Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model
Abstract
:1. Introduction
1.1. Solving Multi-Objective DEED Using Single-Objective Algorithm
1.2. Solving Multi-Objective DEED Using Multi-Objective Algorithm
1.3. Modeling Transmission Loss in DEED Formulation
2. Contribution
3. Dynamic Economic Emission Dispatch Integrating Transmission Loss Prediction
3.1. Mathematical Model
3.2. Constraint Handling Mechanism
3.3. Fuzzy Decision-Making Approach to Select the Best Compromise Solution
4. Multi-Objective Stochastic Paint Optimizer Algorithm
5. Random Forest Machine Learning Model to Predict the Transmission Loss
5.1. Dataset for an IEEE 30 Bus System
5.2. Random Forest Machine Learning Model
6. Proposed Algorithm for DEED Incorporating Random Forest Based Loss Prediction
7. Case Studies
7.1. Case 1—Five-Unit Test System
7.2. Case 2—Ten-Unit Test System
7.3. Case 3—IEEE 30 Bus Test System
8. Conclusions and Future Research Direction
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Shahidehpour, M.; Li, Z.; Fotuhi-Firuzabad, M. Component and Mode Models for the Short-Term Scheduling of Combined-Cycle Units. IEEE Trans. Power Syst. 2009, 24, 976–990. [Google Scholar] [CrossRef]
- Chiang, C.L. Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels. IEEE Trans. Power Syst. 2005, 20, 1690–1699. [Google Scholar] [CrossRef]
- Basu, M. Particle Swarm Optimization Based Goal-Attainment Method for Dynamic Economic Emission Dispatch. Electr. Power Compon. Syst. 2006, 34, 1015–1025. [Google Scholar] [CrossRef]
- Basu, M. Dynamic Economic Emission Dispatch Using Evolutionary Programming and Fuzzy Satisfying Method. Int. J. Emerg. Electr. Power Syst. 2007, 8. [Google Scholar] [CrossRef]
- Alsumait, J.S.; Qasem, M.; Sykulski, J.K.; Al-Othman, A.K. An Improved Pattern Search Based Algorithm to Solve the Dynamic Economic Dispatch Problem with Valve-Point Effect. Energy Convers. Manag. 2010, 51, 2062–2067. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, J.; Howley, E. Multi-Objective Dynamic Economic Emission Dispatch Using Particle Swarm Optimisation Variants. Neurocomputing 2017, 270, 188–197. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, H.; Li, K.; Irwin, G.W. An Efficient Harmony Search with New Pitch Adjustment for Dynamic Economic Dispatch. Energy 2014, 65, 25–43. [Google Scholar] [CrossRef]
- Li, Z.; Zou, D.; Kong, Z. A Harmony Search Variant and a Useful Constraint Handling Method for the Dynamic Economic Emission Dispatch Problems Considering Transmission Loss. Eng. Appl. Artif. Intell. 2019, 84, 18–40. [Google Scholar] [CrossRef]
- Shen, X.; Zou, D.; Duan, N.; Zhang, Q. An Efficient Fitness-Based Differential Evolution Algorithm and a Constraint Handling Technique for Dynamic Economic Emission Dispatch. Energy 2019, 186, 115801. [Google Scholar] [CrossRef]
- Parihar, S.S.; Malik, N. Fuzzy-Based Real-Coded Genetic Algorithm for Optimizing Non-Convex Environmental Economic Loss Dispatch. Facta Univ. Ser. Electron. Energetics 2022, 35, 495–512. [Google Scholar] [CrossRef]
- Roy, P.K.; Bhui, S. A Multi-Objective Hybrid Evolutionary Algorithm for Dynamic Economic Emission Load Dispatch. Int. Trans. Electr. Energy Syst. 2016, 26, 49–78. [Google Scholar] [CrossRef]
