Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Raw Materials
2.2. Experimental Setup and Method
2.3. RSM Experimental Design
2.4. Methods for Characterization and Quantitative Analysis
2.4.1. Characterization of Seaweed
2.4.2. Analytical Statistics
2.4.3. Bio-Oil Characterization
3. Results
3.1. Characterization of Seaweed
3.2. Statistical Analysis of Developed Model
3.3. Process Parameter Interactions on Bio-Oil Yield
3.4. Bio-Oil Yield Process Parameter Validation
3.5. Optimal Bio-Oil Production Characteristics
3.5.1. Physicochemical and Elemental Properties Analysis
3.5.2. FTIR Analysis
3.5.3. GC–MS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikder, M.; Wang, C.; Yao, X.; Huai, X.; Wu, L.; KwameYeboah, F.; Wood, J.; Zhao, Y.; Dou, X. The integrated impact of GDP growth, industrialization, energy use, and urbanization on CO2 emissions in developing countries: Evidence from the panel ARDL approach. Sci. Total Environ. 2022, 837, 155795. [Google Scholar] [CrossRef]
- Salem, H.S.; Pudza, M.Y.; Yihdego, Y. Harnessing the energy transition from total dependence on fossil to renewable energy in the Arabian Gulf region, considering population, climate change impacts, ecological and carbon footprints, and United Nations’ Sustainable Development Goals. Sustain. Earth Rev. 2023, 6, 10. [Google Scholar] [CrossRef]
- Hall, C.A.S. The 50th Anniversary of the Limits to Growth: Does It Have Relevance for Today’s Energy Issues? Energies 2022, 15, 4953. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2022; IEA: Paris, France, 2023. [Google Scholar]
- Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar] [CrossRef]
- Statistical Review of World Energy. Share of Primary Energy Consumption That Comes from Renewables—Using the Substitution Method. 2023. Available online: https://ourworldindata.org/grapher/renewable-share-energy (accessed on 5 January 2024).
- Islam Rony, Z.; Rasul, M.G.; Jahirul, M.I.; Mofijur, M. Harnessing marine biomass for sustainable fuel production through pyrolysis to support United Nations’ Sustainable Development Goals. Fuel 2024, 358, 130099. [Google Scholar] [CrossRef]
- Machado, H.; Cristino, A.F.; Orišková, S.; Galhano dos Santos, R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118–137. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Jahirul, M.I. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [Google Scholar] [CrossRef]
- Campuzano, F.; Brown, R.C.; Martínez, J.D. Auger reactors for pyrolysis of biomass and wastes. Renew. Sustain. Energy Rev. 2019, 102, 372–409. [Google Scholar] [CrossRef]
- Bae, Y.J.; Kim, J.H.; Cho, H.J.; Ko, J.H.; Heo, H.S.; Park, H.J.; Park, Y.K. Influence of Reaction Conditions on Fast Pyrolysis of Macroalge. 2010. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:42089814 (accessed on 11 January 2024).
- Nam, H.; Capareda, S.C.; Ashwath, N.; Kongkasawan, J. Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors. Energy 2015, 93, 2384–2394. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosyst. Eng. 2017, 161, 80–92. [Google Scholar] [CrossRef]
- Gautam, R.; Shyam, S.; Reddy, B.R.; Govindaraju, K.; Vinu, R. Microwave-assisted pyrolysis and analytical fast pyrolysis of macroalgae: Product analysis and effect of heating mechanism. Sustain. Energy Fuels 2019, 3, 3009–3020. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef]
- Yanik, J.; Stahl, R.; Troeger, N.; Sinag, A. Pyrolysis of algal biomass. J. Anal. Appl. Pyrolysis 2013, 103, 134–141. [Google Scholar] [CrossRef]
- Ross, A.; Jones, J.; Kubacki, M.; Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 2008, 99, 6494–6504. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhang, M.; Chen, M.; Li, D.; Min, F.; Chen, M.; Zhang, S.; Ren, Z.; Yan, Y. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 2006, 41, 1883–1886. [Google Scholar] [CrossRef]
