A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Hydrogen Production and Alternative Energy Carriers
1.3. Hydrogen Transport and Utilization
1.4. Hydrogen System Integration
1.5. Contribution
2. Review of “Heat Decarbonization” Studies
2.1. Introduction
2.2. Summary and Evaluation
3. Discussions on the Role of Hydrogen in Heat Decarbonization
3.1. Critical Assessment Table
3.2. Key Aspects
- Studied region and emission strategy
- Whole energy system-related aspects
- Focus on the consumer perspective
- Hydrogen production technologies and CCS infrastructure
- Negative emission technologies
- Temporal and spatial granularities
- Characteristics of heating appliances
- Resilience
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ASHP | air source heat pumps |
ATR | auto thermal reformers |
BECCS | bioenergy with carbon capture and storage |
CCS | carbon capture and storage |
CCUS | carbon capture utilization and storage |
CDR | carbon dioxide removal |
CHP | combined heat and power |
CO2 | carbon dioxide |
COP | coefficient of performance |
DACS | direct-air capture and storage |
E-fuels | electro-fuels |
ETC | Energy Transition Commission |
EU | Europe |
EV | electric vehicles |
GHG | greenhouse gas |
HP/H2B | heat pump to hydrogen boiler |
IEA | International Energy Agency |
IHES | integrated hydrogen and electricity system |
IWES | integrated whole energy system |
IPCC | Intergovernmental Panel on Climate Change |
IRENA | International Renewable Energy Agency |
LH2 | liquid hydrogen |
P2G | power-to-gas |
PtF | power-to-fuel |
PtH | power-to-heat |
PtHtP | power-to-heat-to-power |
RED II | Renewable Energy Directive II |
RESs | renewable energy sources |
RTN | resource-technology network |
SOFC | solid oxide fuel cell |
WeSIM | whole-electricity System Investment Model |
References
- Le, T.; Sharma, P.; Bora, B.; Tran, V.; Truong, T. Fueling the Future: A Comprehensive Review of Hydrogen Energy Systems and Their Challenges. Int. J. Hydrogen Energy 2023, 54, 791–816. [Google Scholar] [CrossRef]
- Sharma, G.; Verma, M.; Taheri, B.; Chopra, R. Socio-Economic Aspects of Hydrogen Energy: An Integrative Review. Technol. Forecast. Soc. Chang. 2023, 192, 122574. [Google Scholar] [CrossRef]
- Clarke, L.; Wei, Y.-M.; Navarro, A.d.l.V.; Garg, A.; Hahmann, A.N.; Khennas, S.; Azevedo, I.M.L.; Löschel, A.; Singh, A.K.; Steg, L.; et al. Energy Systems. In Climate Change 2022-Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 613–746. [Google Scholar] [CrossRef]
- Yuan, X.; Su, C.W.; Umar, M.; Shao, X.; LOBONŢ, O.R. The Race to Zero Emissions: Can Renewable Energy Be the Path to Carbon Neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The Role of New Energy in Carbon Neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Busch, T.; Groß, T.; Linßen, J.; Stolten, D. The Role of Liquid Hydrogen in Integrated Energy Systems–A Case Study for Germany. Int. J. Hydrogen Energy 2023, 48, 39408–39424. [Google Scholar] [CrossRef]
- Noyan, O.F.; Hasan, M.M.; Pala, N. A Global Review of the Hydrogen Energy Eco-System. Energies 2023, 16, 1484. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Aravossis, K.G. Literature Review of Hydrogen Energy Systems and Renewable Energy Sources. Energies 2023, 16, 7493. [Google Scholar] [CrossRef]