- Elaiw, A.M.; Xia, X.; Shehata, A.M. Hybrid DE-SQP and Hybrid PSO-SQP Methods for Solving Dynamic Economic Emission Dispatch Problem with Valve-Point Effects. Electr. Power Syst. Res. 2013, 103, 192–200. [Google Scholar] [CrossRef]
- Sheng, W.; Li, R.; Yan, T.; Tseng, M.L.; Lou, J.; Li, L. A Hybrid Dynamic Economics Emissions Dispatch Model: Distributed Renewable Power Systems Based on Improved COOT Optimization Algorithm. Renew. Energy 2023, 204, 493–506. [Google Scholar] [CrossRef]
- Nagarajan, K.; Rajagopalan, A.; Angalaeswari, S.; Natrayan, L.; Mammo, W.D. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6461690. [Google Scholar] [CrossRef]
- Basu, M. Dynamic Economic Emission Dispatch Using Nondominated Sorting Genetic Algorithm-II. Int. J. Electr. Power Energy Syst. 2008, 30, 140–149. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Kannan, S.; Mahadevan, K.; Baskar, S. Application of Modified NSGA-II Algorithm to Combined Economic and Emission Dispatch Problem. Int. J. Electr. Power Energy Syst. 2011, 33, 992–1002. [Google Scholar] [CrossRef]
- Guo, C.X.; Zhan, J.P.; Wu, Q.H. Dynamic Economic Emission Dispatch Based on Group Search Optimizer with Multiple Producers. Electr. Power Syst. Res. 2012, 86, 8–16. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, Y.N.; Yuan, X.F.; Zhou, S.W. Environmental/Economic Power Dispatch Problem Using Multi-Objective Differential Evolution Algorithm. Electr. Power Syst. Res. 2010, 80, 1171–1181. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, J.; Wang, H.; Zhang, Y. Dynamic Environmental Economic Dispatch Using Multiobjective Differential Evolution Algorithm with Expanded Double Selection and Adaptive Random Restart. Int. J. Electr. Power Energy Syst. 2013, 49, 399–407. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, D.; Xie, X.; Hu, S.; Weng, S. Multi-Elite Guide Hybrid Differential Evolution with Simulated Annealing Technique for Dynamic Economic Emission Dispatch. Appl. Soft Comput. J. 2015, 34, 312–323. [Google Scholar] [CrossRef]
- Shao, Z.; Si, F.; Wu, H.; Tong, X. An Agile and Intelligent Dynamic Economic Emission Dispatcher Based on Multi-Objective Proximal Policy Optimization. Appl. Soft Comput. 2021, 102, 107047. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, J.; Howley, E. A Multi-Objective Neural Network Trained with Differential Evolution for Dynamic Economic Emission Dispatch. Int. J. Electr. Power Energy Syst. 2018, 100, 201–221. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Domínguez-García, J.L.; El-Naggar, M.F. MSSA-DEED: A Multi-Objective Salp Swarm Algorithm for Solving Dynamic Economic Emission Dispatch Problems. Sustainability 2022, 14, 9785. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, Z.; Kang, X.; Qu, B.; Qiao, B.; Huan, J.; Chai, X. Multi-Objective Dynamic Economic Emission Dispatch with Electric Vehicle–Wind Power Interaction Based on a Self-Adaptive Multiple-Learning Harmony-Search Algorithm. Energies 2022, 15, 4942. [Google Scholar] [CrossRef]
- Lokeshgupta, B.; Sivasubramani, S. Dynamic Economic and Emission Dispatch with Renewable Energy Integration Under Uncertainties and Demand-Side Management. Electr. Eng. 2022, 104, 2237–2248. [Google Scholar] [CrossRef]