- Bae, Y.J.; Ryu, C.; Jeon, J.-K.; Park, J.; Suh, D.J.; Suh, Y.-W.; Chang, D.; Park, Y.-K. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol. 2011, 102, 3512–3520. [Google Scholar] [CrossRef]
- Budarin, V.L.; Zhao, Y.; Gronnow, M.J.; Shuttleworth, P.S.; Breeden, S.W.; Macquarrie, D.J.; Clark, J.H. Microwave-mediated pyrolysis of macro-algae. Green Chem. 2011, 13, 2330–2333. [Google Scholar] [CrossRef]
- Gómez, N.; Banks, S.W.; Nowakowski, D.J.; Rosas, J.G.; Cara, J.; Sánchez, M.E.; Bridgwater, A.V. Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Process. Technol. 2018, 172, 97–105. [Google Scholar] [CrossRef]
- Shen, J.; Wang, X.-S.; Garcia-Perez, M.; Mourant, D.; Rhodes, M.J.; Li, C.-Z. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 2009, 88, 1810–1817. [Google Scholar] [CrossRef]
- Abubakar, Z.; Salema, A.A.; Ani, F.N. A new technique to pyrolyse biomass in a microwave system: Effect of stirrer speed. Bioresour. Technol. 2013, 128, 578–585. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, Y.; Syed-Hassan, S.S.A.; Hu, X.; Han, H.; Su, S.; Xu, K.; Jiang, L.; Guo, J.; Berthold, E.E.S.; et al. Effects of heating rate on the evolution of bio-oil during its pyrolysis. Energy Convers. Manag. 2018, 163, 420–427. [Google Scholar] [CrossRef]
- Sohaib, Q.; Habib, M.; Fawad Ali Shah, S.; Habib, U.; Ullah, S. Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1639–1646. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology. Energy 2019, 170, 423–437. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Zhang, X.; Li, Y. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J. Environ. Manag. 2017, 192, 234–242. [Google Scholar] [CrossRef]
- Tobias, P.; Trutna, L. NIST/SEMATECH e-Handbook of Statistical Methods. Available online: https://www.itl.nist.gov/div898/handbook/ (accessed on 30 December 2023).
- Kuehl, R.O. Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2000. [Google Scholar]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Charusiri, W.; Numcharoenpinij, N. Characterization of the optimal catalytic pyrolysis conditions for bio-oil production from brown salwood (Acacia mangium Willd) residues. Biomass Bioenergy 2017, 106, 127–136. [Google Scholar] [CrossRef]
- Ates, F.; Erginel, N. Optimization of bio-oil production using response surface methodology and formation of polycyclic aromatic hydrocarbons (PAHs) at elevated pressures. Fuel Process. Technol. 2016, 142, 279–286. [Google Scholar] [CrossRef]
- Australia, S. Coal and Coke-Analysis and Testing Part 3: Proximate Analysis of Higher Rank Coal (AS 1038.3-2000); SAI Global: Chicago, IL, USA, 2000. [Google Scholar]
- AS1038.6.4; Higher Rank Coal and Coke—Ultimate Analysis—Carbon, Hydrogen and Nitrogen—Instrumental Method 2005. Standards Australia: Canberra, Australia, 2005.
- D4809-2013, A; Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method). ASTM International: West Conshohocken, PA, USA, 2013.
- D5291-21, A; Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants. ASTM International: West Conshohocken, PA, USA, 2021.
- D7052, A; Standard Test Method for Determining Impact Resistance of New Low Slope Roof Membranes Using Steel Balls (Z8295Z). ASTM International: West Conshohocken, PA, USA, 2022.
- D4052-18a, A; Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. ASTM International: West Conshohocken, PA, USA, 2022.
- E70-19, A; Standard Test Method for pH of Aqueous Solutions with the Glass Electrode. ASTM International: West Conshohocken, PA, USA, 2024.
- D2709-22, A; Standard Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge. ASTM International: West Conshohocken, PA, USA, 2022.
