Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile
Abstract
:1. Introduction and Literature Review
1.1. Demand
1.2. Offer
1.2.1. Increase in the VRE Generation Capacity
1.2.2. Increase in Storage Capacity
1.2.3. Efficiency Improvements in VRE Generation
1.2.4. Distributed Hybrid Generation
1.2.5. Energy Sources’ Complementarity
2. Methodology
Algorithm 1. Pseudocode to compute the daily averages of solar radiation and wind power. |
Receives: Points (set of points to study) vel (hourly 5 m wind speed time series) ghi (hourly solar power time series) Days ← ObtainDaysFromTimeSeries(vel, ghi) Years ← ObtainYearsFromDays(Days) for day in Days: for point in Points: Pot100m_eol[day, point] ← EstimatewindPower(vel[day, cell]) meanPot100m_eol[day, point] ← ComputeDailywindPower(Eol_100m, day, ce point ll) meanGhi[day, point] ← ComputeDailySolarPower(ghi, day, point) for point in Points: for year in Years: windPowerTimeSeriesYear ← windPowerTimeSeriesOfYear(meanPot100m_eol, point, year) SolarPowerTimeSeriesYear ← ExtractSolarPowerTimeSeriesOfYear(meanGhi, point, year) Spearman[point, year] ← computeSpearman(windPowerTimeSeriesYear, SolarPowerTimeSeriesYear) Returns: Spearman (the Spearman’s rank correlation coefficient for each point and year) |
Correlation | Interpretation | Kind of Complementarity |
---|---|---|
−1 a −0.7 | Strong negative | Strong complementarity |
−0.7 a −0.3 | Moderate negative | Moderate complementarity |
−0.3 a 0 | Weak negative | Weak complementarity |
0 | No relationship | No relationship |
0 a 0.3 | Weak positive | Weak correlation |
0.3 a 0.7 | Moderate positive | Moderate correlation |
0.7 a 1 | Strong positive | Strong correlation |
3. Results
3.1. Total Daily Average Temporal Complementarity
- Correlated zones: ranging from latitude 18° S to latitude 36° S, covering 72 points (Zone A). Given the different correlation values for the coast and valleys compared to the mountains, we divided Zone A into two subzones: Zones A1 and A2.
- a.1
- Zone A1: At the coast and valleys, covering 45 points from latitude 18° S to latitude 36° S, there is a moderately positive correlated zone, with a median Spearman’s correlation coefficient of +0.44 and an interquartile range of +0.23 to +0.6.
- a.2
- Zone A2: In the mountain area, 27 analysis points were considered, from latitude 25° S to 33° S. There is weak negative complementarity, with a median of −0.18 and an interquartile range between −0.37 and −0.01.
- Complementary zone: covering 77 points, from latitude 36° S to latitude 51° S, there is weak negative complementarity with a median of −0.18 and interquartile range from −0.33 to −0.07 (Zone B).
- Uncorrelated zone: covering 27 points, from latitude 51° S to latitude 55° S, there is weak positive to no correlation, with a median of +0.05 and an interquartile range from −0.04 to +0.12 (Zone C).
3.2. Daily Average Temporal Complementarity per Year
3.3. Statistical Analysis
3.3.1. Significance Test for Each Point
- -
- Null hypothesis (H0): there is no significant correlation between daily average solar radiation and daily average wind potential.
- -
- Alternative hypothesis (H1): a significant correlation exists between daily average solar radiation and daily average wind potential.
3.3.2. Significance Test per Zone
- -
- Null hypothesis H0: μ = 0.
- -
- Alternative hypothesis H1: μ ≠ 0.
4. Conclusions
- Zone A1 corresponds to the coast and central valleys in the country’s north, from latitude 18° S to latitude 36° S, with moderate positive correlation, median +0.44, and interquartile range from −0.3 to +0.87.
- Zone A2 corresponds to the mountains in the country’s north, ranging from 25° S to latitude 33° S, with weak negative complementarity, median −0.18, and interquartile range from −0.54 to +0.19.
- Zone B, corresponding to the center and south part of the country, from latitude 36° S to latitude 51° S, has moderate negative complementarity, with a median of −0.18 and interquartile range from −0.54 to +0.32.
- Finally, Zone C, located in the very south of the country, from latitude 51° S to latitude 55° S, has a weak positive to null correlation, a median of +0.05, and an interquartile range from −0.1 to +0.29.
