Dynamic Management of Flexibility in Distribution Networks through Sensitivity Coefficients
Abstract
:1. Introduction
2. Basis for the Development of the DNNC Algorithm
2.1. Problem Formulation and Improved Usage of Sensitivity Theory in LV Networks
Sensitivity Theory Use Case Example
3. Flexibility and Distribution Network’s Operating Criteria
4. Application Example
4.1. Network Data
4.2. Simulation Results
4.2.1. First Scenario
- Whether the network operated within operating criteria after determining the new active power set points of individual PV.
- The required computational time of the method.
4.2.2. Second Scenario
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component | Parameter | Value | Component | Parameter | Value |
---|---|---|---|---|---|
MV/LV TR | S | 100 kVA 4% 1.73 kW 20/0.4 kV | Line 15 @22-17 | R X l | 0.443 ohm/km 0.080 ohm/km 0.234 km |
Line 1 @3-2 | R X l | 0.442 ohm/km 0.079 ohm/km 0.223 km | Line 16 @17-18 | R X l | 0.868 ohm/km 0.083 ohm/km 0.025 km |
Line 2 @4-3 | R X l | 0.442 ohm/km 0.079 ohm/km 0.055 km | Line 17 @17-19 | R X l | 0.868 ohm/km 0.083 ohm/km 0.028 km |
Line 3 @4-5 | R X l | 0.442 ohm/km 0.079 ohm/km 0.228 km | Line 18 @6-20 | R X l | 0.443 ohm/km 0.082 ohm/km 0.037 km |
Line 4 @6-4 | R X l | 0.125 ohm/km 0.079 ohm/km 0.0.149 km | Line 19 @6-21 | R X l | 0.443 ohm/km 0.082 ohm/km 0.046 km |
Line 5 @6-7 | R X l | 0.443 ohm/km 0.082 ohm/km 0.069 km | Line 20 @22-6 | R X l | 0.125 ohm/km 0.079 ohm/km 0.098 km |
Line 6 @22-29 | R X l | 0.442 ohm/km 0.079 ohm/km 0.005 km | Line 21 @22-23 | R X l | 0.442 ohm/km 0.079 ohm/km 0.043 km |
Line 7 @6-9 | R X l | 0.443 ohm/km 0.082 ohm/km 0.176 km | Line 22 @23-24 | R X l | 0.442 ohm/km 0.079 ohm/km 0.004 km |
Line 8 @8-10 | R X l | 3.03 ohm/km 0.1 ohm/km 0.032 km | Line 23 @24-25 | R X l | 0.442 ohm/km 0.079 ohm/km 0.004 km |
Line 9 @6-11 | R X l | 0.443 ohm/km 0.082 ohm/km 0.057 km | Line 24 @25-26 | R X l | 0.868 ohm/km 0.083 ohm/km 0.026 km |
Line 10 @11-12 | R X l | 0.641 ohm/km 0.080 ohm/km 0.059 km | Line 25 @22-27 | R X l | 0.443 ohm/km 0.082 ohm/km 0.047 km |
Line 11 @12-13 | R X l | 0.641 ohm/km 0.083 ohm/km 0.042 km | Line 26 @22-28 | R X l | 0.442 ohm/km 0.079 ohm/km 0.018 km |
Line 12 @13-14 | R X l | 0.442 ohm/km 0.079 ohm/km 0.032 km | Line 27 @22-30 | R X l | 0.442 ohm/km 0.079 ohm/km 0.035 km |
Line 13 @14-15 | R X l | 0.442 ohm/km 0.079 ohm/km 0.031 km | Line 28 @22-8 | R X l | 0.868 ohm/km 0.083 ohm/km 0.049 km |
Line 14 @15-16 | R X l | 0.442 ohm/km 0.079 ohm/km 0.018 km |
References
- Knez, K. Zasnova Algoritma za Vodenje Prožnosti Odjema in Proizvodnje v Distribucijskih Omrežjih. Master’s Thesis, Univerza v Ljubljani, Fakulteta za Elektrotehniko, Ljubljana, Slovenia, 2023. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=147015 (accessed on 28 June 2023).
- You, S.; Bindner, H.W.; Hu, J.; Douglass, P.J. An overview of trends in distribution network planning: A movement towards smart planning. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Iweh, C.D.; Gyamfi, S.; Tanyi, E.; Effah-Donyina, E. Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits. Energies 2021, 14, 5375. [Google Scholar] [CrossRef]
- Shafiullah, G. Impacts of renewable energy integration into the high voltage (HV) networks. In Proceedings of the 2016 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 7–9 January 2016; pp. 1–7. [Google Scholar] [CrossRef]
- De Almeida Torres, T.J.P. Comparision between Traditional Network Reinforcement and the Use of DER Flexibility. October 2020. Available online: https://repositorio-aberto.up.pt/handle/10216/132859 (accessed on 4 July 2023).