- Hasan, M.M.; Rasul, M.G.; Ashwath, N.; Jahirul, M.I.; Khan, M.M.K. Effect of Temperature on the Characteristics of Bio-oil Produced from Slow Pyrolysis of Beauty Leaf Fruit Shell. In Proceedings of the International Conference on Applied Energy, Bangkok, Thailand, 1–10 December 2020. [Google Scholar]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresour. Technol. 2020, 318, 123913. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Laitila, J. Effects of storage on dry matter, energy content and amount of extractives in Norway spruce bark. Biomass Bioenergy 2020, 143, 105821. [Google Scholar] [CrossRef]
- Edmunds, C.W.; Reyes Molina, E.A.; André, N.; Hamilton, C.; Park, S.; Fasina, O.; Adhikari, S.; Kelley, S.S.; Tumuluru, J.S.; Rials, T.G.; et al. Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production From Switchgrass-Pine Residues Blends. Front. Energy Res. 2018, 6, 79. [Google Scholar] [CrossRef]
- Safari, F.; Norouzi, O.; Tavasoli, A. Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresour. Technol. 2016, 222, 232–241. [Google Scholar] [CrossRef]
- Biswas, B.; Fernandes, A.C.; Kumar, J.; Muraleedharan, U.D.; Bhaskar, T. Valorization of Sargassum tenerrimum: Value addition using hydrothermal liquefaction. Fuel 2018, 222, 394–401. [Google Scholar] [CrossRef]
- Yan, L.; Wang, Y.; Li, J.; Zhang, Y.; Ma, L.; Fu, F.; Chen, B.; Liu, H. Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products. Bioresour. Technol. 2019, 292, 121286. [Google Scholar] [CrossRef]
- Biswas, B.; Kumar, A.; Fernandes, A.C.; Saini, K.; Negi, S.; Muraleedharan, U.D.; Bhaskar, T. Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization. Bioresour. Technol. 2020, 307, 123232. [Google Scholar] [CrossRef]
- Vargas-Moreno, J.; Callejón-Ferre, A.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Everard, C.D.; Fagan, C.C.; McDonnell, K.P. Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel 2013, 111, 771–777. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, J.P.; Mondal, M.K. Pyrolysis of torrefied biomass: Optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J. Clean. Prod. 2020, 272, 122517. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Ashwath, N.; Khan, M.M.K.; Jahirul, M.I. Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil. Renew. Energy 2022, 194, 1098–1109. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Morris, R.M. Effect of particle size and temperature on evolution rate of volatiles from coal. J. Anal. Appl. Pyrolysis 1993, 27, 97–107. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Uzoejinwa, B.B.; Zheng, A.; Wang, Q.; Huang, J.; Abomohra, A.E.-F. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers. Manag. 2020, 222, 113253. [Google Scholar] [CrossRef]
- Echresh Zadeh, Z.; Abdulkhani, A.; Saha, B. A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy 2021, 214, 118930. [Google Scholar] [CrossRef]
- Djandja, O.S.; Yin, L.; Wang, Z.; Guo, Y.; Zhang, X.; Duan, P. Progress in thermochemical conversion of duckweed and upgrading of the bio-oil: A critical review. Sci. Total Environ. 2021, 769, 144660. [Google Scholar] [CrossRef] [PubMed]
- Jena, U.; Das, K. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 2011, 25, 5472–5482. [Google Scholar] [CrossRef]
