Maximizing Efficiency in Compressed Air Energy Storage: Insights from Thermal Energy Integration and Optimization
Abstract
:1. Introduction
- Solid TES (no external air heating)
- Solid TES with external air heating
- External air heating (no air cooling, no TES)
- External air heating, air cooling (no TES)
- Liquid TES (no air heating)
- High-temperature liquid TES with two aftercoolers
- Low-temperature liquid TES with two aftercoolers
- Liquid TES with external air heating
- Constant-pressure cavern and air cooling (no external air heating, no TES)
2. Numerical Model
2.1. System Description
2.2. Compressor and Turbine Equations
2.3. Solid TES
2.4. Liquid TES
2.5. Pipeline Pressure Drop
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Greenblatt, J.; Succar, S.; Denkenberg, D.; Williams, R.H.; Socolow, R.H. Baseload Wind Energy: Modeling the Competition Between Gas Turbines and Compressed Air Energy Storage for Supplemental Generation. Energy Policy 2007, 35, 1474–1492. [Google Scholar] [CrossRef]
- Strbac, G. Quantifying the System Costs of Additional Renewables in 2020; A Report to the Department of Trade & Industry (DTI); DTI: London, UK, 2002. [Google Scholar]
- Cavallo, A.J. High-Capacity Factor Wind Energy Systems. J. Solar Energy Eng. Trans. ASME 1995, 117, 137–145. [Google Scholar] [CrossRef]
- Sengalani, P.S.; Haque, M.E.; Zantye, M.S.; Gandhi, A.; Li, M.; Hasan, M.M.F.; Bhattacharyya, D. Techno-Economic Analysis and Optimization of a Compressed-Air Energy Storage System Integrated with a Natural Gas Combined-Cycle Plant. Energies 2023, 16, 4867. [Google Scholar] [CrossRef]
- Kim, S.; Dusseault, M.; Babarinde, O.; Wickens, J. Compressed Air Energy Storage (CAES): Current Status, Geomechanical Aspects, and Future Opportunities. Geol. Soc. Lond. Spec. Publ. 2023, 528, SP528-2022. [Google Scholar] [CrossRef]
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies. Thermo 2023, 3, 104–126. [Google Scholar] [CrossRef]
- Tong, Z.; Cheng, Z.; Tong, S. A Review on the Development of Compressed Air Energy Storage in China: Technical and Economic Challenges to Commercialization. Renew. Sustain. Energy Rev. 2021, 135, 110178. [Google Scholar] [CrossRef]
- Dindorf, R. Study of the Energy Efficiency of Compressed Air Storage Tanks. Sustainability 2024, 16, 1664. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, C.; Du, X.; Di, Y.; Laijun, C. Performance Analysis of Distributed Compressed Air Energy Storage under Different Air Storage Chamber Models. J. Phys. 2023, 2495, 012006. [Google Scholar] [CrossRef]
- He, Q.; Li, G.; Lu, C.; Du, D.; Liu, W. A Compressed Air Energy Storage System with Variable Pressure Ratio and its Operation Control. Energy 2019, 169, 881–894. [Google Scholar] [CrossRef]
- Salyga, S.; Szablowski, L.; Badyda, K. Comparison of Constant Volume Energy Storage Systems Based on Compressed Air. Int. J. Energy Res. 2020, 45, 8030–8040. [Google Scholar] [CrossRef]
- Soltani, M.; Kashkooli, F.M.; Jafarizadeh, H.; Hatefi, M.; Fekri, H.; Gharali, K.; Nathwani, J. Diabatic Compressed Air Energy Storage (CAES) Systems: State of the Art. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kotowicz, J.; Jurczyk, M. Efficiency of Diabatic CAES Installation. Rynek Energii 2015, 119, 49–56. [Google Scholar]
- Zhao, P.; Dai, Y.; Wang, J. Design and Thermodynamic Analysis of a Hybrid Energy Storage System Based on A-CAES (Adiabatic Compressed Air Energy Storage) and FESS (Flywheel Energy Storage System) for Wind Power Application. Energy 2014, 70, 674–684. [Google Scholar] [CrossRef]
