Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective
Abstract
:1. Introduction
2. Study Design and Data Selection
3. Just Energy Transition
3.1. Progress of the Transition Process
3.2. Coal Consumption for Energy Production
3.3. Opposition and Acceptance of Coal Phaseout
4. Need for Plausible Energy Transition in Bulgaria
4.1. Coal Production in Bulgaria
4.2. Coal Share for Electricity Production in Bulgaria
4.3. Prospects for Limited Uses of the Bulgarian CFPPs
4.3.1. Efficiency Optimization and Emissions Control
4.3.2. Combined Cycle Operation of Lignite-Fired Power Unit with Gas Turbine, including Utilization of Carbon-Free Fuels
4.3.3. Electric and Thermal Power Cogeneration Utilizing Biomass
Analysis (CAPEX + OPEX) of Biomass Supply and Cost of a Power Unit of 300 MW, Adapted to Operate with 100% of Biomass: Feasibility Study of the Power Unit
Biomass Supply and Cost Analysis (CAPEX + OPEX) of a Power Unit 210 MW
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paris Agreement, United Nations. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 20 May 2023).
- Eriksen, R.; Group President and CEO, DNV, Hydrogen Forecast to 2050. DNV AS 2022, Norway. Available online: https://www.dnv.com/about/statistics-and-insights/hydrogen.html (accessed on 24 April 2023).
- Alberti, V.; Caperna, G.; Colagrossi, M.; Geraci, A.; Mazzarella, G.; Panella, F.; Saisana, M. Tracking EU Citizens’ Interest in EC Priorities Using Online Search Data. In The European Green Deal; EUR 30580 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-29429-0. [Google Scholar] [CrossRef]
- New Energy Outlook 2022, Extensive Summary, BloombergNEF. Available online: https://bnef.turtl.co/story/neo-2022/page/2/2?teaser=yes (accessed on 19 April 2023).
- Coal in Net Zero Transitions. Strategies for Rapid, Secure and People-Centered Change. Fuel Report—November 2022, License CC BY 4.0. Available online: https://www.iea.org/reports/coal-in-net-zero-transitions (accessed on 11 October 2023).
- Merzic, A.; Turkovic, N.; Ikanovic, N.; Lapandic, E.; Kazagic, A.; Music, M. Towards just transition of coal regions—Cultivation of short rotation copies and dedicated energy crops for biomass co-firing vs photo voltaic power plants. Energy Convers. Manag. X 2022, 15, 100267. [Google Scholar] [CrossRef]
- Tracking Coal-Fired Electricity Generation, International Energy Agency. Available online: https://www.iea.org/fuels-and-technologies/coal (accessed on 23 April 2023).
- Electricity System Operator. Energy Balance Report. Available online: https://www.eso.bg/index.php?en (accessed on 23 August 2023).
- Del Rio, M.S.; Lucquiaud, M.; Gibbins, J. Maintaining the power output of an existing coal plant with the addition of CO2 capture: Retrofits options with gas turbine combined cycle plants. Energy Procedia 2014, 63, 2530–2541. [Google Scholar] [CrossRef]
- Debiagi, P.; Rocha, R.C.; Scholtissek, A.; Janicka, J.; Hasse, C. Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants. Renew. Sustain. Energy Rev. 2022, 165, 112579. [Google Scholar] [CrossRef]
- Thomas, D.J. Finding a future for clean coal and CO2 storage technology. Fuel 2017, 195, 314–315. [Google Scholar] [CrossRef]
- Nakaten, N.; Kötting, P.; Azzam, R.; Kempka, T. Underground coal gasification and CO2 storage support Bulgaria’s low carbon energy supply. Energy Procedia 2013, 40, 212–221. [Google Scholar] [CrossRef]
- Markevych, K.; Maistro, S.; Koval, V.; Paliukh, V. Mining sustainability and circular economy in the context of economic security in Ukraine. Min. Miner. Depos. 2022, 16, 101–113. Available online: http://mining.in.ua/articles/volume16_1/13.pdf (accessed on 3 February 2024). [CrossRef]
- Saik, P.; Lozynskyi, V.; Anisimov, O.; Akimov, O.; Kozhantov, A.; Mamaykin, O. Managing the process of underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2023, 6, 25–30. Available online: http://nvngu.in.ua/index.php/en/archive/on-the-issues/1901-2023/content-6-2023/6746-25 (accessed on 3 February 2024). [CrossRef]
- Bondarenko, V.; Salieiev, I.; Kovalevska, I.; Chervatiuk, V.; Malashkevych, D.; Shyshov, M.; Chernyak, V. A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Min. Miner. Depos. 2023, 17, 1–16. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Ganev, P. Bulgarian electricity market restructuring. Util. Policy 2009, 17, 65–75. [Google Scholar] [CrossRef]
- Martin, J. Ivanov Governed by tensions: The introduction of renewable energies and their integration in the Bulgarian energy system (2006–2016). Environ. Innov. Soc. Transit. 2019, 32, 90–106. [Google Scholar] [CrossRef]
- Pavlov, T. Chapter 3 “The Political Economy of Coal in Bulgaria. The Silent Phase-Out”. In The Political Economy of Coal, 1st ed.; Jakob, M., Steckel, J.C., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 40–59. ISBN 9781003044543. [Google Scholar]
- Andreas, J.-J.; Burns, C.; Touz, J. Overcoming energy injustice? Bulgaria’s renewable energy transition in times of crisis. Energy Res. Soc. Sci. 2018, 42, 44–52. [Google Scholar] [CrossRef]
- Nikolaev, A.; Konidari, P. Development and assessment of renewable energy policy scenarios by 2030 for Bulgaria. Renew. Energy 2017, 111, 792–802. [Google Scholar] [CrossRef]
- Tchalakova, I.; Mitev, T. Energy dependence behind the Iron Curtain: The Bulgarian ex-perience. Energy Policy 2019, 126, 47–56. [Google Scholar] [CrossRef]
- Systematic Reviews, Creating A Search Strategy. Available online: https://guides.lib.umich.edu/c.php?g=283340&p=2126706 (accessed on 4 February 2023).