- Rolo, I.; Costa, V.A.F.; Brito, F.P. Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges. Energies 2023, 17, 180. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green Hydrogen-Based E-Fuels (E-Methane, E-Methanol, E-Ammonia) to Support Clean Energy Transition: A Literature Review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Ullah, A.; Hashim, N.A.; Rabuni, M.F.; Mohd Junaidi, M.U. A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies 2023, 16, 1482. [Google Scholar] [CrossRef]
- Clematis, D.; Bellotti, D.; Rivarolo, M.; Magistri, L.; Barbucci, A. Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis. Energies 2023, 16, 6035. [Google Scholar] [CrossRef]
- Singla, M.K.; Gupta, J.; Beryozkina, S.; Safaraliev, M.; Singh, M. The Colorful Economics of Hydrogen: Assessing the Costs and Viability of Different Hydrogen Production Methods—A Review. Int. J. Hydrogen Energy 2024, 61, 664–677. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Almohamadi, H.; Haddad, S.; Chettibi, N.; Alanazi, A.M.; Dasalla, D.; Alzahrani, A. Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies 2023, 16, 757. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Kanwal, F.; Torriero, A.A.J.; Tsigkou, K.; Tsafrakidou, P.; Kanwal, F.; Torriero, A.A.J. Biohydrogen—A Green Fuel for Sustainable Energy Solutions. Energies 2022, 15, 7783. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Alves, M.P.; Gul, W.; Cimini Junior, C.A.; Ha, S.K. A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Y.; Nguyen, H.T.; Fox, B.; Lee, J.H.; Lau, A.K.T.; Zheng, H.; Lin, H.; Ma, T.; Jia, B. Material Challenges in Green Hydrogen Ecosystem. Coord. Chem. Rev. 2023, 494, 215272. [Google Scholar] [CrossRef]
- Ratnakar, R.; Gupta, N.; Zhang, K.; van Doorne, C. Hydrogen Supply Chain and Challenges in Large-Scale LH2 Storage and Transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Sgarbossa, F.; Arena, S.; Tang, O.; Peron, M. Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research. Int. J. Prod. Econ. 2023, 255, 108674. [Google Scholar] [CrossRef]
- Shahbazbegian, V.; Dehghani, F.; Shafiyi, M.A.; Shafie-khah, M.; Laaksonen, H.; Ameli, H. Techno-Economic Assessment of Energy Storage Systems in Multi-Energy Microgrids Utilizing Decomposition Methodology. Energy 2023, 283, 128430. [Google Scholar] [CrossRef]
- Barreto, L.; Makihira, A.; Riahi, K. The Hydrogen Economy in the 21st Century: A Sustainable Development Scenario. Int. J. Hydrogen Energy 2003, 28, 267–284. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, Y.; Chen, Y.; Hoang, A. Multi-Objective Particle Swarm Optimization Applied to a Solar-Geothermal System for Electricity and Hydrogen Production; Utilization of Zeotropic Mixtures For. Process Saf. Environ. Prot. 2023, 175, 814–833. [Google Scholar] [CrossRef]
- Falcone, P.; Hiete, M.; Sapio, A. Hydrogen Economy and Sustainable Development Goals: Review and Policy Insights. Curr. Opin. Green Sustain. Chem. 2021, 31, 100506. [Google Scholar] [CrossRef]
- Shahbazbegian, V.; Shafie-khah, M.; Laaksonen, H.; Strbac, G.; Ameli, H. Resilience-Oriented Operation of Microgrids in the Presence of Power-to-Hydrogen Systems. Appl. Energy 2023, 348, 121429. [Google Scholar] [CrossRef]
- Sharifpour, M.; Ameli, M.T.; Ameli, H.; Strbac, G. A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events. Energies 2023, 16, 8099. [Google Scholar] [CrossRef]
