Geochemical Properties and Gas-Bearing Analysis of Lower Cambrian Black Shale in Western Hunan Province
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. TOC Measurements
3.2.2. Pyrolysis
3.2.3. Bitumen Reflectance
3.2.4. Soxhlet Extraction
3.2.5. Gas Chromatography–Mass Spectrometry
3.3. Grand Canonical Monte Carlo (GCMC) Simulation
4. Results and Discussion
4.1. Source Rock Geochemistry
4.1.1. Petroleum Generation Potential of Black Shale
No. | Formation | Depth (m) | TOC (%) | S1 (mg/g) | S2 (mg/g) | Tmax (°C) | HI (mg HCs/g TOC) | %Rb | Re | Pg (mg/g) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Є2–3w | 624.3 | 2.35 | 0.03 | 0.08 | 325 | 3.40 | / | 10.86 | |
2 | Є2–3w | 634.4 | 2.50 | 0.01 | 0.02 | 514 | 0.80 | 4.00 | 2.96 | 11.71 |
3 | Є2–3w | 640.6 | 2.62 | 0.04 | 0.08 | 296 | 3.06 | / | 12.38 | |
4 | Є2–3w | 657.7 | 1.04 | 0.01 | 0.02 | 505 | 1.92 | / | 3.49 | |
5 | Є2–3w | 665.0 | 2.98 | 0.01 | 0.01 | 522 | 0.34 | 4.18 | 3.08 | 14.41 |
6 | Є2–3w | 684.5 | 3.99 | 0.01 | 0.02 | 312 | 0.50 | / | 20.09 | |
7 | Є2–3w | 708.7 | 0.47 | 0.03 | 0.09 | 263 | 19.03 | / | 0.28 | |
8 | Є2–3w | 713.5 | 2.55 | 0.03 | 0.08 | 309 | 3.14 | / | 11.99 | |
9 | Є2–3w | 724.0 | 0.87 | 0.01 | 0.02 | 498 | 2.31 | 4.16 | 3.07 | 2.53 |
10 | Є2–3w | 733.8 | 2.16 | 0.01 | 0.01 | 373 | 0.46 | / | 9.79 | |
11 | Є1n | 741.6 | 3.60 | 0.02 | 0.04 | 377 | 1.11 | / | 17.90 | |
12 | Є1n | 753.7 | 3.17 | 0.03 | 0.06 | 383 | 1.89 | / | 15.48 | |
13 | Є1n | 769.9 | 4.21 | 0.04 | 0.07 | 536 | 1.66 | 4.09 | 3.02 | 21.33 |
14 | Є1n | 777.8 | 6.37 | 0.01 | 0.01 | 321 | 0.16 | / | 33.49 | |
15 | Є1n | 791.0 | 8.30 | 0.04 | 0.06 | 318 | 0.72 | / | 44.36 | |
16 | Є1n | 803.2 | 8.99 | 0.04 | 0.07 | 492 | 0.78 | / | 48.24 | |
17 | Є1n | 823.1 | 10.58 | 0.04 | 0.08 | 336 | 0.76 | 4.58 | 3.35 | 57.20 |
18 | Є1n | 839.8 | 11.06 | 0.01 | 0.01 | 364 | 0.09 | / | 59.90 | |
19 | Є1n | 845.3 | 11.73 | 0.03 | 0.06 | 299 | 0.51 | / | 63.67 | |
20 | Є1n | 852.0 | 19.68 | 0.04 | 0.08 | 391 | 0.41 | / | 108.43 | |
21 | Є1n | 862.3 | 7.17 | 0.03 | 0.06 | 358 | 0.84 | / | 38.00 | |
22 | Є1n | 865.5 | 0.58 | 0.02 | 0.04 | 423 | 6.94 | / | 0.90 | |
23 | Pt3L | 909.0 | 7.01 | 0.01 | 0.01 | 252 | 0.12 | 37.10 | ||
24 | Pt3L | 916.1 | 1.54 | 0.03 | 0.07 | 410 | 0.45 | 6.30 |
Kerogen Type | Type I | Type II1 | Type II2 | Type III |
---|---|---|---|---|
δ13C (‰) | <−28 | −28~−26 | −26~−24 | >−24 |
4.1.2. Molecular Geochemical Characteristics of the Black Shale
4.2. Burial History of Well XAD1
4.3. Methane Adsorption Characteristics
4.4. Shale Gas-Bearing Capacity
5. Conclusions
- (1)
- The lower Cambrian black shales in well XAD1 have high but widely varied organic matter abundances, ranging from 0.47% to 19.69% with an average of 5.32%. Most TOCs are higher than 2.0%, which meets the requirements of shale gas exploitation. The equivalent vitrinite reflectance ranges from 3.02% to 3.35%, indicating over maturity for gas generation.
