A Capacitance Monitoring Strategy Based on Offset Error Compensation for Modular Multilevel Converters
Abstract
:1. Introduction
2. Description of MMCs
2.1. Operation Principles
2.2. Conventional VBC
3. Effect Analysis of Measurement Offset Error on Capacitance Monitoring
4. Proposed SM Capacitance Monitoring Strategy Based on Offset Error Compensation for MMCs
4.1. Proposed Capacitance Monitoring Approach Based on Offset Error Compensation
4.2. Proposed VCV-Based VBC
- (1)
- Ucmin ≤ ûcaui ≤ Ucmax: the VCVs u′cau1∼u′cauN (except for u′caui in the monitored SMi) are, respectively, set to ûcau1∼ûcauN (except for ûcaui). For the SMi, the zero-order hold is introduced to obtain the virtual capacitor voltage u′caui, as shown in Figure 5, which can reduce the update frequency of the voltage ûcaui, and thus reduces the update frequency of the rank Ji of the SMi;
- (2)
- ûcaui > Ucmax or ûcaui < Ucmin: the VCVs u′cau1∼u′cauN are set to ûcau1∼ûcauN, respectively.
4.3. Proposed Capacitance Monitoring Strategy
5. Simulation Studies
5.1. MMC without Measurement Offset Error bau_i
5.2. MMC with Measurement Offset Error bau_i
6. Experimental Studies
6.1. MMC without Measurement Offset Error bbl_i
6.2. MMC with Measurement Offset Error bbl_i
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, X.; Pang, Y.; Xia, J.; Chai, N.; Tian, W.; Rodriguez, J.; Kennel, R. Modulated Model Predictive Control of Modular Multilevel Converters Operating in a Wide Frequency Range. IEEE Trans. Ind. Electron. 2023, 70, 4380–4391. [Google Scholar] [CrossRef]
- Liu, J.; Dong, D. A Flying Capacitor Hybrid Modular Multilevel Converter with Reduced Number of Submodules and Power Losses. IEEE Trans. Ind. Electron. 2023, 70, 3293–3302. [Google Scholar] [CrossRef]
- Bagheri-Hashkavayi, M.; Barakati, S.M.; Yousofi-Darmian, S.; Barahouei, V. Improved Sensor Reduction Method in Modular Multilevel Converters with Open-Loop Controller Based on Arms Energy Estimation. IEEE Trans. Power Deliv. 2022, 37, 5003–5013. [Google Scholar] [CrossRef]
- Marzo, I.; Sanchez-Ruiz, A.; Barrena, J.A.; Abad, G.; Muguruza, I. Power Balancing in Cascaded H-Bridge and Modular Multilevel Converters under Unbalanced Operation: A Review. IEEE Access 2021, 9, 110525–110543. [Google Scholar] [CrossRef]
- Ji, S.; Huang, X.; Palmer, J.; Wang, F.; Tolbert, L.M. Modular Multilevel Converter (MMC) Modeling Considering Submodule Voltage Sensor Noise. IEEE Trans. Power Electron. 2021, 36, 1215–1219. [Google Scholar] [CrossRef]
- Zhao, Z.; Davari, P.; Lu, W.; Wang, H.; Blaabjerg, F. An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications. IEEE Trans. Power Electron. 2021, 36, 3692–3716. [Google Scholar] [CrossRef]
- Younis, T.; Mattavelli, P.; Toigo, I.; Corradin, M. Three-Phase Modular Multilevel Converter with Optimized Capacitor Sizing for Low-Voltage Applications. IEEE Trans. Power Electron. 2021, 36, 13930–13943. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Xu, Q. On-Line Monitoring Method of Submodule in MMC Based on Kalman Filter Algorithm. In Proceedings of the 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 29–31 May 2020; pp. 386–390. [Google Scholar]
- Yin, C.; Deng, F.; Zhao, F.; Yu, Q. Condition Monitoring Strategy for Modular Multilevel Converters with Improved Accuracy. In Proceedings of the 10th Renewable Power Generation Conference (RPG 2021), Online Conference, 14–15 October 2021; pp. 762–770. [Google Scholar]