- Zou, D.; Gong, D.; Ouyang, H. The Dynamic Economic Emission Dispatch of the Combined Heat and Power System Integrated with a Wind Farm and a Photovoltaic Plant. Appl. Energy 2023, 351, 121890. [Google Scholar] [CrossRef]
- Arul, R.; Velusami, S.; Ravi, G. A New Algorithm for Combined Dynamic Economic Emission Dispatch with Security Constraints. Energy 2015, 79, 496–511. [Google Scholar] [CrossRef]
- Zou, D.; Li, S.; Li, Z.; Kong, X. A New Global Particle Swarm Optimization for the Economic Emission Dispatch with or without Transmission Losses. Energy Convers. Manag. 2017, 139, 45–70. [Google Scholar] [CrossRef]
- Sundaram, A. Multiobjective Multi Verse Optimization Algorithm to Solve Dynamic Economic Emission Dispatch Problem with Transmission Loss Prediction by an Artificial Neural Network. Appl. Soft Comput. 2022, 124, 109021. [Google Scholar] [CrossRef]
- Sundaram, A. Fair and Transparent Loss Allocation and Pricing in Primary Electricity Market Using the Concept of Market Center. Ph.D. Thesis, Anna University, Chennai, India, 2014. [Google Scholar] [CrossRef]
- Arunachalam, S.; Saranya, R.; Sangeetha, N. Hybrid Artificial Bee Colony Algorithm and Simulated Annealing Algorithm for Combined Economic and Emission Dispatch Including Valve Point Effect. In Swarm, Evolutionary, and Memetic Computing, Proceedings of the 4th International Conference, SEMCCO 2013, Chennai, India, 19–21 December 2013; Springer International Publishing: Cham, Switzerland, 2013; Volume 8297, pp. 354–365. [Google Scholar]
- Arunachalam, S.; AgnesBhomila, T.; Ramesh Babu, M. Hybrid Particle Swarm Optimization Algorithm and Firefly Algorithm Based Combined Economic and Emission Dispatch Including Valve Point Effect. In Swarm, Evolutionary, and Memetic Computing, Proceedings of the 5th International Conference, SEMCCO 2014, Bhubaneswar, India, 18–20 December 2014; Springer International Publishing: Cham, Switzerland, 2015; Volume 8947, pp. 647–660. [Google Scholar]
- Sundaram, A. Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO. In Particle Swarm Optimization with Applications; Erdogmus, P., Ed.; IntechOpen: London, UK, 2018; pp. 81–100. ISBN 978-1-78923-149-6. [Google Scholar]
- Murugan, R.; Mohan, M.R.; Asir Rajan, C.C.; Sundari, P.D.; Arunachalam, S. Hybridizing Bat Algorithm with Artificial Bee Colony for Combined Heat and Power Economic Dispatch. Appl. Soft Comput. 2018, 72, 189–217. [Google Scholar] [CrossRef]
- Sundaram, A. Multiobjective Multi-Verse Optimization Algorithm to Solve Combined Economic, Heat and Power Emission Dispatch Problems. Appl. Soft Comput. J. 2020, 91, 106195. [Google Scholar] [CrossRef]
- Sundaram, A. Combined Heat and Power Economic Emission Dispatch Using Hybrid NSGA II-MOPSO Algorithm Incorporating an Effective Constraint Handling Mechanism. IEEE Access 2020, 8, 13748–13768. [Google Scholar] [CrossRef]
- Ramachandran, M.; Mirjalili, S.; Malli Ramalingam, M.; Charles Gnanakkan, C.A.R.; Parvathysankar, D.S.; Sundaram, A. A Ranking-Based Fuzzy Adaptive Hybrid Crow Search Algorithm for Combined Heat and Power Economic Dispatch. Expert. Syst. Appl. 2022, 197, 116625. [Google Scholar] [CrossRef]