- Nguyen-Thi, T.; Nguyen, P.; Tran, V. Recent Advances in Hydrogen Production from Biomass Waste with a Focus on Pyrolysis and Gasification. Int. J. Hydrogen Energy 2023, 54, 127–160. [Google Scholar] [CrossRef]
- Hoang, A.; Huang, Z.; Nižetić, S.; Pandey, A. Characteristics of Hydrogen Production from Steam Gasification of Plant-Originated Lignocellulosic Biomass and Its Prospects in Vietnam. Int. J. Hydrogen Energy 2022, 47, 4394–4425. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in Energy Transition: A Review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Żółtowski, B.; Żółtowski, M. A Hydrogenic Electrolyzer for Fuels. Pol. Marit. Res. 2015, 4, 79–89. [Google Scholar] [CrossRef]
- Wang, L.; Hong, C.; Li, X.; Yang, Z.; Guo, S.; Li, Q. Review on Blended Hydrogen-Fuel Internal Combustion Engines: A Case Study for China. Energy Rep. 2022, 8, 6480–6498. [Google Scholar] [CrossRef]
- Karimi, M.; Wang, X.; Hamilton, J.; Negnevitsky, M. Numerical Investigation on Hydrogen-Diesel Dual-Fuel Engine Improvements by Oxygen Enrichment. Int. J. Hydrogen Energy 2022, 47, 25418–25432. [Google Scholar] [CrossRef]
- Sharma, P. Data-Driven Predictive Model Development for Efficiency and Emission Characteristics of a Diesel Engine Fueled with Biodiesel/Diesel Blends. In Artificial Intelligence for Renewable Energy Systems; Woodhead Publishing: Sawston, UK, 2022; pp. 329–352. [Google Scholar]
- Hancock, L.; Ralph, N. A Framework for Assessing Fossil Fuel ’retrofit’hydrogen Exports: Security-Justice Implications of Australia’s Coal-Generated Hydrogen Exports to Japan. Energy 2021, 223, 119938. [Google Scholar] [CrossRef]
- Partidário, P.; Aguiar, R.; Martins, P.; Rangel, C. The Hydrogen Roadmap in the Portuguese Energy System–Developing the P2G Case. Int. J. Hydrogen Energy 2020, 45, 25646–25657. [Google Scholar] [CrossRef]
- Imanuella, N.; Witoon, T.; Cheng, Y.W.; Chong, C.C.; Ng, K.H.; Gunamantha, I.M.; Vo, D.V.N.; Hoang, A.T.; Lai, Y. Interfacial-Engineered CoTiO3-Based Composite for Photocatalytic Applications: A Review. Environ. Chem. Lett. 2022, 20, 3039–3069. [Google Scholar] [CrossRef]
- Chapman, A.; Itaoka, K.; Hirose, K.; Davidson, F.T.; Nagasawa, K.; Lloyd, A.C.; Webber, M.E.; Kurban, Z.; Managi, S.; Tamaki, T.; et al. A Review of Four Case Studies Assessing the Potential for Hydrogen Penetration of the Future Energy System. Int. J. Hydrogen Energy 2019, 44, 6371–6382. [Google Scholar] [CrossRef]
- Speirs, J.; Balcombe, P.; Johnson, E.; Martin, J.; Brandon, N. A Greener Gas Grid: What Are the Options. Energy Policy 2018, 118, 291–299. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463. [Google Scholar] [CrossRef]
- Gastec, K.; Energy Networks Association. 2050 Energy Scenarios: The UK Gas Networks Role in a 2050 Whole Energy System; KPMG, Kiwa Gastec and Energy Networks Association: Tulsa, OK, USA, 2016. [Google Scholar]
- Sadler, D.; Crowther, M.; Rennie, A.; Watt, J.; Burton, S. Leeds City Gate, H21; Northern Gas Networks: Leeds, UK, 2016; Available online: https://www.northerngasnetworks.co.uk/wp-content/uploads/2017/04/H21-Executive-Summary-Interactive-PDF-July-2016-V2.pdf (accessed on 17 December 2023).
- Lever, A.; Evans, H.; Ravishankar, M.; Romanidis, N. Flexibility in Great Britain; Carbon Trust and Imperial College Consultants. 2021. Available online: https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/documents/resource/public/Flexibility_in_GB_final_report.pdf (accessed on 17 December 2023).