- Yao, R.; Li, H.; Lai, W.; Bahman, A.S.; Iannuzzo, F. Lifetime Analysis of Metallized Polypropylene Capacitors in Modular Multilevel Converter Based on Finite Element Method. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 4248–4259. [Google Scholar] [CrossRef]
- Polanco, I.; Dujic, D. Condition Health Monitoring of Modular Multilevel Converter Submodule Capacitors. IEEE Trans. Power Electron. 2022, 37, 3544–3554. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Xu, S.; Zhang, Y.; Chen, Z. Fault Diagnosis and Monitoring of Modular Multilevel Converter with Fast Response of Voltage Sensors. IEEE Trans. Ind. Electron. 2020, 67, 5071–5080. [Google Scholar] [CrossRef]
- Amaral, A.M.R.; Cardoso, A.J.M. An Experimental Technique for Estimating the ESR and Reactance Intrinsic Values of Aluminum Electrolytic Capacitors. In Proceedings of the 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, Italy, 24–27 April 2006; pp. 1820–1825. [Google Scholar]
- Amaral, A.M.R.; Cardoso, A.J.M. A Simple Offline Technique for Evaluating the Condition of Aluminum-Electrolytic-Capacitors. IEEE Trans. Ind. Electron. 2009, 56, 3230–3237. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wang, H.; Blaabjerg, F. Capacitor Condition Monitoring Based on the DC-Side Start-Up of Modular Multilevel Converters. IEEE Trans. Power Electron. 2020, 35, 5589–5593. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Wang, Z.; Zhang, Y.; Pei, X.; Kang, Y. Condition Monitoring for Submodule Capacitors in Modular Multilevel Converters. IEEE Trans. Power Electron. 2019, 34, 10403–10407. [Google Scholar] [CrossRef]
- Agarwal, N.; Ahmad, M.W.; Anand, S. Quasi-Online Technique for Health Monitoring of Capacitor in Single-Phase Solar Inverter. IEEE Trans. Power Electron. 2018, 33, 5283–5291. [Google Scholar] [CrossRef]
- Ronanki, D.; Williamson, S.S. Failure Prediction of Submodule Capacitors in Modular Multilevel Converter by Monitoring the Intrinsic Capacitor Voltage Fluctuations. IEEE Trans. Ind. Electron. 2020, 67, 2585–2594. [Google Scholar] [CrossRef]
- Jo, Y.-J.; Nguyen, T.H.; Lee, D.-C. Condition Monitoring of Submodule Capacitors in Modular Multilevel Converters. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 2121–2126. [Google Scholar]
- Deng, F.; Wang, Q.; Liu, D.; Wang, Y.; Cheng, M.; Chen, Z. Reference Submodule Based Capacitor Monitoring Strategy for Modular Multilevel Converters. IEEE Trans. Power Electron. 2019, 34, 4711–4721. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wang, H.; Blaabjerg, F. A Reference Submodule Based Capacitor Condition Monitoring Method for Modular Multilevel Converters. IEEE Trans. Power Electron. 2020, 35, 6691–6696. [Google Scholar] [CrossRef]
- Geng, Z.; Han, M.; Zhou, G. Switching Signals Based Condition Monitoring for Submodule Capacitors in Modular Multilevel Converters. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2017–2021. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, H.; Jin, Y.; Jia, H.; Mu, Y.; Zhu, J.; Teodorescu, R.; Blaabjerg, F. Submodule Capacitance Monitoring Approach for the MMC with Asymptotically Converged Error. IEEE Trans. Ind. Electron. 2024, 71, 4330–4339. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, Y.; Chen, M.; Lai, W.; Luo, D.; Wang, H. Capacitor Condition Monitoring for Modular Multilevel Converter Based on Charging Transient Voltage Analysis. IEEE Trans. Power Electron. 2023, 38, 3847–3856. [Google Scholar] [CrossRef]
