents. WMU J. Marit. Aff. 2014, 13, 3–25. [Google Scholar] [CrossRef]
- Bhattacharya, S. The effectiveness of the ISM Code: A qualitative enquiry. Mar. Policy 2012, 36, 528–535. [Google Scholar] [CrossRef]
- Moan, T. Reliability-based management of inspection, maintenance and repair of offshore structures. Struct. Infrastruct. Eng. 2005, 1, 33–62. [Google Scholar] [CrossRef]
- Snyder, B.; Kaiser, M.J. Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 2009, 34, 1567–1578. [Google Scholar] [CrossRef]
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef]
- Green, R.; Vasilakos, N. The economics of offshore wind. Energy Policy 2011, 39, 496–502. [Google Scholar] [CrossRef]
- Rodrigues, S.; Restrepo, C.; Kontos, E.; Pinto, R.T.; Bauer, P. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 2015, 49, 1114–1135. [Google Scholar] [CrossRef]
- Beyer, J.; Trannum, H.C.; Bakke, T.; Hodson, P.V.; Collier, T.K. Environmental effects of the Deepwater Horizon oil spill: A review. Mar. Pollut. Bull. 2016, 110, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Joye, S.B. Deepwater Horizon, 5 years on. Science 2015, 349, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adcock, T.; Jiang, Z.; Gao, Z.; Lin, Z.; et al. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef]
- Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Dagher, H.; Gueydon, S.; Qvist, J.; Vittori, F.; Azcona, J.; Uzunoglu, E.; et al. OC5 project phase II: Validation of global loads of the DeepCwind floating semisubmersible wind turbine. Energy Procedia 2017, 137, 38–57. [Google Scholar] [CrossRef]
- Tian, Z.; Huang, J.; Xiang, J.; Zhang, S. Suspension and transportation of sediments in submarine canyon induced by internal solitary waves. Phys. Fluids 2024, 36, 022112. [Google Scholar] [CrossRef]
- Wang, L.; Kolios, A.; Liu, X.; Venetsanos, D.; Cai, R. Reliability of offshore wind turbine support structures: A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 161, 112250. [Google Scholar] [CrossRef]
- American Petroleum Institute. API RP 2A-WSD: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design, 22nd ed.; API: Washington, DC, USA, 2014. [Google Scholar]
- Det Norske Veritas. DNV-ST-0126: Support Structures for Wind Turbines; DNV: Oslo, Norway, 2021. [Google Scholar]
- American Bureau of Shipping. Guide for Building and Classing Floating Offshore Wind Turbine Installations; ABS: Houston, TX, USA, 2020. [Google Scholar]
- Guedes Soares, C.; Garbatov, Y. Reliability of maintained, corrosion protected plates subjected to non-linear corrosion and compressive loads. Mar. Struct. 1999, 12, 425–445. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Guedes Soares, C.; Netto, T.A.; Estefen, S.F. Reliability of pipelines with corrosion defects. Int. J. Press. Vessel. Pip. 2008, 85, 228–237. [Google Scholar] [CrossRef]
- Leimeister, M.; Kolios, A. A review of reliability-based methods for risk analysis and their application in the offshore wind industry. Renew. Sustain. Energy Rev. 2018, 91, 1065–1076. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Ono, T. A general procedure for first/second-order reliability method (FORM/SORM). Struct. Saf. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Billinton, R.; Wang, P. Teaching distribution system reliability evaluation using Monte Carlo simulation. IEEE Trans. Power Syst. 1999, 14, 397–403. [Google Scholar] [CrossRef]
- Naess, A.; Leira, B.J.; Batsevych, O. System reliability analysis by enhanced Monte Carlo simulation. Struct. Saf. 2009, 31, 349–355. [Google Scholar] [CrossRef]
- Jang, D.; Kim, K.; Kim, K.H.; Kang, S. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant. Energy Convers. Manag. 2022, 263, 115695. [Google Scholar] [CrossRef]
- Song, C.; Kawai, R. Monte Carlo and variance reduction methods for structural reliability analysis: A comprehensive review. Probab. Eng. Mech. 2023, 73, 103479. [Google Scholar] [CrossRef]