- Zone A1 has a stable median, interquartile range, and extreme values for the years considered, i.e., from 2004 to 2016, and negative kurtosis.
- Zone A2 has uniform median and extreme values, but there is dispersion in the interquartile ranges. We also noted that, in most years, it shows positive kurtosis.
- Zone B has a non-uniform median, stable extreme values, and non-stable interquartile ranges.
- Finally, Zone C has a non-uniform median, extreme values, and interquartile range.
- Spatial complementarity,
- The sizing of distributed hybrid generation systems considering the existing complementarity levels,
- The effect of climate change in the wind–solar complementarity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf (accessed on 9 April 2024).
- ONU. Acuerdo de París de la Convención Marco de las Naciones Unidas Sobre el Cambio Climático (UNFCCC). 2015. Available online: https://www.refworld.org.es/docid/602021b64.html (accessed on 9 April 2024).
- IEA. Net Zero Roadmap: A Global Path to Keep the 1.5 °C Target within Reach, IEA, Paris. 2023. Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 9 April 2024).
- Coordinador Eléctrico Nacional. Hoja de Ruta Para una Transición Energética Acelerada, Visión del Coordinador Eléctrico Nacional. 2022. Available online: https://www.coordinador.cl/wp-content/uploads/2022/06/8_digital_Informe_Coordinador_2.5.pdf (accessed on 9 April 2024).
- Generadoras. Boletin Generadoras de Chile-Septiembre 2023. 2023. Available online: https://generadoras.cl/documentos/boletines/boletin-generadoras-de-chile-septiembre-2023 (accessed on 9 April 2024).
- Pérez Odeh, R.; Watts, D. Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market. Renew. Sustain. Energy Rev. 2019, 111, 442–461. [Google Scholar] [CrossRef]
- Ministerio de Energía; Gobierno de Chile. Plan Nacional de Eficiencia Energética 2022–2026. 2022. Available online: https://energia.gob.cl/sites/default/files/eficiencia-energetica_16-nov.pdf (accessed on 9 April 2024).
- International Energy Agency. The Evolution of Energy Efficiency Policy to Support Clean Energy Transitions; OECD: Paris, France, 2023. [Google Scholar] [CrossRef]
- Khan, K.A.; Quamar, M.M.; Al-Qahtani, F.H.; Asif, M.; Alqahtani, M.; Khalid, M. Smart grid infrastructure and renewable energy deployment: A conceptual review of Saudi Arabia. Energy Strategy Rev. 2023, 50, 101247. [Google Scholar] [CrossRef]
- Rey-Costa, E.; Elliston, B.; Green, D.; Abramowitz, G. Firming 100% renewable power: Costs and opportunities in Australia’s National Electricity Market. Renew. Energy 2023, 219, 119416. [Google Scholar] [CrossRef]
- Song, X.; Zhang, H.; Fan, L.; Zhang, Z.; Peña-Mora, F. Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side. Energy 2023, 282, 128976. [Google Scholar] [CrossRef]
- Auguadra, M.; Ribó-Pérez, D.; Gómez-Navarro, T. Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study. Energy 2023, 264, 126275. [Google Scholar] [CrossRef]
- Akrouch, M.A.; Chahine, K.; Faraj, J.; Hachem, F.; Castelain, C.; Khaled, M. Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification. Energy Built Environ. 2023, in press. [CrossRef]
- Al Sumarmad, K.A.; Sulaiman, N.; Wahab, N.I.A.; Hizam, H. Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers. Energies 2022, 15, 303. [Google Scholar] [CrossRef]
- Kharrich, M.; Selim, A.; Kamel, S.; Kim, J. An effective design of hybrid renewable energy system using an improved Archimedes Optimization Algorithm: Acase study of Farafra, Egypt. Energy Convers. Manag. 2023, 283, 116907. [Google Scholar] [CrossRef]
- Naderipour, A.; Kamyab, H.; Klemeš, J.J.; Ebrahimi, R.; Chelliapan, S.; Nowdeh, S.A.; Abdullah, A.; Hedayati Marzbali, M. Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission. Energy 2022, 257, 124679. [Google Scholar] [CrossRef]