- Wang, Z.; Hu, J.; Liu, B. Stochastic Optimal Dispatching Strategy of Electricity-Hydrogen-Gas-Heat Integrated Energy System Based on Improved Spectral Clustering Method. Int. J. Electr. Power Energy Syst. 2021, 126, 106495. [Google Scholar] [CrossRef]
- Maleki, A.; Rosen, M.A. Design of a Cost-Effective on-Grid Hybrid Wind–Hydrogen Based CHP System Using a Modified Heuristic Approach. Int. J. Hydrogen Energy 2017, 42, 15973–15989. [Google Scholar] [CrossRef]
- Gong, X.; Dong, F.; Mohamed, M.A.; Abdalla, O.M.; Ali, Z.M. A Secured Energy Management Architecture for Smart Hybrid Microgrids Considering PEM-Fuel Cell and Electric Vehicles. IEEE Access 2020, 8, 47807–47823. [Google Scholar] [CrossRef]
- Onwuemezie, L.; Gohari Darabkhani, H. Biohydrogen Production from Solar and Wind Assisted AF-MEC Coupled with MFC, PEM Electrolysis of H2O and H2 Fuel Cell for Small-Scale Applications. Renew. Energy 2024, 224, 120160. [Google Scholar] [CrossRef]
- Zhao, K.; Kong, H.; Tan, S.; Yang, X.G.; Zheng, H.; Yang, T.; Wang, H. Analysis of a Hybrid System Combining Solar-Assisted Methanol Reforming and Fuel Cell Power Generation. Energy Convers. Manag. 2023, 297, 117664. [Google Scholar] [CrossRef]
- Kumar Yadav, A.; Sinha, S.; Kumar, A. Comprehensive Review on Performance Assessment of Solid Oxide Fuel Cell-Based Hybrid Power Generation System. Therm. Sci. Eng. Prog. 2023, 46, 102226. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T. Developments in Hydrogen Fuel Cells. Energies 2023, 16, 2431. [Google Scholar] [CrossRef]
- Clarke, L.; De La Vega Navarro, A.; Garg, A.; Hahmann, A.N.; Khennas, S.; de Azevedo, I.M.L.; Löschel, A.; Singh, A.K.; Steg, L.; Strbac, G.; et al. Energy Systems. Climate Change 2022: Mitigation of Climate Change; Working Group III Contribution to the IPCC Sixth Assessment Report; Cambridge University Press: Cambridge, UK, 2022; pp. 613–746. [Google Scholar]
- Strbac, G.; Pudjianto, D.; Sansom, R.; Djapic, P.; Ameli, H.; Shah, N.; Brandon, N.; Hawkes, A.; Lomacka, M.; Jones, N.; et al. Whole Energy System Modelling for Heat Decarbonisation; Imperial College London: London, UK, 2021. [Google Scholar]
- Rosenow, J. Is Heating Homes with Hydrogen All but a Pipe Dream? An Evidence Review. Joule 2022, 6, 2225–2228. [Google Scholar] [CrossRef]
- Jalil-Vega, F.; García Kerdan, I.; Hawkes, A.D. Spatially-Resolved Urban Energy Systems Model to Study Decarbonisation Pathways for Energy Services in Cities. Appl. Energy 2020, 262, 114445. [Google Scholar] [CrossRef]
- Aunedi, M.; Yliruka, M.; Dehghan, S.; Pantaleo, A.M.; Shah, N.; Strbac, G. Multi-Model Assessment of Heat Decarbonisation Options in the UK Using Electricity and Hydrogen. Renew. Energy 2022, 194, 1261–1276. [Google Scholar] [CrossRef]
- Scheepers, M.; Palacios, S.G.; Jegu, E.; Nogueira, L.P.; Rutten, L.; van Stralen, J.; Smekens, K.; West, K.; van der Zwaan, B. Towards a Climate-Neutral Energy System in the Netherlands. Renew. Sustain. Energy Rev. 2022, 158, 112097. [Google Scholar] [CrossRef]
- Cassarino, T.; Barrett, M. Meeting UK Heat Demands in Zero Emission Renewable Energy Systems Using Storage and Interconnectors. Appl. Energy 2022, 306, 118051. [Google Scholar] [CrossRef]
- Sheikh, I.; Callaway, D. Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere 2019, 10, 435. [Google Scholar] [CrossRef]
- Element Energy. Consumer Cost of Heat Decarbonisation Integrated Report; Element Energy: Menlo Park, CA, USA, 2022. [Google Scholar]
- Matthes, F.; Braungardt, S.; Bürger, V.; Göckeler, K.; Heinemann, C.; Hermann, H.; Kasten, P.; Mendelevitch, R.; Mottschall, M.; Seebach, D.; et al. Die Wasserstoffstrategie 2.0 Für Deutschland; Öko-Institut e.V.: Berlin, Germany, 2021. [Google Scholar]
- Energy Transitions Commission. Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy; Energy Tranisions Commission: London, UK, 2021. [Google Scholar]
- Ueckerdt, F.; Bauer, C.; Dirnaichner, A.; Everall, J.; Sacchi, R.; Luderer, G. Potential and Risks of Hydrogen-Based e-Fuels in Climate Change Mitigation. Nat. Clim. Chang. 2021, 11, 384–393. [Google Scholar] [CrossRef]