- (2)
- The biomarkers indicate that the black shales were deposited in an enhanced marine setting. The maturity of the biomarkers also indicates that the organic-rich shale has entered a high maturity stage.
- (3)
- The dynamic alteration of gas-bearing properties in shale reservoirs due to tectonic movements is a crucial factor influencing the success rate of shale gas exploration in the study area. The molecular dynamic simulation showed that the petroleum generation of the Cambrian black shale ended with the phase I subsidence, and shale methane adsorption was the largest (15.77 m3/t), assuming sufficient gas generation and an absence of CO2, H2O and other molecules at that period. Temperature and pressure variations caused by subsequent tectonic uplifts and subsidences led to a continuous decreasing shale methane adsorption (about 6.56 m3/t), since no natural gas was supplied in later stages. The methane adsorption capacity would be reduced to < 2 m3/t with water present in the shales in the study area. Two subsidence events and two uplifting events could have aggravated gas loss and eventually caused the abnormally low shale gas potential in the study area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Shi, W.; Hu, Q.; Hou, Y.; Zhai, G.; Dong, T.; Zhou, Z.; Du, X. Origin of authigenic quartz in organic-rich shales of the Niutitang Formation in the northern margin of Sichuan Basin, South China: Implications for pore network development. Mar. Pet. Geol. 2022, 138, 105548. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Jiang, Z.; Luo, Q.; Liu, D.; Gao, Z. Progress and development trend of unconventional oil and gas geological research. Pet. Explor. Dev. 2017, 44, 675–685. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Wang, Y.; Liu, Y.; Zheng, J. The Tectonic Controls on the Disturibution of Marine Oil and Gas in the Adjacent Areas of Xuefeng Mountain. J. Southwest Pet. Univ. 2011, 33, 7–12, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Chen, D.; Qiu, N.; Fu, J.; Jia, J. Geochemistry and origin of continental natural gas in the western Sichuan basin, China. J. Nat. Gas Sci. Eng. 2018, 49, 123–131. [Google Scholar] [CrossRef]
- Wang, N.; Li, M.; Hong, H.; Song, D.; Tian, X.; Liu, P.; Fang, R.; Chen, G.; Wang, M. Biological sources of sedimentary organic matter in Neoproterozoic–Lower Cambrian shales in the Sichuan Basin (SW China): Evidence from biomarkers and microfossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 516, 342–353. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.; Gong, H.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar. Pet. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, S.; Cao, H.; Zheng, M.; Sun, P.; Luo, X. Fracability evaluation of shale gas reservoir—A case study in the Lower Cambrian Niutitang formation, northwestern Hunan, China. J. Pet. Sci. Eng. 2018, 164, 675–684. [Google Scholar] [CrossRef]
- Yan, J.-F.; Men, Y.-P.; Sun, Y.-Y.; Yu, Q.; Liu, W.; Zhang, H.-Q.; Liu, J.; Kang, J.-W.; Zhang, S.-N.; Bai, H.-H.; et al. Geochemical and geological characteristics of the Lower Cambrian shales in the middle–upper Yangtze area of South China and their implication for the shale gas exploration. Mar. Pet. Geol. 2016, 70, 1–13. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; Lu, S.; Pervukhina, M.; Liu, K.; Xue, Q.; Tian, H.; Tian, S.; Li, J.; Clennell, M.B.; et al. Adsorption Behavior of Hydrocarbon on Illite. Energy Fuels 2016, 30, 9114–9121. [Google Scholar] [CrossRef]
- Kadoura, A.; Narayanan Nair, A.K.; Sun, S. Adsorption of carbon dioxide, methane, and their mixture by montmorillonite in the presence of water. Microporous Mesoporous Mater. 2016, 225, 331–341. [Google Scholar] [CrossRef]
- Sui, H.; Yao, J. Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study. J. Nat. Gas Sci. Eng. 2016, 31, 738–746. [Google Scholar] [CrossRef]
- Tian, S.; Xue, H.; Lu, S.; Zeng, F.; Xue, Q.; Chen, G.; Wu, C.; Zhang, S. Molecular Simulation of Oil Mixture Adsorption Character in Shale System. J. Nanosci. Nanotechnol. 2017, 17, 6198–6209. [Google Scholar] [CrossRef]
- Zhang, J.; Clennell, M.B.; Liu, K.; Pervukhina, M.; Chen, G.; Dewhurst, D.N. Methane and Carbon Dioxide Adsorption on Illite. Energy Fuels 2016, 30, 10643–10652. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res. 2003, 122, 141–158. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, T.; Yu, C. Division and Comparison of Late Sinian Strata in Southern Anhui and Western Hunan. J. Stratigr. 1989, 13, 52–58. [Google Scholar]
- Zhu, M.; Strauss, H.; Shields, G.A. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran–Cambrian earth history in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 1–6. [Google Scholar] [CrossRef]
- Espitalié, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. Rapid Method for Source Rocks Characrerysation and for Determination of Petroleum Potential and Degree of Evolution. OGSAT 1977, 32, 23–42. [Google Scholar] [CrossRef]
- GB/T 18602-2012; Rocl Pyrolysis Analysis. The China National Standardization Management Committee: Beijing, China, 2012.