- Ahn, E.; Kang, H. Introduction to systematic review and meta-analysis. Korean J. Anesthesiol. 2018, 71, 103–112. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_Page (accessed on 19 April 2023).
- EUROSTAT Statistics Explained, Gross Available Energy by Fuel, 2021, Last Edition: 23 May 2023, ISSN 2443-8219. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Gross_available_energy_by_fuel,_2021_(%25)_23-05-2023.png#filelinks (accessed on 18 July 2023).
- IEA Energy Statistics Data Browser, Total Energy Supply by Source, World 1990–2020. Available online: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource (accessed on 11 April 2023).
- EUROSTAT Statistics Explained, Supply-Fossil-Nuclear-EU-1990-2022, Last Edition: 28 June 2023, ISSN 2443-8219. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Supply-fossil-nuclear-EU-1990-2022.png (accessed on 18 July 2023).
- EUROSTAT. Coal Production and Consumption See Rebound in 2021, Data Extracted in 2 May 2022. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220502-2 (accessed on 12 June 2023).
- EUROSTAT. Coal Production and Consumption Statistics, News Articles, 22 June 2023. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/DDN-20230622-2 (accessed on 25 June 2023).
- National Statistical Institute (NSI). Energy Balance. Available online: https://www.nsi.bg/bg/content/4196/общ-енергиен-баланс (accessed on 17 June 2023).
- Ritchie, H.; Rosado, P. “Energy Mix” Published Online at OurWorldInData.org. 2020. Available online: https://ourworldindata.org/energy-mix (accessed on 24 January 2024).
- Integrated Plan in the Field of Energy and Climate of the Republic of Bulgaria 2021–2030. In Bulgarian. Available online: https://energy.ec.europa.eu/system/files/2020-06/bg_final_necp_main_en_0.pdf (accessed on 20 May 2023).
- Strategy for Sustainable Energy Development of the Republic of Bulgaria until 2030, with a Horizon until 2050—Project. In Bulgarian. Available online: https://www.me.government.bg/bg/themes/energiina-strategiya-na-republika-balgariya-do-2020-g-147-295.html (accessed on 25 May 2023).
- National Recovery and Resilience Plan (NRRP) of the Republic of Bulgaria, In Bulgarian. Version 1.5, 06.04.2022. Available online: https://www.nextgeneration.bg/14 (accessed on 20 May 2023).
- Territorial Plans for a Just Transition, In Bulgarian. Available online: https://www.me.government.bg/themes-c389.html (accessed on 28 September 2023).
- Zartova, V.; Dimitrov, P.; Agafonova, I. Economic and Social Council for the First Half of 2022 Includes the Preparation of an Own-Initiative Opinion on a “Territorial Just Transition Plans—Aims, Challenges and Expected Effect, Sofia, 2022, ESC/4/013/2022. Available online: https://esc.bg/wp-content/uploads/2022/07/ESC_4_013_2022_EN.pdf (accessed on 30 September 2023).
- National Action Plan for Forest Biomass Energy 2018–2027. Available online: http://www.iag.bg/data/docs/nationalen_plan.pdf (accessed on 11 September 2022).
- Integrated Energy and Climate Plan of the Republic of Bulgaria 2021–2030. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/bg_final_necp_main_en.pdf (accessed on 5 June 2022).
- The Program of Measures to Adapt Forests in the Republic of Bulgaria and Reduce the Negative Impact of Climate Change on Them. Available online: http://www.iag.bg/data/docs/Programa_ot_merki.pdf (accessed on 11 September 2022).