- Ramachandran, M.; Mirjalili, S.; Nazari-Heris, M.; Parvathysankar, D.S.; Sundaram, A.; Charles Gnanakkan, C.A.R. A Hybrid Grasshopper Optimization Algorithm and Harris Hawks Optimizer for Combined Heat and Power Economic Dispatch Problem. Eng. Appl. Artif. Intell. 2022, 111, 104753. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S.; Khodadadi, N. Stochastic Paint Optimizer: Theory and Application in Civil Engineering. Eng. Comput. 2020, 38, 1921–1952. [Google Scholar] [CrossRef]
- Khodadadi, N.; Abualigah, L.; Mirjalili, S. Multi-Objective Stochastic Paint Optimizer (MOSPO). Neural Comput. Appl. 2022, 134, 18035–18058. [Google Scholar] [CrossRef]
- Coello Coello, C.A.; Lechuga, M.S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 2, pp. 1051–1056. [Google Scholar]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Information Computing and Applications, Proceedings of the Third International Conference, ICICA 2012, Chengde, China, 14–16 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7473, pp. 246–252. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; University of California: San Francisco, CA, USA, 2004. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
- Qiao, B.; Liu, J.; Hao, X. A Multi-Objective Differential Evolution Algorithm and a Constraint Handling Mechanism Based on Variables Proportion for Dynamic Economic Emission Dispatch Problems. Appl. Soft Comput. 2021, 108, 107419. [Google Scholar] [CrossRef]
- Pandit, N.; Tripathi, A.; Tapaswi, S.; Pandit, M. An Improved Bacterial Foraging Algorithm for Combined Static/Dynamic Environmental Economic Dispatch. Appl. Soft Comput. J. 2012, 12, 3500–3513. [Google Scholar] [CrossRef]
Row | |||||||
---|---|---|---|---|---|---|---|
100 | 0.257 | 0.399 | 0.636 | 0.904 | 0.586 | 0.466 | 0.032 |
200 | 0.397 | 0.494 | 0.759 | 0.874 | 0.764 | 0.609 | 0.048 |
300 | 0.309 | 0.434 | 0.690 | 0.894 | 0.688 | 0.482 | 0.037 |
400 | 0.298 | 0.400 | 0.591 | 0.640 | 0.559 | 0.509 | 0.027 |
500 | 0.270 | 0.400 | 0.653 | 0.916 | 0.643 | 0.466 | 0.034 |
… | … | … | … | … | … | … | |
8000 | 0.184 | 0.363 | 0.597 | 0.949 | 0.579 | 0.413 | 0.029 |
9000 | 0.329 | 0.484 | 0.792 | 1.015 | 0.846 | 0.580 | 0.059 |
10,000 | 0.549 | 0.613 | 0.836 | 0.795 | 0.850 | 0.712 | 0.064 |
11,000 | 0.592 | 0.673 | 1.134 | 1.346 | 1.136 | 0.781 | 0.112 |
12,000 | 0.389 | 0.487 | 0.850 | 1.087 | 0.863 | 0.554 | 0.056 |
Hyperparameters | Values |
---|---|
Iteration | Ensemble Method | Number of Learners | Learning Rate | Minimum Leaf Size | Number of Predictors to Sample | Observed MSE |
---|---|---|---|---|---|---|
1 | Bagging | 38 | - | 2 | 1 | |
2 | LSBoost | 32 | 0.00105 | 51 | 4 | |
3 | LSBoost | 12 | 0.00486 | 2158 | 1 | |
4 | LSBoost | 13 | 0.99533 | 4 | 4 | |
5 | Bagging | 231 | - | 73 | 3 | |
6 | LSBoost | 118 | 0.0378 | 2 | 6 | |
7 | Bagging | 96 | - | 11 | 3 | |
8 | LSBoost | 373 | 0.3402 | 3233 | 5 | |
9 | LSBoost | 113 | 0.0627 | 12 | 4 | |
10 | Bagging | 174 | - | 2 | 4 | |
11 | Bagging | 40 | - | 3 | 4 | |
12 | Bagging | 35 | - | 2 | 1 | |
13 | LSBoost | 389 | 0.5535 | 595 | 5 | |
14 | LSBoost | 243 | 0.2233 | 2 | 6 | |
15 | LSBoost | 42 | 0.00352 | 21 | 5 | |
16 | LSBoost | 248 | 0.2223 | 1 | 5 | |
17 | LSBoost | 349 | 0.6527 | 35 | 3 | |