- Khaledi, K.; Mahmodi, E.; Datcheva, M.; Schanz, T. Analysis of Compressed Air Storage Caverns in Rock Salt Considering Thermo-Mechanical Cyclic Loading. Environ. Earth Sci. 2016, 75, 1149. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, D.; Lu, C.; He, Q.; Liu, W. A Review of Thermal Energy Storage in Compressed Air Energy Storage System. Energy 2019, 188, 115993. [Google Scholar] [CrossRef]
- Tola, V.; Marcello, F.C.; Cocco, D.; Cau, G. Performance Assessment of Low-Temperature A-CAES (Adiabatic Compressed Air Energy Storage) Plants. J. Therm. Sci. 2022, 31, 1279–1292. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Li, Y.; Chen, H.; Wu, Y.; Wang, J.; Garvey, S.; Ding, Y. Dynamic Simulation of Adiabatic Compressed Air Energy Storage (A-CAES) Plant with Integrated Thermal Storage—Link between Components Performance and Plant Performance. Appl. Energy 2017, 185, 16–28. [Google Scholar] [CrossRef]
- Cacciali, L.; Battisti, L.; Occello, D. Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES). Energies 2023, 16, 8013. [Google Scholar] [CrossRef]
- Bai, F.; Xu, C. Performance Analysis of a Two-Stage Thermal Energy Storage System Using Concrete and Steam Accumulator. Appl. Thermal Eng. 2011, 31, 2764–2771. [Google Scholar] [CrossRef]
- De Biasi, V. 110 MW McIntosh CAES Plant Over 90% Availability and 95% Reliability. Gas Turbine World 1998, 28, 26–28. [Google Scholar]
- Crotogino, F.; Mohmeyer, K.U.; Scharf, R. Huntorf CAES: More than 20 Years of Successful Operation. In Proceedings of the Conference: Solution Mining Research Institute (SMRI) Spring Meeting, Orlando, FL, USA, 15–18 April 2001. [Google Scholar]
- Brown Boveri (BBC). Energy Supply—Huntorf Air Storage Gas Turbine Power Plant, D GK 90202E. Available online: https://www.solarplan.org/documents/BBC_Huntorf_engl.pdf (accessed on 29 January 2024).
- Gil, A.; Medrano, M.; Martorell, I.; Làzaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts Material and Modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Kakaç, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Smits, A.J.; Dussauge, J.-P. Turbulent Sheat Layers in Supersonic Flow, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Benini, E. Thermodynamic Analysis of Compressed Air Energy Storage Systems. Master’s Thesis, University of Trento, Trento, Italy, 2011. [Google Scholar]
- Lozza, G. Turbine a Gas e Cicli Combinati, 3rd ed.; Società Editrice Esculapio: Bologna, Italy, 2016. [Google Scholar]
- Nunes, V.M.B.; Lourenco, M.; Santos, F.J.V.; de Castro, C.N. Viscosity of Molten Sodium Nitrate. Int. J. Therm. 2006, 27, 1638–1649. [Google Scholar] [CrossRef]
- Bauer, T.; Dörte, L.; Ulrike, K.; Tamme, R. Sodium Nitrate for High Temperature Latent Heat Storage. In Proceedings of the Effstock 2009—11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 14–17 June 2009. [Google Scholar]
- Raju, M.; Khaitan, S.K. Modeling and Simulation of Compressed Air Storage in Caverns: A Case Study of the Huntorf Plant. Appl. Energy 2012, 89, 474–481. [Google Scholar] [CrossRef]
Cavern volume [m3] | 500 | 1000 | 5000 | 10,000 | 30,000 | 50,000 | 100,000 | 200,000 |
Expander mass flow rate [kg/s] | 1.43 | 2.75 | 13.75 | 27.50 | 82.50 | 137.50 | 275.00 | 550.00 |
Compressor mass flow rate [kg/s] | 0.65 | 1.25 | 6.25 | 12.50 | 37.50 | 62.50 | 125.00 | 250.00 |
Parameter | Symbol | Value | Units | Reference |
---|---|---|---|---|
Gas turbine parameters | ||||
Max cavern pressure | pmax | 80 | bar | |
Mid cavern pressure | pmid | 45 | bar | |
Min cavern pressure | pmin | 15 | bar | |
LP compressor pressure ratio | βc,lp | 13.3 | - | |