- Net Zero by 2050. A Roadmap for the Global Energy Sector, Flagship Report, May 2021, License, CC BY 4.0. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 5 July 2023).
- Chen, J.M. Carbon neutrality: Toward a sustainable future. Innovation 2021, 2, 100127. [Google Scholar] [CrossRef] [PubMed]
- Hammonda, G.P.; Spargo, J. The prospects for CFPP with carbon capture and storage: A UK perspective. Energy Convers. Manag. 2014, 86, 476–489. [Google Scholar] [CrossRef]
- Badias, J.-F. ‘Necessary Evil’: France Refires Coal Plant Amid Energy Woes. AP News, 30 November 2022. Available online: https://apnews.com/article/europe-business-france-climate-and-environment-government-politics-1d16e1c1cb53fef03a2a77a437f8410e (accessed on 20 April 2023).
- Brown, S. Coal Is Not Making A Comeback: Europe Plans Limited Increase. Ember. 13 July 2022. Available online: https://ember-climate.org/insights/research/coal-is-not-making-a-comeback/ (accessed on 4 April 2023).
- Jones, D.; Brown, S.; Czyżak, P. Review 2023, Ember’s Analysis of the EU Electricity Transition in 2022: What Happened in 2022, What Can We Expect for 2023? 31 January 2023, Creative Commons Attribution Licence (CC-BY-4.0). Available online: https://ember-climate.org/insights/research/european-electricity-review-2023/ (accessed on 25 January 2024).
- Brown, S.; Jones, D.; Fulghum, N.; Bruce-Lockhart, C.; Candlin, A.; Ewen, M.; Czyżak, P.; Rangelova, K.; Heberer, L.; Rosslowe, C.; et al. European Electricity Review 2024. Available online: https://ember-climate.org/insights/research/european-electricity-review-2024/#supporting-material (accessed on 25 January 2024).
- German Politicians Split as Last Nuclear Plants Close by Deutsche Welle. 16 April 2023. Available online: https://www.dw.com/en/german-politicians-split-as-last-nuclear-plants-close/a-65332978 (accessed on 3 August 2023).
- Promoting Renewable Energy in District Heating. Seven Policy Recommendations in This Area, Deutsche Umwelthilfe DUH-Forderungen, 11 September 2021. Available online: https://www.zazemiata.org/resources/otoplenie-ot-vzobnovyaemi-iztochnici/ (accessed on 28 September 2023).
- Bociaga, R. Will Coal Become the New Normal for Europe? Fair Planet, 14 November 2022. Available online: https://www.fairplanet.org/story/will-coal-become-the-new-normal-for-europe/ (accessed on 19 April 2023).
- Jermain, D.O.; Ren, Z.J.; Foster, S.B.; Pilcher, R.C.; Berardi, E.J. Coal in the 21st century: Integrating policy with practice for just transitions. Electr. J. 2022, 35, 107220. [Google Scholar] [CrossRef]
- Kowalska, I.J. Challenges for long –term industry restructuring in the Upper Silestian Coal Basin: What has Polish coal mining achieved and failed from a twenty-year perspective? Resor. Policy 2015, 44, 135–149. [Google Scholar] [CrossRef]
- Coal in the Balkans, by Bankwatch Network, 2023. Available online: https://bankwatch.org/project/coal-in-the-balkans#1503303885469-aa188fed-71ee (accessed on 18 June 2023).
- Walk, P.; Stognief, N. From coal phase-out to net zero: Driving factors of UK climate policy. Environ. Sci. Policy 2022, 138, 76–84. [Google Scholar] [CrossRef]
- Shepheard, M. UK Net Zero Target, 20 April 2020. Available online: https://www.instituteforgovernment.org.uk/article/explainer/uk-net-zero-target (accessed on 1 April 2023).
- Heaps, C.G. Long-range Energy Alternatives Planning (LEAP) System Stockholm Environment Institute, Somerville, MA, USA (2012); The Energy Transition Model (ETM) is An Open-Source. Available online: https://docs.energytransitionmodel.com/main/intro (accessed on 25 January 2024).