18 | LSBoost | 21 | 0.0186 | 3557 | 5 | |
19 | LSBoost | 123 | 0.37415 | 59 | 3 | |
20 | LSBoost | 299 | 0.0014 | 4 | 2 | |
21 | LSBoost | 23 | 0.95046 | 2031 | 1 | |
22 | LSBoost | 34 | 0.02568 | 33 | 2 | |
23 | Bag | 65 | - | 1 | 4 | |
24 | LSBoost | 24 | 0.0384 | 6 | 3 | |
25 | LSBoost | 55 | 0.001022 | 3 | 6 | |
26 | LSBoost | 36 | 0.001024 | 28 | 6 | |
27 | LSBoost | 14 | 0.21566 | 2 | 6 | |
28 | LSBoost | 10 | 0.9655 | 1 | 6 | |
29 | LSBoost | 11 | 0.06552 | 5203 | 6 | |
30 | LSBoost | 11 | 0.0189 | 63 | 6 |
Algorithm | Parameters | ||||
---|---|---|---|---|---|
PSO [3] | Iterations = 300 | ||||
EP [4] | Iterations = 100 | Population = 50 | |||
SPSO [6] | Iterations = 3000 | Acceleration coefficients C1 and C2 = 2.05 Constriction factor = 0.72984 | |||
PSOAWL [6] | Iterations = 3000 | Acceleration coefficients C1 and C2 = 1.845 Acceleration coefficients C3 and C4 = 0.205 | Constriction factor = 0.72984 | Neighborhood expansion speed γ = 2 | Initial number of connections between particles b = 3. |
NPAHS [7] | Iterations = 50,000 | Harmony memory size = 5 | Harmony memory consideration rate = 0.99 | Pitch adjustment rate = 0.01 | Width = 0.001 |
NEHS [8] | Iterations = 50,000 for 5 unit Iterations = 100,000 for 10 unit | Harmony memory size = 10 | Harmony memory consideration rate close to 1 | Pitch adjustment rate = 0.3 | Band width = 0.05, 0.0125, and 0.003125 |
EFDE [9] | Iterations = 5000 for 5 unit Iterations = 20,000 for 10 unit | Population = 20 | Adaptive mutation factor Adaptive scaling and crossover probability | ||
DE-SQP PSO-SQP [12] | Iterations = 20,000 Population = 60 | Mutation factor = 0.423 | Crossover probability = 0.885 | Acceleration coefficients C1 and C2 = 2.25 | Adaptive inertial and constriction factor |
NSGAII [15] | Iterations = 100 | Population = 20 | Crossover probability = 0.9 | Mutation probability = 0.2 | |
MODE [20] | Iterations = 500,000 | Population = 100 | Adaptive scaling factor between 0.3 and 0.9 | Adaptive crossover rate between 0.1 and 0.9 | |
MOPPO [21] | Episode number = 1000 | Epoch number = 10 | Function coefficient = 0.5 | Entropy coefficient = 0.01 | Exploration standard deviation = 0.5 |
MOMVO [29] | Max Time = 400 | Population = 100 Archive Size = 100 | Exploitation accuracy = 6 | Wormhole existence probability between 0.2 and 1 | |
MOSPO | Iterations = 40 for 5-unit system, IEEE 30 bus system Iterations = 100 for 10-unit system | Population = 100 | Archive size = 100 | Alpha = 0.1 Beta = 4 Gamma = 2 |
Run | Time | Emission | |
---|---|---|---|
1 | 1049.723 | 18,523.9 | 47,786.58 |
2 | 890.4258 | 18,572.14 | 47,384.56 |
3 | 1028.585 | 18,672.82 | 47,218.9 |
4 | 1006.217 | 18,552.32 | 47,238.85 |
5 | 945.2438 | 18,865.26 | 46,298.08 |
6 | 924.1873 | 18,690.57 | 47,746.91 |
7 | 900.312 | 18,592.19 | 47,165.49 |
8 | 897.8754 | 18,794.08 | 46,871.81 |
9 | 916.1342 | 18,451.84 | 48,379.4 |
10 | 912.8549 | 18,857.35 | 46,570 |
11 | 941.0269 | 18,436.18 | 48,221.11 |
12 | 942.2903 | 18,599.01 | 47,217.86 |
13 | 932.938 | 18,466.96 | 48,203.98 |
14 | 931.0885 | 18,525.5 | 47,337.87 |
15 | 891.3465 | 18,772.47 | 47,183.07 |
16 | 884.0648 | 18,626.94 | 47,082.39 |
17 | 974.1892 | 18,537.08 | 47,498.67 |