- Hasan, M.; Rasul, M.; Jahirul, M.; Khan, M. Fast pyrolysis of macadamia nutshell in an auger reactor: Process optimization using response surface methodology (RSM) and oil characterization. Fuel 2023, 333, 126490. [Google Scholar] [CrossRef]
- Moreira, R.; dos Reis Orsini, R.; Vaz, J.M.; Penteado, J.C.; Spinacé, E.V. Production of Biochar, Bio-Oil and Synthesis Gas from Cashew Nut Shell by Slow Pyrolysis. Waste Biomass Valorization 2017, 8, 217–224. [Google Scholar] [CrossRef]
- Cai, W.; Liu, R.; He, Y.; Chai, M.; Cai, J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018, 171, 308–317. [Google Scholar] [CrossRef]
- Neumann, J.; Binder, S.; Apfelbacher, A.; Gasson, J.R.; Ramírez García, P.; Hornung, A. Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—Introducing the thermo-catalytic reforming process. J. Anal. Appl. Pyrolysis 2015, 113, 137–142. [Google Scholar] [CrossRef]
- Kontoulis, P.; Kazangas, D.; Doss, T.P.; Kaiktsis, L. Development and CFD validation of an integrated model for marine heavy fuel oil thermophysical properties. J. Energy Eng. 2018, 144, 04018059. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Mostafa, S.S.M.; El-Gendy, N.S. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arab. J. Chem. 2017, 10, S2040–S2050. [Google Scholar] [CrossRef]
- DeSisto, W.J.; Hill, N.; Beis, S.H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E.A.; Wheeler, M.C.; Frederick, B.G.; et al. Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor. Energy Fuels 2010, 24, 2642–2651. [Google Scholar] [CrossRef]
- Thangalazhy-Gopakumar, S.; Adhikari, S.; Ravindran, H.; Gupta, R.B.; Fasina, O.; Tu, M.; Fernando, S.D. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour. Technol. 2010, 101, 8389–8395. [Google Scholar] [CrossRef] [PubMed]
- Salehi, E.; Abedi, J.; Harding, T. Bio-oil from Sawdust: Effect of Operating Parameters on the Yield and Quality of Pyrolysis Products. Energy Fuels 2011, 25, 4145–4154. [Google Scholar] [CrossRef]
- Bertero, M.; de la Puente, G.; Sedran, U. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 2012, 95, 263–271. [Google Scholar] [CrossRef]
- Duarte, S.J.; Lin, J.; Alviso, D.; Rolón, J.C. Effect of temperature and particle size on the yield of bio-oil, produced from conventional coconut core pyrolysis. Int. J. Chem. Eng. Appl. 2016, 7, 102. [Google Scholar] [CrossRef]
- Shumeiko, B.; Auersvald, M.; Vrtiška, D.; Šimáček, P.; Straka, P.; Kubička, D. Improved bio-oil upgrading due to optimized reactor temperature profile. Fuel Process. Technol. 2021, 222, 106977. [Google Scholar] [CrossRef]
- Onay, O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 2007, 88, 523–531. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Breeden, S.W.; Wilson, A.J.; Macquarrie, D.J.; Milkowski, K.; Jones, J.; Bridgeman, T.; et al. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresour. Technol. 2009, 100, 6064–6068. [Google Scholar] [CrossRef] [PubMed]
- Shafaghat, H.; Kim, J.M.; Lee, I.-G.; Jae, J.; Jung, S.-C.; Park, Y.-K. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renew. Energy 2019, 144, 159–166. [Google Scholar] [CrossRef]
- Ibarra, Á.; Hita, I.; Arandes, J.M.; Bilbao, J. Influence of the Composition of Raw Bio-Oils on Their Valorization in Fluid Catalytic Cracking Conditions. Energy Fuels 2019, 33, 7458–7465. [Google Scholar] [CrossRef]