- Jacob, H. Disperse Solid Bitumens as an Indicator for Migration and Maturity in Prospecting for Oil and Gas. Erdol Kohgle 1985, 38, 365. [Google Scholar]
- Liu, D.H.; Shi, J.Y. Study on the evaluation methods on high matured carbonate source rocks. Pet. Explor. Dev. 1994, 21, 113–115. [Google Scholar]
- Xiao, X.; Wilkins, R.W.T.; Liu, D.; Liu, Z.; Fu, J. Investigation of thermal maturity of lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—A Tarim Basin case study. Org. Geochem. 2000, 31, 1041–1052. [Google Scholar] [CrossRef]
- Shen, X.; Bourg, I.C. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water. J. Colloid Interface Sci. 2021, 584, 610–621. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Sparks, D.L.; Goldberg, S. Equations and Models Describing Adsorption Processes in Soils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Deng, Y.; Yang, R.; Xiao, Z.; Wang, C. Potential Assessment on the Shale Gas Resource in Lower Cambrian Niutitang Formation, Zhangjiajie. Geol. Miner. Resour. South China 2020, 36, 177–185, (In Chinese with English Abstract). [Google Scholar]
- Peng, Z. Geological Conditions and Exploration Potential of Shale Gas in the Niutitang Formation of the Lower Cambrian in the Yuanma Basin and Its Periphery Area. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. [Google Scholar]
- Al Jamri, M.; Smith, R.; Li, J. Molecular Modelling of Co-processing Biomass Pyrolysis Oil with Vacuum Gasoil in an Oil Refinery Fluid Catalytic Cracking Unit. In Computer Aided Chemical Engineering; Kiss, A.A., Zondervan, E., Lakerveld, R., Özkan, L., Eds.; 29 European Symposium on Computer Aided Process Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 991–996. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Accuracy of XRPD QPA Using the Combined Rietveld–RIR Method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Ungerer, P.; Collell, J.; Yiannourakou, M. Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels 2015, 29, 91–105. [Google Scholar] [CrossRef]
- Fu, J.; Liu, D. Some Characteristics of the Evolution of Organic Matter in Carbonate Formations. Acta Pet. Sin. 1982, 1, 1–9, (In Chinese with English Abstract). [Google Scholar]
- Hao, S.; Wang, F.; Gao, G.; Gang, W. Characteristics and evaluation of high-over mature hydrocarbon source rocks in the Lower Paleozoic. Explorationist 1996, 1, 25–32. (In Chinese) [Google Scholar]
- Feng, G.; Chen, S. Relationship between Bitumen Reflectance and Vitrinite Reflectance in Rocks. Nat. Gas Ind. B 1988, 3, 7+30–35. (In Chinese) [Google Scholar]
- Guo, Y.; Liang, M.; Wang, Z.; Zhang, L.; Li, H.; Li, X. Organic Geochemistry and Mineral Composition Characteristics in Shales of Niutitang Formation, Northwestern Hunan. J. Geomech. 2019, 25, 392–399, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.; Liang, D.; Zhang, S.; Deng, C.; Zhao, Z.; Zhang, D. Evaluation Criterion and Methods of the Hydrocarbon Generation Potential for China’s Paleozoic Marine Source Rocks. Acta Geol. Sin. 2012, 86, 1132–1142. [Google Scholar]
- Wang, P.; He, W.; Chen, Q.; Zhu, C.; Zhang, C. Molecular Marker Mass Chromatogram Atlas; Science Press: Beijing, China, 2018; ISBN 978-7-03-055701-8. [Google Scholar]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Xiao, H.; Wang, T.-G.; Li, M.; Fu, J.; Tang, Y.; Shi, S.; Yang, Z.; Lu, X. Occurrence and Distribution of Unusual Tri- and Tetracyclic Terpanes and Their Geochemical Significance in Some Paleogene Oils from China. Energy Fuels 2018, 32, 7393–7403. [Google Scholar] [CrossRef]