18 | 898.1882 | 18,533.54 | 47,399.39 |
19 | 887.9814 | 18,607.79 | 47,248.88 |
20 | 923.6068 | 18,487.68 | 47,783.05 |
Max | 1049.723 | 18,865.26 | 48,379.4 |
Min | 884.0648 | 18,436.18 | 46,298.08 |
Average | 933.914 | 18,608.28 | 47,391.84 |
t | P1 | P2 | P3 | P4 | P5 | Pdt | Pl | Emission | Fuel Cost | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 22.07 | 98.39 | 116.35 | 126.77 | 50.00 | 413.58 | 410.00 | 3.58 | 407.62 | 1307.2 |
2 | 52.07 | 68.39 | 106.97 | 161.55 | 50.00 | 438.98 | 435.00 | 3.98 | 417.71 | 1535.1 |
3 | 75.00 | 87.00 | 146.97 | 111.55 | 59.11 | 479.63 | 475.00 | 4.63 | 470.85 | 1689.8 |
4 | 47.95 | 57.00 | 174.99 | 146.60 | 109.11 | 535.65 | 530.00 | 5.65 | 580.14 | 1778.4 |
5 | 74.99 | 86.98 | 134.99 | 180.19 | 87.23 | 564.38 | 558.00 | 6.38 | 614.37 | 1923.7 |
6 | 75.00 | 98.02 | 174.99 | 130.19 | 137.23 | 615.43 | 608.00 | 7.43 | 740.38 | 1970.9 |
7 | 75.00 | 85.58 | 134.99 | 165.15 | 173.19 | 633.91 | 626.00 | 7.91 | 810.86 | 1948.2 |
8 | 48.93 | 115.57 | 174.99 | 200.05 | 123.19 | 662.73 | 654.00 | 8.73 | 872.4 | 1926.2 |
9 | 75.00 | 88.42 | 164.73 | 209.06 | 162.42 | 699.63 | 690.00 | 9.63 | 961.05 | 2277.2 |
10 | 64.83 | 118.42 | 175.00 | 243.55 | 112.42 | 714.22 | 704.00 | 10.22 | 1037.2 | 2257.7 |
11 | 75.00 | 125.00 | 175.00 | 203.15 | 152.39 | 730.54 | 720.00 | 10.54 | 1039.2 | 2435.1 |
12 | 75.00 | 95.00 | 163.93 | 238.03 | 179.13 | 751.09 | 740.00 | 11.09 | 1147.5 | 2343.8 |
13 | 75.00 | 124.99 | 175.00 | 209.96 | 129.13 | 714.08 | 704.00 | 10.08 | 990.99 | 2407.1 |
14 | 75.00 | 100.46 | 175.00 | 180.31 | 168.80 | 699.57 | 690.00 | 9.57 | 957.73 | 2304.1 |
15 | 71.72 | 122.11 | 135.00 | 215.26 | 118.80 | 662.89 | 654.00 | 8.89 | 874.36 | 2024.9 |
16 | 75.00 | 92.11 | 174.98 | 165.26 | 79.53 | 586.87 | 580.00 | 6.87 | 669.66 | 1834.1 |
17 | 68.50 | 68.21 | 134.98 | 163.04 | 129.53 | 564.26 | 558.00 | 6.26 | 616.28 | 1936.5 |
18 | 65.24 | 98.21 | 174.98 | 197.65 | 79.53 | 615.61 | 608.00 | 7.61 | 751.75 | 1909.4 |
19 | 75.00 | 91.06 | 134.98 | 232.26 | 129.53 | 662.83 | 654.00 | 8.82 | 883.5 | 2093.3 |
20 | 66.38 | 121.06 | 174.98 | 182.26 | 169.36 | 714.04 | 704.00 | 10.04 | 1010.2 | 2114.2 |
21 | 75.00 | 102.51 | 175.00 | 217.54 | 119.36 | 689.41 | 680.00 | 9.41 | 922.46 | 2203 |
22 | 75.00 | 84.05 | 145.34 | 167.54 | 140.44 | 612.37 | 605.00 | 7.37 | 718.32 | 2029 |
23 | 75.00 | 59.85 | 105.34 | 202.17 | 90.44 | 532.80 | 527.00 | 5.80 | 595.5 | 1642.5 |
24 | 45.00 | 74.95 | 145.34 | 152.17 | 50.00 | 467.46 | 463.00 | 4.46 | 459.2 | 1507.2 |
Total | 18,549.23 | 47,398.6 |
t | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | Pdt | Pl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 150.00 | 135.00 | 73.61 | 103.96 | 124.22 | 129.81 | 92.53 | 120.00 | 80.00 | 45.93 | 1055.06 | 1036.00 | 19.06 |
2 | 150.00 | 135.00 | 86.67 | 119.75 | 135.46 | 147.10 | 102.68 | 120.00 | 80.00 | 55.00 | 1131.65 | 1110.00 | 21.65 |
3 | 150.00 | 135.00 | 138.54 | 131.34 | 185.46 | 160.00 | 130.00 | 120.00 | 79.93 | 55.00 | 1285.27 | 1258.00 | 27.27 |
4 | 150.00 | 192.57 | 168.70 | 148.32 | 235.46 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1440.05 | 1406.00 | 34.05 |
5 | 150.19 | 217.50 | 201.50 | 160.59 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1517.77 | 1480.00 | 37.77 |