- de Castro, D.A.R.; da Silva Ribeiro, H.J.; Ferreira, C.C.; de Andrade Cordeiro, M.; Guerreiro, L.H.H.; Pereira, A.M.; dos Santos, W.; Santos, M.C.; de Carvalho, F.B.; Junior, J.O.C.S. Fractional Distillation of Bio-Oil Produced by Pyrolysis of Açaí (Euterpe oleracea) Seeds. In Fractionation; IntechOpen: London, UK, 2019; p. 61. [Google Scholar] [CrossRef]
- Sondakh, R.C.; Hambali, E.; Indrasti, N.S. Improving characteristic of bio-oil by esterification method. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012071. [Google Scholar] [CrossRef]
- Jiang, X.; Ellis, N. Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production. Energy Fuels 2010, 24, 1358–1364. [Google Scholar] [CrossRef]
- Ren, S.; Ye, X.P. Stability of crude bio-oil and its water-extracted fractions. J. Anal. Appl. Pyrolysis 2018, 132, 151–162. [Google Scholar] [CrossRef]
- Meng, J.; Moore, A.; Tilotta, D.; Kelley, S.; Park, S. Toward Understanding of Bio-Oil Aging: Accelerated Aging of Bio-Oil Fractions. ACS Sustain. Chem. Eng. 2014, 2, 2011–2018. [Google Scholar] [CrossRef]
- Mandal, S.; Bhattacharya, T.K.; Verma, A.K.; Haydary, J. Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem. Pap. 2018, 72, 603–616. [Google Scholar] [CrossRef]
- Bakhtyari, A.; Makarem, M.A.; Rahimpour, M.R. Light olefins/bio-gasoline production from biomass. In Bioenergy Systems for the Future; Dalena, F., Basile, A., Rossi, C., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 87–148. [Google Scholar]
- Isa, K.M.; Daud, S.; Hamidin, N.; Ismail, K.; Saad, S.A.; Kasim, F.H. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind. Crops Prod. 2011, 33, 481–487. [Google Scholar] [CrossRef]
- Williams, P.T.; Horne, P.A. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. J. Anal. Appl. Pyrolysis 1995, 31, 15–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Thring, R.W.; Katikaneni, S.P.R.; Bakhshi, N.N. The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Process. Technol. 2000, 62, 17–30. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Fan, T.; Zhou, J.; Liu, X.; Li, Y.; Zhao, G.; Wang, Y.; Zeng, M. Investigation on chemical structure and hydrocarbon generation potential of lignite in the different pretreatment process. Fuel 2021, 291, 120205. [Google Scholar] [CrossRef]
Measuring Tool | Properties | ASTM Standard |
---|---|---|
Stabinger Viscometer SVM 3000 | Kinematic viscosity | D7042 |
Density meter DM40 Mettler Toledo | Density | D4052 |
Omega DP24-pH meter | pH | E70 |
Flash 2000 Elemental Analyzer | Elemental analysis | D5291 |
Centrifuge sigma | Water content | D1744 |
Oxygen-bomb calorimeter | Calorific value | D4809 |
Analysis | Properties | Seaweed (Ascophyllum nodosum) | Macroalgae (U. prolifera) [47] | Microalgae (Cladophora) [49] | Macroalgae (Sargassum tenerrimum) [48] | Microalgae (Isochrysis) [50] |
---|---|---|---|---|---|---|
Proximate (wt%) | Moisture | 12.4 | 11.0 | 5.09 | 5.7 | 1.69 |
Volatile matter | 64.0 | 77.3 | 56.30 | 61.5 | 79.79 | |
Fixed carbon | 10.8 | 4.4 | 6.32 | 6.3 | 11.63 | |
Ash | 12.8 | 7.3 | 32.29 | 26.5 | 6.89 | |
Ultimate (wt%) | Carbon | 45.8 | 46.2 | 33.79 | 32.1 | 49.26 |
Hydrogen | 7.30 | 7.4 | 4.73 | 4.7 | 7.50 | |
Nitrogen | 0.92 | 3.0 | 6.35 | 0.93 | 6.24 | |
Oxygen | 44.44 | 43.2 | 21.27 | 60.72 | 31.74 | |