- Desing, H.; Gerber, A.; Hischier, R.; Wäger, P.; Widmer, R. The 3-machines energy transition model: Exploring the energy frontiers for restoring a habitable climate. Earth’s Future 2022, 10, e2022EF002875. [Google Scholar] [CrossRef]
- Süsser, D.; Martin, N.; Stavrakas, V.; Gaschnig, H.; Talens-Peiró, L.; Flamos, A.; Madrid-López, C.; Lilliestam, J. Why energy models should integrate social and environmental factors: Assessing user needs, omission impacts, and real-word accuracy in the European Union. Energy Res. Soc. Sci. 2022, 92, 102775. [Google Scholar] [CrossRef]
- Savvidis, G.; Siala, K.; Weissbart, C.; Schmidt, L.; Borggrefe, F.; Kumar, S.; Pittel, K.; Madlener, R.; Hufendiek, K. The gap between energy policy challenges and model capabilities. Energy Policy 2019, 125, 503–520. [Google Scholar] [CrossRef]
- Hansen, P.; Liu, X.; Morrison, G.M. Agent-based modelling and socio-technical energy transitions: A systematic literature review. Energy Res. Soc. Sci. 2019, 49, 41–52. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Engo, J.; Han, B.; Li, Y.; Muehleisen, R.T. Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model. Appl. Energy 2020, 263, 114641. [Google Scholar] [CrossRef]
- Roman-Collado, R.; Economidou, M. The role of energy efficiency in assessing the progress towards the EU energy efficiency targets of 2020: Evidence from the European productive sectors. Energy Policy 2021, 156, 112441. [Google Scholar] [CrossRef]
- Eriksen, R.; Group President and CEO. DNV Energy Transition Outlook 2023. A Global and Regional Forecast to 2050, 7th ed.; DNV: Bærum, Norway, 2023. [Google Scholar]
- Yang, L.; Wang, Q.; Bai, X.; Deng, J.; Hu, Y. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017. Minerals 2018, 8, 89. [Google Scholar] [CrossRef]
- Ainger, J. Coal Is Still Raising Trillions of Dollars Despite Green Shift, Bloomberg, 2022. Available online: https://www.bloomberg.com/news/articles/2022-02-14/coal-is-still-raising-trillions-of-dollars-despite-green-shift (accessed on 1 September 2023).
- IRENA. Scenarios for the Energy Transition: Global Experiences and Best Practices; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-267-3. [Google Scholar]
- Busby, J.W.; Baker, K.; Bazilian, M.D.; Gilbert, A.Q.; Grubert, E.; Rai, V.; Rhodes, J.D.; Shidore, S.; Smith, C.A.; Webber, M.E. Cascading risks: Understanding the 2021 winter blackout in Texas. Energy Res. Soc. Sci. 2021, 77, 102106. [Google Scholar] [CrossRef]
- Steckel, J.C.; Jakob, M. The political economy of coal: Lessons learnt from 15 country case studies. World Dev. Perspect. 2021, 24, 100368. [Google Scholar] [CrossRef]
- Sokolovski, J.; Frankowski, J.; Mazurkiewicz, J.; Lewandowski, P. Hard coal phase-out and the labour market transition pathways: The case of Poland. Environ. Innov. Soc. Transit. 2022, 43, 80–98. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Hess, D.J.; Cantoni, R.; Lee, D.; Brisbois, M.C.; Walnum, H.J.; Dale, R.F.; Rygg, B.J.; Korsnes, M.; Goswami, A.; et al. Conflict transitions:exploring the actors, tactics, and outcomes of social opposition against energy infrastructure. Glob. Environ. Chang. 2022, 73, 102473. [Google Scholar] [CrossRef]
- Stephenson, J.R.; Sovacool, B.K.; Inderberg, T.H.J. Energy cultures and national decarbonisation pathways. Renew. Sustain. Energy Rev. 2021, 137, 110592. [Google Scholar] [CrossRef]
- Geels, F.W.; Sareen, S.; Hook, A.; Sovacool, B.K. Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000–2019). Res. Policy 2021, 50, 2021104272. [Google Scholar] [CrossRef]
- Mayer, A. A just transition for coal miners? Community identity and support from local policy actors. Environ. Innov. Soc. Transit. 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Baptista, L.B.; Schaeffer, R.; van Soest, H.L.; Fragkos, P.; Rochedo, P.R.R.; van Vuuren, D.; Dewi, R.G.; Iyer, G.; Jiang, K.; Kannavou, M.; et al. Good practice policies to bridge the emissions gap in key countries. Glob. Environ. Chang. 2022, 73, 102472. [Google Scholar] [CrossRef]
- Trifonova, M. Public acceptance and willingness to pay for renewable energy in Bulgaria. IFAC-PapersOnLine 2022, 55, 138–143. [Google Scholar] [CrossRef]
- Feng, J. Power beyond powerlessness: Miners, activists, and bridging difference in the Appalachian coalfields. Energy Res. Soc. Sci. 2020, 63, 101412. [Google Scholar] [CrossRef]