- Det Norske Veritas. Notes No. 30.6: Structural Reliability Analysis of Marine Structures; DNV: Oslo, Norway, 1992. [Google Scholar]
- Stacey, A.; Sharp, J.V. Safety factor requirements for the offshore industry. Eng. Fail. Anal. 2007, 14, 442–458. [Google Scholar] [CrossRef]
- Yoon, G.L.; Kim, S.B.; Kwon, O.S.; Yoo, M.S. Partial safety factor of offshore wind turbine pile foundation in West-South Mainland Sea. KSCE J. Civ. Environ. Eng. Res. 2014, 34, 1489–1504. [Google Scholar]
- Kar, S.S.; Roy, L.B. Probabilistic based reliability slope stability analysis using FOSM, FORM, and MCS. Eng. Technol. Appl. Sci. Res. 2022, 12, 8236–8240. [Google Scholar] [CrossRef]
- Youn, B.D.; Choi, K.K. A new response surface methodology for reliability-based design optimization. Comput. Struct. 2004, 82, 241–256. [Google Scholar] [CrossRef]
- Goswami, S.; Ghosh, S.; Chakraborty, S. Reliability analysis of structures by iterative improved response surface method. Struct. Saf. 2016, 60, 56–66. [Google Scholar] [CrossRef]
- Hurtado, J.E.; Alvarez, D.A. Neural-network-based reliability analysis: A comparative study. Comput. Methods Appl. Mech. Eng. 2001, 191, 113–132. [Google Scholar] [CrossRef]
- Chojaczyk, A.A.; Teixeira, A.P.; Neves, L.C.; Cardoso, J.B.; Guedes Soares, C. Review and application of Artificial Neural Networks models in reliability analysis of steel structures. Struct. Saf. 2015, 52, 78–89. [Google Scholar] [CrossRef]
- Afshari, S.S.; Enayatollahi, F.; Xu, X.; Liang, X. Machine learning-based methods in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2022, 219, 108223. [Google Scholar] [CrossRef]
- Cai, B.; Sheng, C.; Gao, C.; Liu, Y.; Shi, M.; Liu, Z.; Feng, Q.; Liu, G. Artificial intelligence enhanced reliability assessment methodology with small samples. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6578–6590. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of manufacturing. IFACPapersOnLine 2015, 48, 567–572. [Google Scholar] [CrossRef]
- Grieves, M. Virtually intelligent product systems: Digital and physical twins. In Complex Systems Engineering: Theory and Practice; Flumerfelt, S., Schwartz, K.G., Mavris, D., Briceno, S., Eds.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019; pp. 175–200. [Google Scholar]
- Mandolla, C.; Petruzzelli, A.M.; Percoco, G.; Urbinati, A. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Comput. Ind. 2019, 109, 134–152. [Google Scholar] [CrossRef]
- Damjanovic-Behrendt, V. A digital twin-based privacy enhancement mechanism for the automotive industry. In Proceedings of the 2018 International Conference on Intelligent Systems, Funchal, Portugal, 25–27 September 2018; IEEE: New York, NY, USA, 2018; pp. 272–279. [Google Scholar]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pan, Z.; Deen, M.J. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Bilberg, A.; Malik, A.A. Digital twin driven human-robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [Google Scholar] [CrossRef]
- Ruohomäki, T.; Airaksinen, E.; Huuska, P.; Kesäniemi, O.; Martikka, M.; Suomisto, J. Smart city platform enabling digital twin. In Proceedings of the 2018 International Conference on Intelligent Systems, Funchal, Portugal, 25–27 September 2018; IEEE: New York, NY, USA, 2018; pp. 155–161. [Google Scholar]
- Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Tuegel, E. The airframe digital twin: Some challenges to realization. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Maher, D. On software standards and solutions for a trusted Internet of Things. In Proceedings of the 51st Hawaii International Conference on System Sciences, Honolulu, HI, USA, 3–6 January 2018. [Google Scholar]
- Panetta, K. Gartner Top 10 Strategic Technology Trends for 2019. Available online: https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/ (accessed on 17 April 2024).