- Blažič, B.; Herman, L.; Ilkovski, M.; Knez, K. D3.1: Metodologija in Orodje za Načrtovanje Pametnih Omrežij; Fakulteta za elektrotehniko: Ljubljana, Slovenia, 2023. [Google Scholar]
- Hashemi, S.; Østergaard, J. Methods and strategies for overvoltage prevention in low voltage distribution systems with PV. IET Renew. Power Gener. 2017, 11, 205–214. [Google Scholar] [CrossRef]
- Zhou, Q.; Bialek, J.W. Generation curtailment to manage voltage constraints in distribution networks. IET Gener. Transm. Distrib. 2007, 1, 492–498. [Google Scholar] [CrossRef]
- Mehinovic, A.; Zajc, M.; Suljanovic, N. Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid. Energies 2023, 16, 590. [Google Scholar] [CrossRef]
- Demirok, E.; Sera, D.; Teodorescu, R.; Rodriguez, P.; Borup, U. Evaluation of the voltage support strategies for the low voltage grid connected PV generators. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 710–717. [Google Scholar] [CrossRef]
- Dib, M.; Ramzi, M.; Nejmi, A. Voltage regulation in the medium voltage distribution grid in the presence of renewable energy sources. Mater. Today Proc. 2019, 13, 739–745. [Google Scholar] [CrossRef]
- Karimi, M.; Mokhlis, H.; Naidu, K.; Uddin, S.; Bakar, A.H.A. Photovoltaic penetration issues and impacts in distribution network—A review. Renew. Sustain. Energy Rev. 2016, 53, 594–605. [Google Scholar] [CrossRef]
- Putrus, G.A.; Suwanapingkarl, P.; Johnston, D.; Bentley, E.C.; Narayana, M. Impact of electric vehicles on power distribution networks. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 827–831. [Google Scholar] [CrossRef]
- Honarmand, M.E.; Hosseinnezhad, V.; Hayes, B.; Siano, P. Local Energy Trading in Future Distribution Systems. Energies 2021, 14, 3110. [Google Scholar] [CrossRef]
- Olivella-Rosell, P.; Lloret-Gallego, P.; Munné-Collado, Í.; Villafafila-Robles, R.; Sumper, A.; Ottessen, S.Ø.; Rajasekharan, J.; Bremdal, B.A. Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level. Energies 2018, 11, 822. [Google Scholar] [CrossRef]
- Brenna, M.; Berardinis, E.D.; Foiadelli, F.; Sapienza, G.; Zaninelli, D. Voltage Control in Smart Grids: An Approach Based on Sensitivity Theory. J. Electromagn. Anal. Appl. 2010, 2010, 2591. [Google Scholar] [CrossRef]
- Bakhshideh Zad, B.; Hasanvand, H.; Lobry, J.; Vallée, F. Optimal reactive power control of DGs for voltage regulation of MV distribution systems using sensitivity analysis method and PSO algorithm. Int. J. Electr. Power Energy Syst. 2015, 68, 52–60. [Google Scholar] [CrossRef]
- Džafić, I.; Jabr, R.A.; Halilovic, E.; Pal, B.C. A Sensitivity Approach to Model Local Voltage Controllers in Distribution Networks. IEEE Trans. Power Syst. 2014, 29, 1419–1428. [Google Scholar] [CrossRef]
- Kim, Y.-J. Development and Analysis of a Sensitivity Matrix of a Three-Phase Voltage Unbalance Factor. IEEE Trans. Power Syst. 2018, 33, 3192–3195. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Ji, X. A Fast Sensitivity Method for Determining Line Loss and Node Voltages in Active Distribution Network. IEEE Trans. Power Syst. 2018, 33, 1148–1150. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Mulcahy, D.; Lubkeman, D.L.; Lu, N.; Samaan, N.; Huang, R. Voltage-load sensitivity matrix based demand response for voltage control in high solar penetration distribution feeders. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Di Fazio, A.R.; Russo, M.; Valeri, S.; De Santis, M. Sensitivity-Based Model of Low Voltage Distribution Systems with Distributed Energy Resources. Energies 2016, 9, 801. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, C.; Zhang, B.; Li, G.; Tang, W. Voltage control method based on three-phase four-wire sensitivity for hybrid AC/DC low-voltage distribution networks with high-penetration PVs. IET Renew. Power Gener. 2022, 16, 700–712. [Google Scholar] [CrossRef]
- Napredno Merjenje Porabe—Agencija za Energijo. Available online: https://www.agen-rs.si/gospodinjski/elektrika/napredno-merjenje-porabe (accessed on 23 November 2022).
- Dovnik, I.; Buh, T.; Podbelšek, I. Zajem Merilnih Podatkov Iz Sistemskih Števcev El. Energije z Uporabo Naprednih Spletnih Storitev. In Proceedings of the 13. Konferenca Slovenskih Elektroenergetikov CIGRE-CIRED, Maribor, Denmark, 22–24 May 2017; p. 8. [Google Scholar]
- Pandapower—Pandapower 2.12.1 Documentation. Available online: https://pandapower.readthedocs.io/en/latest/ (accessed on 27 April 2023).
Initial state | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 120.0 |
Method with sens. coef. | 19.0 | 20.0 | 20.0 | 9.4 | 0.0 | 12.8 | 8.2 |
/p.u. | /p.u. | /p.u. | /p.u. | ||
---|---|---|---|---|---|
Initial state | 0.65 | 1.028 | 1.055 | 0.29 | / |
Method with sens. coef. | 0.28 | 1.027 | 1.035 | 0.28 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez, K.; Herman, L.; Blažič, B. Dynamic Management of Flexibility in Distribution Networks through Sensitivity Coefficients. Energies 2024, 17, 1783. https://doi.org/10.3390/en17071783
Knez K, Herman L, Blažič B. Dynamic Management of Flexibility in Distribution Networks through Sensitivity Coefficients. Energies. 2024; 17(7):1783. https://doi.org/10.3390/en17071783
Chicago/Turabian StyleKnez, Klemen, Leopold Herman, and Boštjan Blažič. 2024. "Dynamic Management of Flexibility in Distribution Networks through Sensitivity Coefficients" Energies 17, no. 7: 1783. https://doi.org/10.3390/en17071783
APA StyleKnez, K., Herman, L., & Blažič, B. (2024). Dynamic Management of Flexibility in Distribution Networks through Sensitivity Coefficients. Energies, 17(7), 1783. https://doi.org/10.3390/en17071783