- Giehl, J.; Hollnagel, J.; Müller-Kirchenbauer, J. Assessment of Using Hydrogen in Gas Distribution Grids. Int. J. Hydrogen Energy 2023, 48, 16037–16047. [Google Scholar] [CrossRef]
- Oshiro, K.; Fujimori, S. Role of Hydrogen-Based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-Century Decarbonization Goals. Appl. Energy 2022, 313, 118803. [Google Scholar] [CrossRef]
- Cotton, A.; Gray, L.; Maas, W. Learnings from the Shell Peterhead CCS Project Front End Engineering Design. Energy Procedia 2017, 114, 5663–5670. [Google Scholar] [CrossRef]
- Kapetaki, Z.; Scowcroft, J. Overview of Carbon Capture and Storage (CCS) Demonstration Project Business Models: Risks and Enablers on the Two Sides of the Atlantic. Energy Procedia 2017, 114, 6623–6630. [Google Scholar] [CrossRef]
- Federal Ministry for the Environment, N.C.B. and N.S. (BMUB). German Climate Action Plan2050 (Klimaschutzplan2050); Federal Ministry for the Environment, N.C.B. and N.S. (BMUB): Berlin, Germany, 2016. [Google Scholar]
- Metz, B.; Davidson, O.; Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2005. [Google Scholar]
- Dehghan, S.; Aunedi, M.; Ameli, H.; Strbac, G. Whole-System Value of Electrified District Heating Networks in Decarbonising Heat Sector in the UK. Electr. Power Syst. Res. 2024, 229, 110144. [Google Scholar] [CrossRef]
- Agora Energiewende. 12 Insights on Hydrogen Insights on Hydrogen; Agora Energiewende: Berlin, Germany, 2021. [Google Scholar]
- Baldino, C.; O’malley, J.; Searle, S.; Christensen, A. Hydrogen for Heating? Decarbonization Options for Households in the Netherlands in 2050; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Baldino, C.; O’Malley, J.; Searle, S.; Zhou, Y. Hydrogen for Heating? Decarbonization Options for Households in the United Kingdom in 2050; International Council on Clean Transportation: Washington, DC, USA, 2020. [Google Scholar]
- Baldino, C.; Searle, S.; Christensen, A. Hydrogen for Heating? Decarbonization Options for Households in Germany in 2050; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Baldino, C.; O’Malley, J.; Searle, S.; Christensen, A. Hydrogen for Heating? Decarbonization Options for Households in the European Union in 2050; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Billerbeck, A.; Kiefer, C.; Winkler, J.; Bernath, C.; Sensfuß, F.; Kranzl, L.; Müller, A. Electrification of Space and Water Heating: A Model-Based Scenario Analysis to Reach a Climate-Neutral EU in 2050 Themenbereich (3) Sektorkopplung Und Flexibilität or (2) Energieerzeugung; Fraunhofer Institute for Systems and Innovation Research ISI: Karlsruhe, Germany, 2023. [Google Scholar]
- Capros, P.; Zazias, G.; Evangelopoulou, S.; Kannavou, M.; Fotiou, T.; Siskos, P.; De Vita, A.; Sakellaris, K. Energy-System Modelling of the EU Strategy towards Climate-Neutrality. Energy Policy 2019, 134, 110960. [Google Scholar] [CrossRef]
- Perissi, I.; Jones, A. Investigating European Union Decarbonization Strategies: Evaluating the Pathway to Carbon Neutrality by 2050. Sustainability 2022, 14, 4728. [Google Scholar] [CrossRef]
- Bäckstrand, K. Towards a Climate-Neutral Union by 2050? The European Green Deal, Climate Law, and Green Recovery. In Routes to a Resilient European Union; Bakardjieva Engelbrekt, A., Ekman, P., Michalski, A., Oxelheim, L., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Gil, L.; Bernardo, J. An Approach to Energy and Climate Issues Aiming at Carbon Neutrality. Renew. Energy Focus 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Broad, O.; Hawker, G.; Dodds, P.E. Decarbonising the UK Residential Sector: The Dependence of National Abatement on Flexible and Local Views of the Future. Energy Policy 2020, 140, 111321. [Google Scholar] [CrossRef]
- EUROSTAT Database Median HDDs over the Years 1974–2016, Typical Minimum Temperature. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 21 December 2023).