- Son, Y.H.; Kim, G.Y.; Kim, H.C.; Jun, C.; Noh, S.D. Past, present, and future research of digital twin for smart manufacturing. J. Comput. Des. Eng. 2022, 9, 1–23. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wang, P.; Liu, Q. Bibliometric analysis of digital twin literature: A review of influencing factors and conceptual structure. Technol. Anal. Strateg. Manag. 2024, 36, 166–180. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Chen, B.Q.; Videiro, P.M.; Guedes Soares, C. Review of digital twin of ships and offshore structures. In Developments in Maritime Technology and Engineering; CRC Press: London, UK, 2021; pp. 445–451. [Google Scholar]
- Tao, F.; Zhang, M.; Nee, A.Y.C. Five-dimension digital twin modeling and its key technologies. Digit. Twin Driven Smart Manuf. 2019, 63–81. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, T.; Deng, X.; Liu, Z.; Tan, J. Digital twin: A state-of-the-art review of its enabling technologies, applications and challenges. J. Intell. Manuf. Spec. Equip. 2021, 2, 1–34. [Google Scholar] [CrossRef]
- Sivalingam, K.; Sepulveda, M.; Spring, M.; Davies, P. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In Proceedings of the 2nd International Conference on Green Energy and Applications, Singapore, 24–26 March 2018; pp. 197–204. [Google Scholar]
- DNV GL. 2020/1022: How Digital Tools and Solutions Can Improve Subsea Integrity Management; Report No. 2020-1137, Rev. 0; DNV GL: Oslo, Norway, 2020. [Google Scholar]
- Cameron, D.B.; Falk, K.; Kokkula, S.S. Towards Digital Requirements for Transformation in the Natural Resources Industries. White Paper from the DSYNE Network Workshop (Video Conference), 9th–10th February 2021. Available online: https://www.duo.uio.no/bitstream/handle/10852/89024/1/V2%2B2021-02-22%2BWhite%2BPaper%2BWorkshop%2BSummary.pdf (accessed on 17 April 2024).
- Laviron, I.; Montjean, T.; Cocault-Duverger, V.; Santos Holtman, M.; Sicilia Gaillard, C.; Hoj-Hansen, J.; Mélou, J.; Cooper, D.; Pomie, L. PDEF: A subsea pipeline data interchange format crafted by the industry for the industry. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022. [Google Scholar]
- Knezevic, D.; Fakas, E.; Riber, H.J. Predictive digital twins for structural integrity management and asset life extension—JIP concept and results. In Proceedings of the SPE Offshore Europe Conference and Exhibition, OE 2019, Aberdeen, UK, 3–6 September 2019; pp. 1–6. [Google Scholar]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- LeBlanc, B.; Ferreira, C. Experimental characterization of H-VAWT turbine for development of a digital twin. J. Phys. Conf. Ser. 2020, 1452, 012057. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Sharma, P.; Knezevic, D.; Huynh, P.; Malinowski, G. RB-FEA based digital twin for structural integrity assessment of Offshore structures. In Proceedings of the Annual Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018; Volume 4, pp. 2942–2947. [Google Scholar]
- Offshore Magazine. Shell Secures Digital Twin Needs. 2020. Available online: https://www.offshore-mag.com/production/article/14189087/shell-secures-digital-twin-needs-with-akselos-framework-agreement (accessed on 22 February 2024).
- Offshore Magazine. Akselos, BEPA form Offshore Wind Partnership. 2021. Available online: https://www.offshore-mag.com/renewable-energy/article/14203832/akselos-bepa-form-offshore-wind-partnership (accessed on 22 February 2024).
- Offshore Magazine. Digital Twin Technology Improves Offshore Wind Jacket Design. 2021. Available online: https://www.offshore-mag.com/renewable-energy/article/14206660/digital-twin-technology-improves-offshore-wind-jacket-design (accessed on 22 February 2024).