Sulphur | 1.54 | 0.2 | 1.57 | 1.55 | 0.96 | |
HHV (MJ/kg) | 18.90 | 29.80 | 14.53 | 22.4 | 23.52 |
DOE# | Parameters/Factors | Bio-Oil Yield (%) | |||
---|---|---|---|---|---|
Temperature (°C) | Residence Time (min) | Stirring Speed (rpm) | Actual | Predicted | |
1 | 350 (−1) | 30 (−1) | 10 (0) | 37.75 | 37.67 |
2 | 350 (−1) | 60 (0) | 5 (−1) | 36.83 | 37.17 |
3 | 450 (0) | 60 (0) | 10 (0) | 42.93 | 42.85 |
4 | 450 (0) | 90 (1) | 5 (−1) | 39.89 | 39.87 |
5 | 450 (0) | 30 (−1) | 15 (1) | 38.39 | 38.41 |
6 | 550 (1) | 60 (0) | 15 (1) | 38.42 | 38.08 |
7 | 450 (0) | 60 (0) | 10 (0) | 42.65 | 42.85 |
8 | 450 (0) | 60 (0) | 10 (0) | 42.92 | 42.85 |
9 | 550 (1) | 60 (0) | 5 (−1) | 38.1 | 38.04 |
10 | 350 (−1) | 60 (0) | 15 (1) | 35.71 | 35.77 |
11 | 350 (−1) | 90 (1) | 10 (0) | 37.8 | 37.48 |
12 | 450 (0) | 30 (−1) | 5 (−1) | 40.29 | 40.03 |
13 | 550 (1) | 90 (1) | 10 (0) | 39.96 | 40.04 |
14 | 450 (0) | 90 (1) | 15 (1) | 39.87 | 40.13 |
15 | 550 (1) | 30 (−1) | 10 (0) | 37.98 | 38.3 |
Remark | p Value | F Value | Source | Degree of Freedom | Sum of Squares | Mean of Squares |
---|---|---|---|---|---|---|
<0.0001 | 58.29 | Model | 9 | 67.6659 | 7.5184 | |
Significant | 0.002 | 39.33 | A-T | 1 | 5.0721 | 5.0721 |
Significant | 0.028 | 9.37 | B-RT | 1 | 1.2090 | 1.2090 |
Significant | 0.044 | 7.17 | C-SS | 1 | 0.9248 | 0.9248 |
Significant | <0.0001 | 332.80 | A2 | 1 | 42.9240 | 42.9240 |
Significant | 0.002 | 32.44 | B2 | 1 | 4.1846 | 4.1846 |
Significant | <0.0001 | 135.06 | C2 | 1 | 17.4201 | 17.4201 |
Significant | 0.043 | 7.22 | AB | 1 | 0.9312 | 0.9312 |
Not significant | 0.101 | 4.02 | AC | 1 | 0.5184 | 0.5184 |
Significant | 0.047 | 6.85 | BC | 1 | 0.8836 | 0.8836 |
Not significant | 0.135 | 6.59 | Lack-of-fit | 3 | 0.5856 | 0.1952 |
Pure error | 2 | 0.0593 | 0.0296 | |||
Total | 14 | 68.3108 | ||||
R2 = 0.9926; R2pred = 0.8609; R2adj = 0.9736 |
Parameters | Lower Limit | Upper Limit | Objective |
---|---|---|---|
Temperature (°C) | 350 | 550 | In range |
Residence time (min) | 30 | 90 | In range |
Stirring speed (rpm) | 5 | 15 | In range |
Bio-oil yield (wt.%) | 35.71 | 42.93 | Maximum |
Run | Temperature (°C) | Residence Time (s) | Stirring Speed (rpm) | Bio-Oil Yield (wt.%) | Error (%) | |
---|---|---|---|---|---|---|
Experimental | Predicted | |||||
1 | 463 | 66 | 9.80 | 43.62 | 42.94 | 1.55 |
2 | 463 | 66 | 9.80 | 42.82 | 42.94 | 0.28 |
3 | 463 | 66 | 9.80 | 42.51 | 42.94 | 1.01 |
Average | 463 | 66 | 9.80 | 42.98 | 42.94 | 0.93 |
Fuel Standard and References | Kinematic Viscosity @40 °C (Cst) | Density @30 °C (g/cc) | pH | Water Content (wt%) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Seaweed (12.01) | Seaweed (1.19) | Seaweed (3.7) | Seaweed (23.72) | Seaweed (29.11) | |
ASTM Grade G [61] | Maximum 125 | 1.1–1.3 | – | Maximum 30 | Minimum 15 |
ASTM Grade D [62] | Maximum 125 | 1.1–1.3 | – | Maximum 30 | Minimum 15 |
Heavy fuel oil [63] | 180–420 | 0.99–0.995 | – | ~0 | 40.6 |
Light fuel oil [64] | 2–4.5 | maximum 0.845 | – | ~0 | 42.6 |
Functional Group | Range of Wavenumbers (cm−1) | Nature of Vibration (St/Bd) |
---|---|---|
Seaweed | ||
Phenol | 3200–3400 | O–H stretching |
Alcohol | 3200–3400 | O–H stretching |
Alkane | 2900–3000 1450–1550 | C–H stretching C–H bending |
Ketone | 1350–1450 | C=O stretching |