- Xiao, H.; Li, M.; Yang, Z.; Zhu, Z. The distribution patterns and geochemical implication of C19–C23 tricyclic terpanes in source rocks and crude oils occurred in various depositional environment. Geochimica 2019, 48, 161–170. [Google Scholar]
- Zhang, T.; Xu, H.; Li, S.; Ren, S. The effect of temperature on adsorbing capability of coal. J. China Coal Soc. 2009, 34, 802–805. [Google Scholar]
- Fu, X.; Shen, W.; Yao, T. Physical Chemistry, 4th ed.; Higher Education Press: Beijing, China, 1993. [Google Scholar]
- Shi, J.; Chen, C.; Gong, L.; Bai, Z.; Sun, S. Characteristic of Adsorption and Diffusion for Methane in Kerogen. J. Eng. Thermophys. 2019, 60, 1338–1343. [Google Scholar]
- Sun, R.; Zhang, Y.; Fan, K.; Shi, Y.; Yang, S. Molecular simulations of adsorption characteristics of clay minerals in shale. CIESC J. 2015, 66, 2118–2122. [Google Scholar]
- Zhao, T.; Li, X.; Zhao, H.; Li, M. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content. Fuel 2017, 190, 198–207. [Google Scholar] [CrossRef]
- Zou, J.; Reza, R.; Quan, X.; Lijun, Y.; Kouqi, L.; Ali, S. Investigation of moisture effect on methane adsorption capacity of shale samples. Fuel 2018, 232, 323–332. [Google Scholar] [CrossRef]
- Liu, X.; He, X.; Qiu, N.; Yang, X.; Tian, Z.; Li, M.; Xue, Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal. Appl. Surf. Sci. 2016, 389, 894–905. [Google Scholar] [CrossRef]
Depth (m) | Temperature (°C) | Temperature (K) | Pressure (Mpa) |
---|---|---|---|
2260 | 150 | 423 | 22.6 |
2700 | 185 | 458 | 22.7 |
3050 | 280 | 553 | 30.5 |
2260 | 220 | 493 | 22.6 |
1850 | 170 | 443 | 18.5 |
2990 | 148 | 421 | 29.9 |
4960 | 202 | 475 | 49.6 |
2770 | 120 | 393 | 27.7 |
778 | 40 | 313 | 7.78 |
Depth (m) | Temperature (°C) | Pressure (Mpa) | Adsorption Capacity (m3/t) | Periods |
---|---|---|---|---|
2260 | 150 | 22.6 | 19.77 | Phase I subsidence |
2700 | 185 | 27.0 | 18.12 | |
3050 | 280 | 30.5 | 15.77 | |
3050 | 280 | 30.5 | 15.77 | Phase I uplift |
2260 | 220 | 22.6 | 15.19 | |
1850 | 170 | 18.5 | 15.80 | |
1850 | 170 | 18.5 | 15.80 | Phase II subsidence |
2990 | 148 | 29.9 | 23.82 | |
4960 | 202 | 49.6 | 26.43 | |
4960 | 202 | 49.6 | 26.43 | Phase II uplift |
2770 | 120 | 27.7 | 25.60 | |
778 | 40 | 7.78 | 17.80 |
Depth (m) | Temperature (°C) | Pressure (Mpa) | Adsorption Capacity (m3/t) |
---|---|---|---|
2260 | 150 | 22.6 | 19.77 |
2700 | 185 | 27 | 18.12 |
3050 | 280 | 30.5 | 15.77 |
2260 | 220 | 22.6 | 15.19 |
2770 | 120 | 27.7 | =15.19 − (26.43 − 25.6) = 14.36 |
778 | 40 | 7.78 | =14.36 − (25.6 − 17.8) = 6.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Tang, X.; Liu, X.; Zhao, Z.; Li, M. Geochemical Properties and Gas-Bearing Analysis of Lower Cambrian Black Shale in Western Hunan Province. Energies 2024, 17, 1743. https://doi.org/10.3390/en17071743
Zhang K, Tang X, Liu X, Zhao Z, Li M. Geochemical Properties and Gas-Bearing Analysis of Lower Cambrian Black Shale in Western Hunan Province. Energies. 2024; 17(7):1743. https://doi.org/10.3390/en17071743
Chicago/Turabian StyleZhang, Kaixun, Xiaoyin Tang, Xiaoqiang Liu, Zisheng Zhao, and Meijun Li. 2024. "Geochemical Properties and Gas-Bearing Analysis of Lower Cambrian Black Shale in Western Hunan Province" Energies 17, no. 7: 1743. https://doi.org/10.3390/en17071743
APA StyleZhang, K., Tang, X., Liu, X., Zhao, Z., & Li, M. (2024). Geochemical Properties and Gas-Bearing Analysis of Lower Cambrian Black Shale in Western Hunan Province. Energies, 17(7), 1743. https://doi.org/10.3390/en17071743