- Offshore Magazine. Akselos Gets $16.5 Million in Funding from Investors. 2022. Available online: https://www.offshore-mag.com/renewable-energy/article/14276432/akselos-gets-165-million-in-funding-from-investors (accessed on 22 February 2024).
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [Google Scholar] [CrossRef]
- Kane, M.B. Machine learning control for floating offshore wind turbine individual blade pitch control. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 237–241. [Google Scholar]
- Jiménez, A.A.; Zhang, L.; Muñoz, C.Q.G.; Márquez, F.P.G. Maintenance management based on machine learning and nonlinear features in wind turbines. Renew. Energy 2020, 146, 316–328. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep learning method for fault detection of wind turbine converter. Appl. Sci. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lee, C.Y.; Chen, C.R.; Hsu, K.W.; Tseng, H.T. Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology. IEEE Trans. Ind. Appl. 2013, 50, 2071–2080. [Google Scholar] [CrossRef]
- Mitchell, D.; Blanche, J.; Harper, S.; Lim, T.; Gupta, R.; Zaki, O.; Tang, W.; Robu, V.; Watson, S.; Flynn, D. A review: Challenges and opportunities for artificial intelligence and robotics in the offshore wind sector. Energy AI 2022, 8, 100146. [Google Scholar] [CrossRef]
- Garcia Marquez, F.P.; Peinado Gonzalo, A. A comprehensive review of artificial intelligence and wind energy. Arch. Comput. Methods Eng. 2022, 29, 2935–2958. [Google Scholar] [CrossRef]
- Ciuriuc, A.; Rapha, J.I.; Guanche, R.; Domínguez-García, J.L. Digital tools for floating offshore wind turbines (FOWT): A state of the art. Energy Rep. 2022, 8, 1207–1228. [Google Scholar] [CrossRef]
- GE Renewable Energy. Digital Wind Farm: The Next Evolution of Wind Energy. 2016. Available online: https://docplayer.net/20878994-Ge-renewable-energy-digital-wind-farm-the-next-evolution-of-wind-energy-www-ge-com-wind.html (accessed on 22 February 2024).
- Det Norske Veritas. Windgemini Digital Twin for Wind Turbine Operations. 2019. Available online: https://www.dnv.com/power-renewables/services/data-analytics/windgemini/windgemini-service.html (accessed on 22 February 2024).
- Gambhava, D.; Gräfe, M. D6.5 Use-Case Demonstration into O&M Platform. 2021. Available online: https://www.romeoproject.eu/wp-content/uploads/2020/11/ROMEO_D6.5_Use-case-demonstration-into-OM-Platform.pdf (accessed on 22 February 2024).
- Det Norske Veritas. RaPiD—Models. 2020. Available online: https://rapid-models.dnv.com/ (accessed on 22 February 2024).
- Walker, J.; Coraddu, A.; Collu, M.; Oneto, L. Digital twins of the mooring line tension for floating offshore wind turbines to improve monitoring, lifespan, and safety. J. Ocean Eng. Mar. Energy 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Augustyn, D.; Ulriksen, M.D.; Sørensen, J.D. Reliability updating of offshore wind substructures by use of digital twin information. Energies 2021, 14, 5859. [Google Scholar] [CrossRef]
- Augustyn, D.; Smolka, U.; Tygesen, U.T.; Ulriksen, M.D.; Sørensen, J.D. Data-driven model updating of an offshore wind jacket substructure. Appl. Ocean Res. 2020, 104, 102366. [Google Scholar] [CrossRef]
- Augustyn, D.; Pedersen, R.R.; Tygesen, U.T.; Ulriksen, M.D.; Sørensen, J.D. Feasibility of modal expansion for virtual sensing in offshore wind jacket substructures. Mar. Struct. 2021, 79, 103019. [Google Scholar] [CrossRef]
- Xia, J.; Zou, G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean Eng. 2023, 268, 113322. [Google Scholar] [CrossRef]
- Jorgensen, J.; Hodkiewicz, M.; Cripps, E.; Hassan, G.M. Requirements for the application of the Digital Twin Paradigm to offshore wind turbine structures for uncertain fatigue analysis. Comput. Ind. 2023, 145, 103806. [Google Scholar] [CrossRef]