Aldehyde | 1600–1650 | C=O stretching |
Ester | – | C=O stretching |
Alkene | 1800–2000 – | C=C stretching C–H bending |
Aromatic | 1240–1340 | C–H stretching |
Carboxylic acid | 970–1030 | C–O stretching |
Chemical Compound | Molecular Formula | Retention Time (min) | Peak Area (%) |
---|---|---|---|
Acids | |||
Acetic acid | C2H4O2 | 13.49 | 1.09 |
Methyl 2-oxopropanoate | C4H6O3 | 29.39 | 0.69 |
Alcohols | |||
Propan-1-ol | C3H8O | 10.14 | 0.99 |
2-methylpropan-1-ol | C4H10O | 13.04 | 0.81 |
Cyclopropylmethanol | C4H8O | 31.03 | 0.68 |
Aldehydes | |||
3-hydroxypropanal | C3H6O2 | 18.77 | 0.59 |
Succinaldehyde | C4H6O2 | 18.15 | 0.74 |
Furan-2-carbaldehyde | C5H4O2 | 19.06 | 0.49 |
Alkanes | |||
Heptane, 4-methyl- | C8H18 | 9.81 | 0.54 |
Nonane | C9H20 | 13.92 | 0.74 |
Decane | C10H22 | 17.04 | 0.81 |
Octane, 2,3,7-trimethyl- | C11H24 | 17.36 | 0.59 |
Nonane, 2,6-dimethyl- | C11H24 | 17.49 | 0.39 |
Undecane | C11H24 | 20.03 | 0.21 |
Dodecane | C12H26 | 22.83 | 1.31 |
Tridecane | C13H28 | 25.45 | 1.11 |
Tetradecane | C14H30 | 27.912 | 1.09 |
Hexadecane | C16H34 | 32.26 | 0.75 |
Pentadecane | C15H32 | 30.20 | 0.985 |
Alkenes | |||
1-hexene | C6H12 | 5.84 | 0.94 |
Heptane | C7H14 | 7.98 | 0.77 |
1-octene | CH2CHC6H13 | 10.51 | 0.82 |
2,4-Dimethyl-1-heptene | C9H18 | 12.10 | 0.69 |
1-nonene | C9H18 | 13.65 | 1.20 |
1-decene | C10H20 | 16.79 | 1.17 |
1-Undecene, 7-methyl- | C12H24 | 19.50 | 0.562 |
2-Undecene, 7-methyl- | C12H24 | 19.62 | 0.543 |
1-undecene | C11H24 | 19.80 | 1.01 |
1-dodecene | C12H24 | 22.61 | 1.05 |
Aromatics | |||
Benzene | C6H6 | 7.17 | 1.76 |
Toluene | CH3 | 9.87 | 1.58 |
Ethylbenzene | C8H10 | 12.81 | 0.91 |
P-Xylene | C6H4(CH3)2 | 13.06 | 0.98 |
Styrene | C8H8 | 13.76 | 0.39 |
O-Xylene | C6H4(CH3)2 | 13.84 | 0.61 |
Benzene, 1-ethyl-2-methyl- | C9H12 | 16.00 | 0.45 |
Benzene, (1-methyl-2-propynyl)- | C11H14 | 21.81 | 0.87 |
Esters | |||
Ethyl acetate | C4H8O2 | 10.11 | 0.54 |
2-oxopropyl acetate | C5H8O3 | 20.67 | 0.59 |
Furans | |||
Furan, 2,5-dimethyl- | C6H8O | 8.12 | 0.44 |
Ketones | |||
2-butanone | CH3C(O)CH2CH3 | 5.93 | 0.79 |
Ethanone, 1-(2-furanyl)- | C6H6O2 | 14.28 | 0.87 |
C4H8O | 22.17 | 0.81 | |
Phenols | |||
phenol | C6H6O | 16.39 | 1.54 |
Phenol, 4-methyl- | CH3C6H4OH | 19.27 | 1.33 |
Polycyclic Aromatic Hydrocarbons (PAH) | |||
1h-indene | C9H8 | 18.69 | 0.91 |
Naphthalene | C10H8 | 22.88 | 0.69 |
Naphthalene, 2-methyl- | C11H10 | 25.86 | 0.53 |
1-methylnaphthalene | C11H10 | 26.33 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rony, Z.I.; Rasul, M.G.; Jahirul, M.I.; Hasan, M.M. Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties. Energies 2024, 17, 863. https://doi.org/10.3390/en17040863
Rony ZI, Rasul MG, Jahirul MI, Hasan MM. Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties. Energies. 2024; 17(4):863. https://doi.org/10.3390/en17040863
Chicago/Turabian StyleRony, Zahidul Islam, Mohammad Golam Rasul, Md Islam Jahirul, and Mohammad Mehedi Hasan. 2024. "Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties" Energies 17, no. 4: 863. https://doi.org/10.3390/en17040863
APA StyleRony, Z. I., Rasul, M. G., Jahirul, M. I., & Hasan, M. M. (2024). Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties. Energies, 17(4), 863. https://doi.org/10.3390/en17040863