6 | 218.88 | 224.81 | 231.74 | 210.59 | 243.00 | 160.00 | 129.99 | 120.00 | 80.00 | 55.00 | 1674.01 | 1628.00 | 46.01 |
7 | 226.13 | 230.30 | 261.42 | 246.40 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1752.25 | 1702.00 | 50.25 |
8 | 225.95 | 256.09 | 291.47 | 269.39 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1830.90 | 1776.00 | 54.90 |
9 | 296.83 | 280.69 | 323.70 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1989.23 | 1924.00 | 65.23 |
10 | 325.68 | 341.14 | 340.00 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 2094.83 | 2022.00 | 72.83 |
11 | 350.57 | 407.43 | 340.00 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 2186.00 | 2106.00 | 80.00 |
12 | 390.77 | 415.12 | 340.00 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 2233.90 | 2150.00 | 83.90 |
13 | 325.28 | 395.93 | 340.00 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 2149.21 | 2072.00 | 77.21 |
14 | 296.97 | 315.93 | 288.76 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1989.65 | 1924.00 | 65.65 |
15 | 242.11 | 244.03 | 291.89 | 265.11 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1831.14 | 1776.00 | 55.14 |
16 | 162.11 | 164.03 | 211.89 | 269.39 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1595.42 | 1554.00 | 41.42 |
17 | 150.00 | 156.65 | 203.33 | 219.39 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1517.37 | 1480.00 | 37.37 |
18 | 196.19 | 219.10 | 237.51 | 233.03 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1673.84 | 1628.00 | 45.84 |
19 | 233.04 | 273.82 | 268.06 | 268.20 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1831.12 | 1776.00 | 55.12 |
20 | 306.37 | 306.39 | 340.00 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 2040.76 | 1972.00 | 68.76 |
21 | 291.75 | 307.42 | 302.21 | 300.00 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 1989.37 | 1924.00 | 65.37 |
22 | 211.75 | 227.42 | 222.21 | 250.00 | 243.00 | 160.00 | 130.00 | 120.00 | 55.05 | 55.00 | 1674.43 | 1628.00 | 46.43 |
23 | 150.00 | 147.42 | 147.60 | 200.00 | 193.00 | 160.00 | 130.00 | 120.00 | 59.39 | 55.00 | 1362.41 | 1332.00 | 30.41 |
24 | 150.00 | 135.00 | 106.45 | 150.00 | 143.00 | 160.00 | 129.45 | 120.00 | 59.36 | 55.00 | 1208.25 | 1184.00 | 24.25 |
Run | Time | Emission | Run | Time | Emission | ||
---|---|---|---|---|---|---|---|
1 | 1053.325 | 5.994373 | 25,824.72 | 11 | 1025.34 | 5.958727 | 25,846.53 |
2 | 1017.908 | 5.950465 | 25,861.09 | 12 | 1138.781 | 6.002332 | 25,814.56 |
3 | 1012.752 | 5.965218 | 25,841.02 | 13 | 1102.976 | 5.972242 | 25,839.13 |
4 | 1018.667 | 5.974769 | 25,844.07 | 14 | 1037.276 | 6.010266 | 25,816.18 |
5 | 1013.71 | 5.955149 | 25,857.12 | 15 | 1040.52 | 6.009722 | 25,823.46 |
6 | 1014.724 | 5.965142 | 25,841.33 | 16 | 1034.59 | 5.985644 | 25,833.88 |
7 | 1015.476 | 5.963196 | 25,848.1 | 17 | 1035.014 | 5.975186 | 25,833.62 |
8 | 1014.505 | 5.986876 | 25,820.08 | 18 | 1038.629 | 5.994643 | 25,823.39 |
9 | 1020.026 | 5.978975 | 25,832.06 | 19 | 1059.743 | 5.978423 | 25,836.58 |
10 | 1017.071 | 5.98509 | 25,824.91 | 20 | 1065.911 | 5.948667 | 25,850.73 |
Max | 1138.781 | 6.010266 | 25,861.09 | ||||
Min | 1012.752 | 5.948667 | 25,814.56 | ||||