- Tan, H.; Thurbon, E.; Kim, S.-Y.; Mathews, J.A. Overcoming incumbent resistance to the clean energy shift: How local governments act as change agents in coal power station closures in China. Energy Policy 2021, 149, 112058. [Google Scholar] [CrossRef]
- Mohr, A.; Smits, M. Sense of place in transitions: How the Hambach forest movement shaped the German coal phase-out. Energy Res. Soc. Sci. 2022, 87, 102479. [Google Scholar] [CrossRef]
- Rohse, M.; Day, R.; Llewellyn, D. Towards an emotional energy geography: Attending to emotions and affects in a former coal mining community in South Wales. UK Geoforum. 2020, 110, 136–146. [Google Scholar] [CrossRef]
- Jakob, M.; Steckel, J.C. (Eds.) The Political Economy of Coal: Obstacles to Clean Energy Transitions, 1st ed.; Taylor & Francis Group: London, UK, 2022; p. 364. ISBN 9781003044543. [Google Scholar]
- Eskenazy, G.M. Trace elements geochemistry of the Dobrudza coal basin, Bulgaria. Int. J. Coal Geol. 2009, 78, 192–200. [Google Scholar] [CrossRef]
- Zdravkov, A.; Bechtel, A.; Sachsenhofer, R.F.; Kortenski, J.; Gratzer, R. Vegetation differences and diagenetic changes between two Bulgarian lignite deposits—Insights from coal petrology and biomarker composition. Org. Geochem. 2011, 42, 237–254. [Google Scholar] [CrossRef]
- Yossifova, M.G. Petrography, mineralogy and geochemistry of Balkan coals and their waste products. Int. J. Coal Geol. 2014, 122, 1–20. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Comparative chemical and mineral characterization of some Bulgarian coals. Fuel Process. Technol. 1998, 55, 55–69. [Google Scholar] [CrossRef]
- Veneva, L.; Hoffmann, V.; Jordanova, D.; Jordanova, N.; Fehr, T. Rock magnetic, mineralogical and microstructural characterization of fly ashes from Bulgarian power plants and the nearby anthropogenic soils. Phys. Chem. Earth 2004, 29, 1011–1023. [Google Scholar] [CrossRef]
- Vassileva, C.G.; Vassilev, S.V. Behaviour of inorganic matter during heating of Bulgarian coals 1. Lignites. Fuel Process. Technol. 2005, 86, 1297–1333. [Google Scholar] [CrossRef]
- Vassileva, C.G.; Vassilev, S.V. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals. Fuel Process. Technol. 2006, 87, 1095–1116. [Google Scholar] [CrossRef]
- Milakovska, Z.; Stefanova, M.; Vladislavov, G.; Marinov, S.P. Geochemical features of altered carbonaceous mudstones from Troyanovo-3 mine borehole (Maritsa Iztok lignite field, Bulgaria). Int. J. Coal Geol. 2022, 261, 104058. [Google Scholar] [CrossRef]
- Yossifova, M.; Valceva, S.; Djourova, E. Mineralogy and environmental geochemistry of lagooned ashes resulted from combustion of Maritza East lignite, Bulgaria. Int. J. Coal Geol. 2007, 71, 287–302. [Google Scholar] [CrossRef]
- Silva, L.F.O.; DaBoit, K.; Sampaio, C.H.; Jasper, A.; Andrade, M.L.; Kostova, I.J.; Waanders, F.B.; Henke, K.R.; Hower, J.C. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 2012, 416, 513–526. [Google Scholar] [CrossRef]
- Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency. Appl. Geochem. 2011, 26, 18–27. [Google Scholar] [CrossRef]
- Kostova, I.; Apostolova, D.; Stefanova, M. Geochemical features of unburned coal particles in fly ashes from thermal power plants in Bulgaria. IOP Conf. Ser. Earth Environ. Sci. 2020, 609, 012092. [Google Scholar] [CrossRef]
- Apostolova, D.; Kostova, I.; Bechtel, A.; Stefanova, M. PAHs in feed coals and fly ashes from coal-fired thermal power plants in Bulgaria. Int. J. Coal Geol. 2021, 243, 103782. [Google Scholar] [CrossRef]
- Report On the Dynamics of Changes in the Main Indicators in the Bulatom Database for the Key Characteristics of the Electricity Sector by 2021. BULATOM, Sofia, August 2022. Available online: https://www.bulatom-bg.org/wp-content/uploads/Окoнчателен-Дoклад-БД-ЕC_Ред22_25082022.pdf (accessed on 16 June 2023).
- EU Carbon Permits. Trading Economics. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 16 June 2023).
- Official Webpage of the Thermal Power Plant (TPP) Maritza Iztok 2. Available online: https://www.tpp2.com/page/about-us.html (accessed on 19 April 2023).
- Pavloudakis, F.; Karlopoulos, E.; Roumpos, C. Just transition governance to avoid socio-economic impacts of lignite phase-out: The case of Western Macedonia, Greece. Extr. Ind. Soc. 2023, 14, 101248. [Google Scholar] [CrossRef]
- Together for 1.5, Central Eastern European general principles for NECPs, National Energy and Climate Plans, European Climate Initiative (EUKI), CAN Europe—March 2023, LIFE. Available online: https://1point5.caneurope.org/central-eastern-european-principles-necps/ (accessed on 17 June 2023).