- Li, S.; Brennan, F. Digital twin enabled structural integrity management: Critical review and framework development. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2024; online first. [Google Scholar] [CrossRef]
- Haghshenas, A.; Hasan, A.; Osen, O.; Mikalsen, E.T. Predictive digital twin for offshore wind farms. Energy Inform. 2023, 6, 1. [Google Scholar] [CrossRef]
- Ambarita, E.E.; Karlsen, A.; Scibilia, F.; Hasan, A. Industrial digital twins in offshore wind farms. Energy Inform. 2024, 7, 5. [Google Scholar] [CrossRef]
- Li, S.; Brennan, F. Implementation of digital twin-enabled virtually monitored data in inspection planning. Appl. Ocean Res. 2024, 144, 103903. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Neshat, M.; Sylaios, G.; Garcia, D.A. Marine energy digitalization digital twin’s approaches. Renew. Sustain. Energy Rev. 2024, 191, 114065. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.K.; Gosine, R.G.; James, L.A.; de Silva, O.; Mann, G.K.I.; Warrian, P.J. Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Atalay, M.; Murat, U.; Oksuz, B.; Parlaktuna, A.M.; Pisirir, E.; Testik, M.C. Digital twins in manufacturing: Systematic literature review for physical-digital layer categorization and future research directions. Int. J. Comput. Integr. Manuf. 2022, 35, 679–705. [Google Scholar] [CrossRef]
- Bâra, A.; Oprea, S.V. Enabling coordination in energy communities: A digital twin model. Energy Policy 2024, 184, 113910. [Google Scholar] [CrossRef]
- Li, R.; Chen, B.Q.; Guedes Soares, C. Effect of ovality length on collapse strength of imperfect sandwich pipes due to local buckling. J. Mar. Sci. Eng. 2021, 10, 12. [Google Scholar] [CrossRef]
- Chen, B.Q.; Guedes Soares, C. A simplified model for the effect of weld-induced residual stresses on the axial ultimate strength of stiffened plates. J. Mar. Sci. Appl. 2018, 17, 57–67. [Google Scholar] [CrossRef]
- Wang, S.; Guedes Soares, C. Effects of compressibility, three-dimensionality and air cavity on a free-falling wedge cylinder. Ocean Eng. 2020, 217, 107589. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, G.; Guedes Soares, C. Assessment of three-dimensional effects on slamming load predictions using OpenFoam. Appl. Ocean Res. 2021, 112, 102646. [Google Scholar] [CrossRef]
Challenges | Suggestions/Comments | Reference |
---|---|---|
Data stored in disparate systems | Unify data and model standards, universal platforms and tools | [8,20,65,66,67,68,82,112] |
Limited data accessibility on servers | Establish an accessible database for sharing models and data | [20,69,70,71,85,113,114] |
Data quality assurance and system validation | Examination of data quality and dedicated validation campaign required | [74,75,76,77,78,86,112,115] |
Real-time communication of data and modelling | IoT technologies and ROM | [8,87,88,89,92,103,116] |
Large-scale computation | Computational infrastructure, fog-, cloud-, and edge-computing | [63,79,80,81,88,90,112] |
Cyber security issues | Advanced cyber-security protocols | [22,85,92,106,117,118] |
Social impact | Redistribute the workplace with minimum effects on employment | [22,103,107,116,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-Q.; Liu, K.; Yu, T.; Li, R. Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review. Energies 2024, 17, 1964. https://doi.org/10.3390/en17081964
Chen B-Q, Liu K, Yu T, Li R. Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review. Energies. 2024; 17(8):1964. https://doi.org/10.3390/en17081964
Chicago/Turabian StyleChen, Bai-Qiao, Kun Liu, Tongqiang Yu, and Ruoxuan Li. 2024. "Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review" Energies 17, no. 8: 1964. https://doi.org/10.3390/en17081964
APA StyleChen, B. -Q., Liu, K., Yu, T., & Li, R. (2024). Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review. Energies, 17(8), 1964. https://doi.org/10.3390/en17081964