- International Energy Agency. Net Zero by 2050-A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC) Buildings. Climate Change 2022-Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 953–1048. [Google Scholar]
- International Renewable Energy Agency. Geopolitics of the Energy Transformation: The Hydrogen Factor; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2022. [Google Scholar]
- Di Nardo, A.; Calabrese, M.; Venezia, V.; Portarapillo, M.; Turco, M.; Di Benedetto, A.; Luciani, G. Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future. Energies 2023, 16, 7908. [Google Scholar] [CrossRef]
- Korberg, A.D.; Thellufsen, J.Z.; Skov, I.R.; Chang, M.; Paardekooper, S.; Lund, H.; Mathiesen, B.V. On the Feasibility of Direct Hydrogen Utilisation in a Fossil-Free Europe. Int. J. Hydrogen Energy 2023, 48, 2877–2891. [Google Scholar] [CrossRef]
- Kranzl, L.; Forthuber, S.; Fallahnejad, M.; Büchele, R.; Fleiter, T.; Mandel, T. Renewable Space Heating Uunder the Revised Renewable Energy Directive Final Report; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Langenheld, A.; Mellwig, P.; Pehnt, M.; Oehsen, A.V.; Blömer, S.; Lempik, J. Building Sector Efficiency: A Crucial Component of the Energy Transition; Final Report on a Study Conducted by Institut für Energie-und Umweltforschung Heidelberg (Ifeu), Fraunhofer IEE and Consentec; Agora Energiewende: Berlin, Germany, 2018. [Google Scholar]
- Luderer, G.; Madeddu, S.; Merfort, L.; Ueckerdt, F.; Pehl, M.; Pietzcker, R.; Rottoli, M.; Schreyer, F.; Bauer, N.; Baumstark, L.; et al. Impact of Declining Renewable Energy Costs on Electrification in Low-Emission Scenarios. Nat. Energy 2022, 7, 32–42. [Google Scholar] [CrossRef]
- McKinsey Global Institute. The Net-Zero Transition: What It Would Cost, What It Would Bring; McKinsey Global Institute: New York, NY, USA, 2022. [Google Scholar]
- Meyer, R.; Herkel, S.; Kost, C. Die Rolle von Wasserstoff Im Gebäudesektor: Vergleich Technischer Möglichkeiten Und Kosten Defossilisierter Optionen Der Wärmeerzeugung; Fraunhofer-Institut für Solare Energiesysteme ISE: Breisgau, Germany, 2021. [Google Scholar]
- Olympios, A.V.; Aunedi, M.; Mersch, M.; Krishnaswamy, A.; Stollery, C.; Pantaleo, A.M.; Sapin, P.; Strbac, G.; Markides, C.N. Delivering Net-Zero Carbon Heat: Technoeconomic and Whole-System Comparisons of Domestic Electricity- and Hydrogen-Driven Technologies in the UK. Energy Convers. Manag. 2022, 262, 115649. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. Should We Inject Hydrogen into Gas Grids? Practicalities and Whole-System Value Chain Optimisation. Appl. Energy 2020, 275, 115172. [Google Scholar] [CrossRef]
- NaturalHy. Using the Existing Natural Gas System for Hydrogen; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Hy4Heat. Hy4Heat Progress Report; Department for Business, Energy and Industrial Strategy (BEIS): London, UK, 2019. [Google Scholar]
- Roben, F.; Kicherer, N.; Jurgens, L.; Decher, S.; Schafers, H.; Dusterlho, J.E. Von Decarbonization of the Heating Sector in Hamburg Grid Constraints, Efficiency and Costs of Green Hydrogen vs. Heat Pumps. In Proceedings of the International Conference on the European Energy Market, EEM, Ljubljana, Slovenia, 13–15 September 2022; IEEE Computer Society: Washington, DC, USA, 2022; Volume 2022-September. [Google Scholar]
- Bundesamt für Justiz. Federal Climate Change Act of 12 December 2019 (Federal Law Gazette I, p. 2513), as Last Amended by Article 1 of the Act of 18 August 2021 (Federal Law Gazette I, p. 3905); Bundesamt für Justiz: Bonn, Germany, 2019. [Google Scholar]
- Ryland, M.; He, W. Heating Economics Evaluated against Emissions: An Analysis of Low-Carbon Heating Systems with Spatiotemporal and Dwelling Variations. Energy Build. 2022, 277, 112561. [Google Scholar] [CrossRef]
- Simon, S.; Xiao, M.; Harpprecht, C.; Sasanpour, S.; Gardian, H.; Pregger, T. A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget. Sustainability 2022, 14, 1025. [Google Scholar] [CrossRef]
- Slorach, P.C.; Stamford, L. Net Zero in the Heating Sector: Technological Options and Environmental Sustainability from Now to 2050. Energy Convers. Manag. 2021, 230, 113838. [Google Scholar] [CrossRef]
- Thomas, S.; Bierwirth, A.; März, S.; Schüwer, D.; Vondung, F.; Von Geibler, J.; Wagner, O. CO2-Neutrale Gebäude Bis Spätestens 2045. 2021. Available online: https://epub.wupperinst.org/files/7888/ZI21_Gebaeude.pdf (accessed on 21 December 2023).