- O’Sullivan, H.; Fazio, E. 2023, European Environmental Bureau) Key Recommendations on the Efficient Use of EU Funds in Central & Eastern Europe, CEEweb for Biodiversity, Katona József utca 35, 1137 Budapest, Hungary, December 2023. Available online: https://eeb.org/wp-content/uploads/2024/01/Final-EU-Green-Funds.pdf (accessed on 6 February 2024).
- Kuhar, M.; Davidova, K.; Belusa, D.; Väinsalu, P.; Tiik, J.M.; Makaroff, N.; Guerin, O.; Victor, Z.; Mathieu, A.; Kassenberg, A.; et al. National Energy and Climate Plans as A Tool to Achieve Climate Safety and Energy Security. Published in July 2022 by the Life Unify Project. Available online: https://unify.caneurope.org/ (accessed on 16 August 2023).
- Central Eastern European General Principles for National Energy and Climate Plans Revision Process. Prepared by CAN Europe. The LIFE TogetherFor1.5 Project is Part of the European Climate Initiative (EUKI). Available online: www.euki.de (accessed on 16 August 2023).
- Rösch, L.B.; Epifanio, D. Just transition in 7 Central and Eastern European countries Commissioned by CEE Bankwatch Network. 2022. Available online: https://euagenda.eu/upload/publications/2022-04-just-transition-in-7-ceecs.pdf (accessed on 13 July 2023).
- Roadmap for Achieving a Competitive Low-Carbon Economy by 2050. Available online: https://www.me.government.bg/bg/library/patna-karta-za-postigane-do-2050-g-na-konkurentosposobna-ikonomika-s-niska-vaglerodna-intenzivnost-218-c174-m1-1.html (accessed on 2 October 2023).
- Territorial Plan for Stara Zagora. Available online: https://www.me.government.bg/uploads/manager/source/TJTP%20Stara%20Zagora.pdf (accessed on 1 October 2023).
- Brauers, H.; Oei, P.-Y.; Walk, P. Comparing coal phase-out pathways: The United Kingdom’s and Germany’s diverging transitions. Environ. Innov. Soc. Transit. 2020, 37, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Glensk, B.; Madlener, R. Evaluating the enhanced flexibility of lignite-fired power plants: A real options analysis. Energy Convers. Manag. 2018, 177, 737–749. [Google Scholar] [CrossRef]
- Chmielniak, T.; Lepszy, S.; Wójcik, K. Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant. Energy 2012, 45, 125–133. [Google Scholar] [CrossRef]
- Grigorov, A. Exergy Efficiency of Bulgarian Lignite fired Steam Boiler P-62 at various Load and Fuel Quality. International Journal of Sciences: Basic and Applied Research. IJSBAR 2016, 30, 138–146. Available online: https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6556 (accessed on 29 June 2023).
- Totev, T.; Ignatov, B.; Techno-economic and ecologic assessment of a lignite-fired power unit. Energy Forum 2019, 120–130 ISBN/ISSN. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/53/125/53125012.pdf (accessed on 28 June 2023).
- Gate Cycle 5.51 Software. Reference Guide, General Electric Enter Software. 2003. Available online: http://www.wyattllc.com/GateCycle/GateCycle.html (accessed on 17 March 2023).
- Szargut, J. Energy and ecological effects of the primary gas-turbine supplementing a coal-fired power plant. Intern J. Appl. Thermodyn. 1999, 2, 1–4. [Google Scholar]
- Shahnazari, M.; McHugh, A.; Maybee, B.; Whale, J. Evaluation of power investment decisions under uncertain carbon policy: A case study for converting coal fired steam turbine to combined cycle gas turbine plants in Australia. Appl. Energy 2014, 118, 271–279. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L. Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines. Appl. Energy 2015, 156, 86–98. [Google Scholar] [CrossRef]
- Szargut, J.; Szczygiel, I. Comparison of the efficiency of the variants of a primary gas turbine supplementing a coal-fired power plant. Energy 2005, 30, 1204–1217. [Google Scholar] [CrossRef]
- Totev, T.; Ignatov, B. Possible solutions for the reduction of carbon emissions during operation of lignite power unit. E3S Web Conf. 2020, 207, 02003. [Google Scholar] [CrossRef]
- Carapellucci, R.; Saia, R.; Giordano, L. Study of Gas-steam Combined Cycle Power Plants Integrated with MCFC for Carbon Dioxide Capture. Energy Procedia 2014, 45, 1155–1164. [Google Scholar] [CrossRef]
- Li, T.; Wang, N.; Zhang, Z.; Zhou, X.; Wang, X.; Chen, R.; Li, S.; Yi, P. A comparison between turbulent non-premixed jet flames of CH4 and the 50%NH3 +50%H2 blend. Combust. Flame 2022, 246, 112477. [Google Scholar] [CrossRef]
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- Sánchez, A.; Castellano, E.; Martín, M.; Vega, P. Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective. Appl. Energy 2021, 293, 116956. [Google Scholar] [CrossRef]
- 100% Biomass Repowering, Biomass Co-Firing, and Bubbling Fluidized Bed Biomass Combustion. In Engineering and Economic Evaluation of Biomass Power Plants; EPRI: Palo Alto, CA, USA, 2010; p. 1019762. Available online: https://www.epri.com/research/products/000000000001019762 (accessed on 3 October 2023).