HP compressor pressure ratio | βc,hp | 6.01 | - | |
HP turbine pressure ratio | βt,hp | 3.58 | - | |
LP turbine pressure ratio | βt,lp | 12.4 | - | |
CAES parameters | ||||
Cavern volume | Vcavern | var. | m3 | |
Main pipe length | Lpipe | 800 | m | [23] |
Main pipe diameter | Dpipes | var. | m | |
Main pipe friction factor | fpipes | - | - | |
Electric motor-generator efficiency | ηmot-gen | 0.98 | - | |
Solid TES parameters | ||||
Cylinder elementary area | A | f(rstep) | m2 | |
Concrete specific heat | cp,concrete | 880 | J/kgK | [24] |
Concrete density | rconcrete | 2200 | kg/m3 | [24] |
Concrete conductivity | λconcrete | 1.5 | W/mK | [24] |
TES length | TES length | 70 | m | |
Pipes diameter | DTES,pipe | 0.085 | m | |
Pipes distance | LTES,pipes | 0.2 | m | |
Solid TES radius step | rstep | var. | m | |
Maximum air speed in pipes | uref | 8 | m/s | |
HP TES pipe number at max volume | NHP,solid | 1562 | - | |
LP TES pipe number at max volume | NLP,solid | 703 | - | |
Liquid TES parameters | ||||
Minimum liquid salt temperature | Tsalt,min | 550 | K | [24] |
Maximum liquid salt temperature | Tsalt,max | 830 | K | [24] |
Molten salt density | rsalt | 1850 | kg/m3 | [24] |
Heat exchangers (Liquid TES) | ||||
Heat exchanger length | Lexchanger | 35 | m | |
Pipes diameter | DTES,pipes | 0.085 | m | |
Pipes distance | LTES,pipes | 0.12 | m | |
HP pipes number | NHP,exch | 2740 | - | |
LP pipes number | NLP,exch | 2319 | - | |
Correlation pipe factor | Cn | 1 | - | [25] |
Bulk Prandtl number | Prb | f(cp,λ,μ) | - | [25] |
Wall Prandtl number | Prw | f(cp,λ,μ) | - | [25] |
Flow velocity | upipes | var. | m/s | |
Air parameters | ||||
Specific heat | cp | f(T) | J/kgK | [26] |
Thermal conductivity | λ | f(T) | W/mK | [26] |
Dynamic viscosity | μ | f(T) | kg/ms | [26] |
Air constant | RA | 287.05 | J/kgK | |
Air density | ρ | f(T,p) | Kg/m3 |
Time [h] | Volume [m3] | |||||||
---|---|---|---|---|---|---|---|---|
- | 500 | 1000 | 5000 | 10,000 | 30,000 | 50,000 | 100,000 | 200,000 |
1 | 1.7 | 2.9 | 14.9 | 30.2 | 97.5 | 155.6 | 314.6 | 602.0 |
2 | 0.8 | 1.4 | 7.4 | 15.1 | 48.7 | 77.8 | 157.3 | 301.0 |
3 | 0.6 | 1.0 | 5.0 | 10.1 | 32.5 | 51.9 | 104.9 | 200.7 |
4 | 0.4 | 0.7 | 3.7 | 7.6 | 24.4 | 38.9 | 78.7 | 150.5 |
5 | 0.3 | 0.6 | 3.0 | 6.0 | 19.5 | 31.1 | 62.9 | 120.4 |
6 | 0.3 | 0.5 | 2.5 | 5.0 | 16.2 | 25.9 | 52.4 | 100.3 |
7 | 0.2 | 0.4 | 2.1 | 4.3 | 13.9 | 22.2 | 44.9 | 86.0 |
8 | 0.2 | 0.4 | 1.9 | 3.8 | 12.2 | 19.5 | 39.3 | 75.2 |
9 | 0.2 | 0.3 | 1.7 | 3.4 | 10.8 | 17.3 | 35.0 | 66.9 |
10 | 0.2 | 0.3 | 1.5 | 3.0 | 9.7 | 15.6 | 31.5 | 60.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciali, L.; Battisti, L.; Benini, E. Maximizing Efficiency in Compressed Air Energy Storage: Insights from Thermal Energy Integration and Optimization. Energies 2024, 17, 1552. https://doi.org/10.3390/en17071552
Cacciali L, Battisti L, Benini E. Maximizing Efficiency in Compressed Air Energy Storage: Insights from Thermal Energy Integration and Optimization. Energies. 2024; 17(7):1552. https://doi.org/10.3390/en17071552
Chicago/Turabian StyleCacciali, Luca, Lorenzo Battisti, and Enrico Benini. 2024. "Maximizing Efficiency in Compressed Air Energy Storage: Insights from Thermal Energy Integration and Optimization" Energies 17, no. 7: 1552. https://doi.org/10.3390/en17071552
APA StyleCacciali, L., Battisti, L., & Benini, E. (2024). Maximizing Efficiency in Compressed Air Energy Storage: Insights from Thermal Energy Integration and Optimization. Energies, 17(7), 1552. https://doi.org/10.3390/en17071552