- Agajie, T.F.; Ali, A.; Fopah-Lele, A.; Amoussou, I.; Khan, B.; Velasco, C.L.R.; Tanyi, E. A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies 2023, 16, 642. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Pedruzzi, R.; Silva, A.R.; Soares dos Santos, T.; Araujo, A.C.; Cotta Weyll, A.L.; Lago Kitagawa, Y.K.; Nunes da Silva Ramos, D.; Milani de Souza, F.; Almeida Narciso, M.V.; Saraiva Araujo, M.L.; et al. Review of mapping analysis and complementarity between solar and wind energy sources. Energy 2023, 283, 129045. [Google Scholar] [CrossRef]
- Gallardo, R.P.; Ríos, A.M.; Ramírez, J.S. Analysis of the solar and wind energetic complementarity in Mexico. J. Clean. Prod. 2020, 268, 122323. [Google Scholar] [CrossRef]
- Magaña-González, R.C.; Rodríguez-Hernández, O.; Canul-Reyes, D.A. Analysis of seasonal variability and complementarity of wind and solar resources in Mexico. Sustain. Energy Technol. Assess. 2023, 60, 103456. [Google Scholar] [CrossRef]
- Costoya, X.; de Castro, M.; Carvalho, D.; Gómez-Gesteira, M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew. Sustain. Energy Rev. 2023, 173, 113101. [Google Scholar] [CrossRef]
- Guo, Y.; Ming, B.; Huang, Q.; Yang, Z.; Kong, Y.; Wang, X. Variation-based complementarity assessment between wind and solar resources in China. Energy Convers. Manag. 2023, 278, 116726. [Google Scholar] [CrossRef]
- Ren, G.; Wan, J.; Liu, J.; Yu, D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019, 177, 262–275. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Couto, A.; Estanqueiro, A. Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. J. Clean. Prod. 2021, 319, 128728. [Google Scholar] [CrossRef]
- Nogueira, E.C.; Morais, R.C.; Pereira, A.O. Offshore Wind Power Potential in Brazil: Complementarity and Synergies. Energies 2023, 16, 5912. [Google Scholar] [CrossRef]
- Fernandes, P.C.B.; Risso, A.; Beluco, A. Chapter 5—A survey on temporal and spatial complementarity between wind and solar resources along the coast of northeastern Brazil. In Complementarity of Variable Renewable Energy Sources; Jurasz, J., Beluco, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 99–120. [Google Scholar] [CrossRef]
- Beluco, A.; de Souza, P.K.; Krenzinger, A. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renew. Energy 2008, 33, 2157–2165. [Google Scholar] [CrossRef]
- Cantão, M.P.; Bessa, M.R.; Bettega, R.; Detzel, D.H.M.; Lima, J.M. Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps. Renew. Energy 2017, 101, 1215–1225. [Google Scholar] [CrossRef]
- Cantor, D.; Ochoa, A.; Mesa, O. Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series. Sustainability 2022, 14, 8514. [Google Scholar] [CrossRef]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and interannual complementarities of renewable energy sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Poganietz, W.R. Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America. Renew. Energy 2021, 174, 453–467. [Google Scholar] [CrossRef]
- Viviescas, C.; Lima, L.; Diuana, F.A.; Vasquez, E.; Ludovique, C.; Silva, G.N.; Huback, V.; Magalar, L.; Szklo, A.; Lucena, A.F.P.; et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew. Sustain. Energy Rev. 2019, 113, 109232. [Google Scholar] [CrossRef]
- Garcia, M.; Oliva, S. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 2023, 278, 127981. [Google Scholar] [CrossRef]
- Camargo, L.R.; Valdes, J.; Macia, Y.M.; Dorner, W. Assessment of on-site steady electricity generation from renewable energy sources in Chile. Energy Procedia 2019, 158, 1099–1104. [Google Scholar] [CrossRef]
- Vargas-Ferrer, P.; Álvarez-Miranda, E.; Tenreiro, C.; Jalil-Vega, F. Assessing flexibility for integrating renewable energies into carbon neutral multi-regional systems: The case of the Chilean power system. Energy Sustain. Dev. 2022, 70, 442–455. [Google Scholar] [CrossRef]
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef]
- Santabárbara, J. Cálculo del intervalo de confianza para los coeficientes de correlación mediante sintaxis en SPSS. REIRE Rev. D’innovació Recer. Educ. 2019, 12, 1–14. [Google Scholar] [CrossRef]
- IGM. Instituto Geográfico Militar de Chile. Grilla IGM Escala 1:25000 KMZ. Available online: https://www.igm.cl/?page=descargas-gratuitas-igm&menu=1 (accessed on 15 January 2024).