- Explore Sustainable Biomass. DRAX. Available online: https://www.drax.com/biomass/ (accessed on 20 February 2023).
- Brack, D.; Birdsey, R.; Walke, W. Greenhouse Gases Emissions from Burning US-Sourced Woody Biomass in the EU and UK. Environment and Society Programme, October 2021. Available online: https://www.chathamhouse.org/sites/default/files/2021-10/2021-10-14-woody-biomass-us-eu-uk-research-paper_0.pdf (accessed on 12 April 2023).
- Pereira, S.; Costa, M. Short rotation copies for bioenergy: From biomass characterization to establishment—A review. Renew. Sustain. Energy Rev. 2017, 74, 1170–1180. [Google Scholar] [CrossRef]
- Naydenova, I.; Sandov, O.; Wesenauer, F.; Laminger, T.; Winter, F. Pollutants formation during single particle combustion of biomass under fluidized bed conditions: An experimental study. Fuel 2020, 278, 117958. [Google Scholar] [CrossRef]
- Economic Assessment of Biomass Conversion ICSID Case No. ARB/21/4, 18 December 2021. Available online: http://icsidfiles.worldbank.org/icsid/ICSIDBLOBS/OnlineAwards/C9474/DS17639_En.pdf (accessed on 15 June 2023).
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Baernthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Brunner, T.; Bärnthaler, G.; Obernberger, I. Evaluation of Parameters Determining PM Emissions and Their Chemical Composition in Modern Residential Biomass Heating Appliances. In Proceedings of the Conference: World Bioenergy 2008, Jönköping, Sweden, 15 May 2008; Swedish Bioenergy Association: Stockholm, Sweden, 2008; pp. 81–86. [Google Scholar]
- Schwarzer, L.; Jensen, P.A.; Wedel, S.; Glarborg, P.; Karlstroem, O.; Holm, J.K.; Dam-Johansen, K. Self-heating and thermal runaway of biomass—Lab-scale experiments and modeling for conditions resembling power plant mills. Fuel 2021, 294, 120281. [Google Scholar] [CrossRef]
- Hariana Prabowo Hilmawan, E.; Kuswa, F.M.; Darmawan, A.; Azi, M. A comprehensive evaluation of cofiring biomass with coal and slagging-fouling tendency in pulverized coal-fired boilers. Ain Shams Eng. J. 2023, 7, 102001. [Google Scholar] [CrossRef]
- Yuan, Y.; He, Y.; Tan, J.; Wang, Y.; Kumar, S.; Wang, Z. Co-combustion characteristics of typical biomass and coal blends by thermogravimetric analysis. Front. Energy Res. 2021, 9, 547. [Google Scholar] [CrossRef]
- Gil, M.V.; Casal, D.; Pevida, C.; Pis, J.J.; Rubiera, F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010, 101, 5601–5608. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Rahman, Z.U.; Lv, Z.; Zhu, Y.; Ruan, R.; Deng, S.; Zhang, L.; Tan, H. Experimental Study and Design of Biomass Co-Firing in a Full-Scale Coal-Fired Furnace with Storage Pulverizing System. Agronomy 2021, 11, 810. [Google Scholar] [CrossRef]
- ISO 20024:2020(en); Solid Biofuels—Safe Handling and Storage of Solid Biofuel Pellets in Commercial and Industrial Applications. Available online: https://www.iso.org/obp/ui/#iso:std:iso:20024:ed-1:v1:en (accessed on 20 June 2023).