- Victoria, M.; Zeyen, E.; Brown, T. Speed of Technological Transformations Required in Europe to Achieve Different Climate Goals. Joule 2022, 6, 1066–1086. [Google Scholar] [CrossRef]
- Weidner, T.; Guillén-Gosálbez, G. Planetary Boundaries Assessment of Deep Decarbonisation Options for Building Heating in the European Union. Energy Convers. Manag. 2023, 278, 116602. [Google Scholar] [CrossRef]
- Wietschel, M.; Weißenburger, B.; Rehfeldt, M.; Lux, B.; Zheng, L.; Meier, J. Preiselastische Wasserstoffnachfrage in Deutschland—Methodik und Ergebnisse. 2023. Available online: https://hypat.de/hypat/publikationen.php (accessed on 21 December 2023).
- Scheepers, M.; Palacios, S.G.; Janssen, G.; Botero, J.M.; Van Stralen, J.; Oliveira, C.; Dos Santos, M.; Uslu, A.; West, K. Towards a Sustainable Energy System for the Netherlands in 2050—Scenario Update and Analysis of Heat Supply and Chemical and Fuel Production from Sustainable Feedstocks. 2022. Available online: https://publications.tno.nl/publication/34639435/TzUN1t/TNO-2022-P10162.pdf (accessed on 21 December 2023).
- Asella, E.; Nevell, M.; Steyne, H. The Oxford Handbook of Industrial Archaeology; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Åberg, A. A Gap in the Grid: Attempts to Introduce Natural Gas in Sweden 1967–1991. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2013. [Google Scholar]
- Baukal, C.E. The John Zink Hamworthy Combustion Handbook: Applications; CRC Press: Boca Raton, FL, USA, 2013; Volume 3, pp. 75–96. [Google Scholar]
- Zeng, C.; Liu, S.; Shukla, A. A Review on the Air-to-Air Heat and Mass Exchanger Technologies for Building Applications. Renew. Sustain. Energy Rev. 2017, 75, 753–774. [Google Scholar] [CrossRef]
- Committee on Climate Change (CCC). Annex 2. Heat in UK Buildings Today; Committee on Climate Change (CCC): London, UK, 2016. [Google Scholar]
- Cambridge Economic Policy Associates Ltd. HSE/Ofgem: 10 Year Review of the Iron Mains Replacement Programme; Cambridge Economic Policy Associates Ltd.: London, UK, 2011. [Google Scholar]
- Dodds, P.; McDowall, W. The Future of the UK Gas Network. Energy Policy 2013, 60, 305–316. [Google Scholar] [CrossRef]
- Sifnaios, I.; Fan, J.; Olsen, L.; Madsen, C.; Furbo, S. Optimization of the Coefficient of Performance of a Heat Pump with an Integrated Storage Tank–A Computational Fluid Dynamics Study. Appl. Therm. Eng. 2019, 160, 114014. [Google Scholar] [CrossRef]
- Pudjianto, D.; Frost, C.; Coles, D.; Angeloudis, A.; Smart, G.; Strbac, G. UK Studies on the Wider Energy System Benefits of Tidal Stream. Energy Adv. 2023, 2, 789. [Google Scholar] [CrossRef]
Studied Region and Emission Strategy | Whole Energy System-Related Aspects | H2 Production Technologies and CCS Infrastructure | Modeling Granularities | Heat Appliance Characteristics | Resilience | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