- Zhang, N.; Lu, X.; McElroy, M.B.; Nielsen, C.P.; Chen, X.; Deng, Y.; Kang, C. Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. Appl. Energy 2016, 184, 987–994. [Google Scholar] [CrossRef]
- Wiernga, J. Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteorol 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Canales, F.A.; Acuña, G.J. Chapter 2—Metrics and indices used for the evaluation of energetic complementarity—A review. In Complementarity of Variable Renewable Energy Sources; Jurasz, J., Beluco, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 35–55. [Google Scholar] [CrossRef]
- ArcGIS Pro. Software de Representación Cartográfica SIG 2D, 3D y 4D. Available online: https://www.esri.cl/es-cl/productos/arcgis-pro/overview (accessed on 16 January 2024).
- Delgado, R. Probabilidad y Estadística Para Ciencias e Ingenierias. Delta. 2007. Available online: https://books.google.cl/books?id=xbiCKj0vV6kC (accessed on 9 April 2024).
- Sleeper, A. Minitab Demystified. In Demystified. Mcgraw-Hill. 2011. Available online: https://books.google.cl/books?id=cy6E5R2Zv3kC (accessed on 9 April 2024).
Technology | Power (MW) | % Total |
---|---|---|
Photovoltaic | 8292 | 25.2% |
Wind | 4270 | 13% |
Run-of-the-river hydroelectricity | 4002 | 12.2% |
Dams | 3501 | 10.6% |
Biofuel | 597 | 1.8% |
Solar thermal | 114 | 0.3% |
Geothermal | 95 | 0.3% |
Renewable | 20,871 | 63.5% |
Coal | 4595 | 14% |
Natural gas | 3873 | 11.8% |
Derived from oil | 3541 | 10.8% |
Thermal | 12,009 | 36.5% |
Total | 32,880 |
Point | α Value | Kind of Terrain |
---|---|---|
1–37 | 0.005 | Featureless land with negligible cover |
38–63 | 0.03 | Flat terrain with grass or shallow vegetation |
64–83 | 0.1 | Cultivated area, low crops, occasional obstacles separated by more than 20 times the obstacles height H |
84–176 | 0.5 | Heavily used landscape with open spaces = 10 H, bushes, low orchards, young dense forest |
Point | Zone | ρc | ρ |
---|---|---|---|
11 | A1 | 0.028 | 0.014 |
26 | A2 | 0.028 | 0.011 |
60 | A1 | 0.028 | 0.028 |
67 | A1 | 0.028 | 0.009 |
77 | B | 0.028 | 0.027 |
85 | B | 0.028 | 0.022 |
168 | B | 0.028 | 0.006 |
175 | C | 0.028 | 0.025 |
176 | C | 0.028 | 0.001 |
Sample (Zone) | N | Mean | σ | Mean’s Standard Error | 95% CI for μ |
---|---|---|---|---|---|
A1 | 45 | 0.4227 | 0.2790 | 0.0416 | (0.3389; 0.5066) |
A2 | 27 | −0.1948 | 0.2102 | 0.0404 | (−0.2779; −0.1116) |
B | 77 | −0.1793 | 0.1860 | 0.0212 | (−0.2215; −0.1371) |
C | 27 | 0.0502 | 0.1057 | 0.0204 | (0.0084; 0.0921) |
Sample | T-Value | p-Value |
A1 | 10.17 | 4.018 × 10−13 |
A2 | −4.82 | 5.469 × 10−5 |
B | −8.46 | 1.466 × 10−12 |
C | 2.47 | 2.043 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Pincheira, J.L.; Salazar, L.; Sanhueza, F.; Lüer-Villagra, A. Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile. Energies 2024, 17, 1890. https://doi.org/10.3390/en17081890
Muñoz-Pincheira JL, Salazar L, Sanhueza F, Lüer-Villagra A. Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile. Energies. 2024; 17(8):1890. https://doi.org/10.3390/en17081890
Chicago/Turabian StyleMuñoz-Pincheira, José Luis, Lautaro Salazar, Felipe Sanhueza, and Armin Lüer-Villagra. 2024. "Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile" Energies 17, no. 8: 1890. https://doi.org/10.3390/en17081890
APA StyleMuñoz-Pincheira, J. L., Salazar, L., Sanhueza, F., & Lüer-Villagra, A. (2024). Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile. Energies, 17(8), 1890. https://doi.org/10.3390/en17081890