- Ganev, E.; Ivanov, B.; Vaklieva-Bancheva, N.; Kirilova, E.; Dzhelil, Y. A multi-objective approach toward optimal design of sustainable integrated biodiesel/diesel supply chain based on first- and second-generation feedstock with solid waste use. Energies 2021, 14, 2261. [Google Scholar] [CrossRef]
- Lawson, T.; Emmerson, R.; Battle, M.; Pullin, J.; Wall, S.; Hofmann, T.A. Chapter 3—Carbon Fixation. In Photosynthesis in Action; Ruban, A., Foyer, C.H., Murchie, E.H., Eds.; Academic Press: Cambridge, MA, USA, 2022; ISBN 9780128237816. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, G.; Zhai, X.; Xu, P.; Ma, L.; Deng, M.; Zhao, Z.; Yang, H.; Dong, Y.; Shang, Z.; et al. Genomic insights into the fast growth of Pulownias and the formation of Paulownia witches’ broom. Mol. Plant 2021, 14, 1668–1682. [Google Scholar] [CrossRef]
- Jakubowski, M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022, 13, 668. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Díaz-Reinosob, B.; Mourea, A.; Domínguez, H. Potential of Paulownia sp. for biorefinery. Ind. Crops Prod. 2020, 155, 112739. [Google Scholar] [CrossRef]
- Kalaycioglu, H.; Deniz, I.; Hiziroglu, S. Some of the properties of particleboard made from paulownia. J. Wood Sci. 2005, 51, 410–414. [Google Scholar] [CrossRef]
- Barbu, M.C.; Buresova, K.; Tudor, E.M.; Petutschnigg, A. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests 2022, 13, 1543. [Google Scholar] [CrossRef]
- Marana, B. A Green GIS Solution against Air Pollution in the Province of Bergamo: The Paulownia Tree. J. Geogr. Inf. Syst. 2018, 10, 193–218. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, L.; Fang, Y.; Sun, X. Analysis of Paulownia-intercropping types and their benefits in Woyang County of Anhui Province. For. Ecol.Manag. 1994, 67, 329–337. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, J.; Feng, Y.; Wang, B.; Duan, W.; Zhou, H.; Wang, W.; Cui, L.; Yang, C. The optimal size of a Paulownia-crop agroforestry system for maximal economic return in North China Plain. Agric. For. Meteorol. 2019, 269–270, 1–9. [Google Scholar] [CrossRef]
- Alaejos, J.; Tapias, R.; López, F.; Romero, D.; Ruiz, F.; Fernández, M. Biomass Production and Quality of Twelve Fast-Growing Tree Taxa in Short Rotation under Mediterranean Climate. Forests 2023, 14, 1156. [Google Scholar] [CrossRef]
- BIOFIT Best Practice Factsheet: Retrofit of Thunder Bay Generating Station—Unit 3, Canada. Available online: www.biofit-h2020.eu/files/pdfs/190318%20-%20Biofit%20-%20Factsheet%20-%20Canada_OPG_low.pdf (accessed on 18 November 2023).
- Jordan, M.; Meisel, K.; Dotzauer, M.; Schröder, J.; Cyffka, K.F.; Dögnitz, N.; Schmid, C.; Lenz, V.; Naumann, K.; Daniel-Gromke, J.; et al. The controversial role of energy crops in the future German energy system: The trade offs of a phase-out and allocation priorities of the remaining biomass residues. Energy Rep. 2023, 10, 3848–3858. Available online: https://www.sciencedirect.com/science/article/pii/S2352484723014890 (accessed on 11 October 2023). [CrossRef]
- Implementation of Bioenergy in Germany—2021 Update. Country Report. EA Bioenergy: 10. 2021. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_Germany_final.pdf (accessed on 11 October 2023).
No. | Data Sources | Total Number |
---|---|---|
1 | Research articles | 96 |
2 | Open media articles | 14 |
3 | Reports and statistical data | 29 |
4 | Legislative and strategic acts | 10 |
5 | Software | 1 |
No. | Critical Gaps [68] | Key Factors Influencing the Transition Dynamics | Ref. |
---|---|---|---|
1. | Sociotechnical dynamics needed for sustainable transitions |
| [62] |
| [63] | ||
| Current work | ||
2. | Socioeconomic factors driven by social movements and public opposition |
| [51] |
| [72,73] | ||
| [51] | ||
| Current work | ||
3. | Cultural particularities and the locally adopted political philosophy |
| [68] |
| [70] | ||
| [70] | ||
| [71] | ||
| [74] | ||
| [19] | ||
| [17,19] | ||
| [19] | ||
| [20] | ||
| [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorov, G.; Kralov, I.; Koprev, I.; Vasilev, H.; Naydenova, I. Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective. Energies 2024, 17, 929. https://doi.org/10.3390/en17040929
Todorov G, Kralov I, Koprev I, Vasilev H, Naydenova I. Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective. Energies. 2024; 17(4):929. https://doi.org/10.3390/en17040929
Chicago/Turabian StyleTodorov, Georgi, Ivan Kralov, Ivailo Koprev, Hristo Vasilev, and Iliyana Naydenova. 2024. "Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective" Energies 17, no. 4: 929. https://doi.org/10.3390/en17040929
APA StyleTodorov, G., Kralov, I., Koprev, I., Vasilev, H., & Naydenova, I. (2024). Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective. Energies, 17(4), 929. https://doi.org/10.3390/en17040929