References | Country | Year | Emission Target | Impact of Electrification on Peak Demand | Opt. of Heat Decarb. | H2 Assets opt. | NET Based on CCS | Mix of H2 Production | Sufficient Spatial Granularity | Sufficient Temporal Granularity | HP’s COP Vary | Cost of Heating Appliances | Extreme Events | H2-Based Power Generation |
[72] | EU (DE) | 2050 | Net-zero | |||||||||||
[57] | UK | 2050 | Net-zero | |||||||||||
[74] | UK | 2050 | Net-zero | |||||||||||
[76] | EU | 2050 | Net-zero | |||||||||||
[73] | NL | 2050 | Net-zero | |||||||||||
[75] | DE | 2050 | Net-zero | |||||||||||
[77] | EU | 2050 | Net-zero | |||||||||||
[82] | UK | 2050 | Net-zero | |||||||||||
[78] | EU | 2050 | GHG 95% lower (to 1990) | |||||||||||
[59] | UK | 2050 | Net-zero | |||||||||||
[61] | EU (SP, IT, CZ and PL) | 2040 | Electricity grid significantly decarb. by 2040 in line with 2050 Net-zero | |||||||||||
[63] | GL | 2050 | Net-zero | |||||||||||
[65] | DE | 2050 | Below 1.5 °C | |||||||||||
[84] | GL | 2050 | Net-zero | |||||||||||
[85] | GL | 2050 | Low- and net-zero-energy buildings | |||||||||||
[86] | GL | 2050 | UN 1.5 °C target | |||||||||||
[56] | Sao Paolo (Brazil) | 2050 | 43% below 2005 levels by 2030; decarb. 2050 | |||||||||||
[88] | EU | 2050 | 100% RES system | |||||||||||
[89] | EU | 2050 | GHG below 2% compared with 1990 | |||||||||||
[90] | DE | 2050 | GHG 80–95% reduction (level to 1990) | |||||||||||
[91] | GL | 2050 | UN 1.5 °C target | |||||||||||
[62] | DE | 2050 | Net-zero | |||||||||||
[92] | GL | 2050 | Net-zero | |||||||||||
[93] | DE | 2050 | GHG 95% lower (to 1990) | |||||||||||
[94] | UK | 2035 | Net-zero carbon heating | |||||||||||
[66] | GL | 2050 | UN 1.5 °C target | |||||||||||
[95] | UK | 2050 | Net-zero | |||||||||||
[98] | Hamburg (DE) | 2050 | Net-zero carbon heating | |||||||||||
[100] | UK | 2035 | UN 1.5 °C target | |||||||||||
[107] | NL | 2050 | GHG 95% lower (to 1990) | |||||||||||
[58] | NL | 2050 | Net-zero | |||||||||||
[60] | California (USA) | 2050 | GHG 80% reduction (level to 1990) | |||||||||||
[101] | DE | 2050 | Net-zero | |||||||||||
[102] | UK | 2050 | Net-zero | |||||||||||
[103] | DE | 2045 | Net-zero in buildings | |||||||||||
[64] | GL | 2050 | Seems to be UN 1.5 °C target | |||||||||||
[104] | EU | 2050 | Net-zero | |||||||||||
[105] | EU27 + UK | 2040 | Decarb. of heating sector |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameli, H.; Strbac, G.; Pudjianto, D.; Ameli, M.T. A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives. Energies 2024, 17, 1688. https://doi.org/10.3390/en17071688
Ameli H, Strbac G, Pudjianto D, Ameli MT. A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives. Energies. 2024; 17(7):1688. https://doi.org/10.3390/en17071688
Chicago/Turabian StyleAmeli, Hossein, Goran Strbac, Danny Pudjianto, and Mohammad Taghi Ameli. 2024. "A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives" Energies 17, no. 7: 1688. https://doi.org/10.3390/en17071688
APA StyleAmeli, H., Strbac, G., Pudjianto, D., & Ameli, M. T. (2024). A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives. Energies, 17(7), 1688. https://doi.org/10.3390/en17071688