- Liu, C.; Deng, F.; Yu, Q.; Wang, Y.; Blaabjerg, F.; Cai, X. Submodule Capacitance Monitoring Strategy for Phase-Shifted Carrier Pulsewidth-Modulation-Based Modular Multilevel Converters. IEEE Trans. Ind. Electron. 2021, 68, 8753–8767. [Google Scholar] [CrossRef]
- Xie, J.; He, Y.; Xiong, Z.; Chen, Z.; Wang, Y.; Du, Y.; Pan, J. Non-Intrusive Condition Monitoring of Submodule Capacitance of Modular Multilevel Converter with Image Identification Method. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–6. [Google Scholar]
- Perez, M.A.; Ceballos, S.; Konstantinou, G.; Pou, J.; Aguilera, R.P. Modular Multilevel Converters: Recent Achievements and Challenges. IEEE Open J. Ind. Electron. Soc. 2021, 2, 224–239. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, C.; Xiong, J.; Zhang, K. A Robust Capacitor Voltage Balancing Method for CPS-PWM-Based Modular Multilevel Converters Accommodating Wide Power Range. IEEE Trans. Power Electron. 2022, 37, 14306–14316. [Google Scholar] [CrossRef]
- Geng, Z.; Han, M.; Xia, C.; Kou, L. A Switching Times Reassignment-Based Voltage Balancing Strategy for Submodule Capacitors in Modular Multilevel HVDC Converters. IEEE Trans. Power Deliv. 2022, 37, 1215–1225. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Xie, W.; Xiao, L.; Zhang, Z.; Zhang, Z.; Chen, D. Analysis and Suppression of the Frequency-Aliasing Phenomenon Related to the Sorting-Algorithm-Based Voltage-Balance Strategy in an MMC System. IEEE Trans. Power Electron. 2022, 37, 170–182. [Google Scholar] [CrossRef]
Operation Mode | iau | Saui | ucaui |
---|---|---|---|
Ascending mode | >0 | 1 | Increased |
Ascending mode | >0 | 0 | Unchanged |
Descent mode | ≤0 | 1 | Decreased |
Descent mode | ≤0 | 0 | Unchanged |
|bau_i| | Accuracy of Estimated Caui_es |
---|---|
↑ | ↓ |
↓ | ↑ |
Simulation Parameter | Value |
---|---|
Active power | 2 MW |
Reactive power | 0 MVar |
Grid frequency fs | 50 Hz |
Number N of SMs each arm | 8 |
Arm inductance Ls | 2 mH |
SM capacitor voltage Uc | 0.9 kV |
DC-side voltage Udc | 7.2 kV |
Measurement Error | With Proposed Strategy | THD |
---|---|---|
Without offset error bau_i | No | 1.79% |
Without offset error bau_i | Yes | 1.79% |
With offset error bau_i | No | 1.77% |
With offset error bau_i | Yes | 1.77% |
Parameter | Value |
---|---|
Nominal capacitor voltage Uc | 40 V |
DC-side voltage Udc | 160 V |
Number N of SMs each arm | 4 |
Inductance Ls | 3 mH |
Load resistance Ro | 10 Ω |
Measurement Error | With Proposed Strategy | THD |
---|---|---|
Without offset error bbl_i | No | 2.85% |
Without offset error bbl_i | Yes | 2.85% |
With offset error bbl_i | No | 2.82% |
With offset error bbl_i | Yes | 2.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Deng, F.; Li, H.; Tian, J.; Lu, Y.; Li, G. A Capacitance Monitoring Strategy Based on Offset Error Compensation for Modular Multilevel Converters. Energies 2024, 17, 1771. https://doi.org/10.3390/en17071771
Jiang H, Deng F, Li H, Tian J, Lu Y, Li G. A Capacitance Monitoring Strategy Based on Offset Error Compensation for Modular Multilevel Converters. Energies. 2024; 17(7):1771. https://doi.org/10.3390/en17071771
Chicago/Turabian StyleJiang, Huijie, Fujin Deng, Huailong Li, Jie Tian, Yu Lu, and Gang Li. 2024. "A Capacitance Monitoring Strategy Based on Offset Error Compensation for Modular Multilevel Converters" Energies 17, no. 7: 1771. https://doi.org/10.3390/en17071771
APA StyleJiang, H., Deng, F., Li, H., Tian, J., Lu, Y., & Li, G. (2024). A Capacitance Monitoring Strategy Based on Offset Error Compensation for Modular Multilevel Converters. Energies, 17(7), 1771. https://doi.org/10.3390/en17071771