Average | 1038.847 | 5.977755 | 25,835.63 |
t | Pdt | Pl | P1 | P2 | P3 | P4 | P5 | P6 | Emission | Fuel Cost | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.25 | 0.0332 | 0.2584 | 0.4633 | 0.6321 | 0.8005 | 0.6685 | 0.4604 | 3.2832 | 0.204574 | 710.313 |
2 | 3.9 | 0.0508 | 0.3811 | 0.5459 | 0.7808 | 0.8694 | 0.8058 | 0.5678 | 3.9508 | 0.211471 | 874.0063 |
3 | 3.5 | 0.0382 | 0.3352 | 0.4276 | 0.6987 | 0.8198 | 0.7326 | 0.5243 | 3.5382 | 0.205828 | 771.4103 |
4 | 3 | 0.0299 | 0.2533 | 0.4219 | 0.5394 | 0.7462 | 0.6075 | 0.4616 | 3.0299 | 0.201993 | 653.1154 |
5 | 3.35 | 0.0357 | 0.3006 | 0.4553 | 0.6967 | 0.7761 | 0.6549 | 0.5021 | 3.3857 | 0.203341 | 736.4617 |
6 | 4 | 0.049 | 0.425 | 0.5022 | 0.8152 | 0.9131 | 0.8075 | 0.586 | 4.049 | 0.214282 | 896.9822 |
7 | 4.75 | 0.0742 | 0.4919 | 0.5836 | 0.9437 | 1.1061 | 0.9829 | 0.716 | 4.8242 | 0.242413 | 1094.734 |
8 | 5.05 | 0.0821 | 0.5132 | 0.604 | 1.0204 | 1.2682 | 1.0245 | 0.7018 | 5.1321 | 0.26429 | 1172.912 |
9 | 5.45 | 0.1072 | 0.5878 | 0.6588 | 1.1086 | 1.3227 | 1.0941 | 0.7852 | 5.5572 | 0.28898 | 1293.243 |
10 | 5.2 | 0.0908 | 0.6152 | 0.6861 | 1.0208 | 1.2238 | 1.0195 | 0.7254 | 5.2908 | 0.264559 | 1224.479 |
11 | 5.5 | 0.1067 | 0.622 | 0.6602 | 1.0992 | 1.3169 | 1.1 | 0.8084 | 5.6067 | 0.289811 | 1309.338 |
12 | 5.75 | 0.1142 | 0.5922 | 0.7005 | 1.1992 | 1.4232 | 1.1176 | 0.8315 | 5.8642 | 0.319458 | 1379.691 |
13 | 5.25 | 0.0939 | 0.5444 | 0.5955 | 1.1011 | 1.2695 | 1.0676 | 0.7658 | 5.3439 | 0.276959 | 1231.984 |
14 | 5.15 | 0.0931 | 0.5868 | 0.6452 | 1.0503 | 1.1898 | 1.0199 | 0.7511 | 5.2431 | 0.262543 | 1209.895 |
15 | 4.75 | 0.0746 | 0.5177 | 0.5604 | 0.9733 | 1.121 | 0.9695 | 0.6827 | 4.8246 | 0.243563 | 1093.792 |
16 | 5.3 | 0.0985 | 0.5455 | 0.6467 | 1.042 | 1.3024 | 1.0978 | 0.7641 | 5.3985 | 0.279045 | 1247.837 |
17 | 5.15 | 0.0891 | 0.5574 | 0.6923 | 1.027 | 1.2146 | 1.0548 | 0.693 | 5.2391 | 0.264878 | 1207.298 |
18 | 5.75 | 0.1153 | 0.5982 | 0.713 | 1.1976 | 1.3999 | 1.1086 | 0.848 | 5.8653 | 0.316635 | 1381.709 |
19 | 5.25 | 0.0996 | 0.5382 | 0.665 | 1.0782 | 1.2492 | 1.0192 | 0.7998 | 5.3496 | 0.271746 | 1237.494 |
20 | 5.25 | 0.0968 | 0.5777 | 0.6798 | 1.0529 | 1.1919 | 1.0612 | 0.7833 | 5.3468 | 0.268065 | 1239.555 |
21 | 4.55 | 0.0677 | 0.4272 | 0.556 | 0.9101 | 1.1051 | 0.9212 | 0.6981 | 4.6177 | 0.236224 | 1038.153 |
22 | 4.25 | 0.058 | 0.4458 | 0.5249 | 0.9281 | 0.9673 | 0.836 | 0.6059 | 4.308 | 0.222762 | 961.2564 |
23 | 4.25 | 0.055 | 0.4314 | 0.5151 | 0.8731 | 0.9723 | 0.8996 | 0.6135 | 4.305 | 0.223021 | 959.5195 |
24 | 4 | 0.0503 | 0.4301 | 0.5327 | 0.763 | 0.9523 | 0.7995 | 0.5727 | 4.0503 | 0.214938 | 896.9213 |
Total | 5.991378 | 25,822.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundaram, A.; Alkhaldi, N.S. Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model. Energies 2024, 17, 860. https://doi.org/10.3390/en17040860
Sundaram A, Alkhaldi NS. Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model. Energies. 2024; 17(4):860. https://doi.org/10.3390/en17040860
Chicago/Turabian StyleSundaram, Arunachalam, and Nasser S. Alkhaldi. 2024. "Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model" Energies 17, no. 4: 860. https://doi.org/10.3390/en17040860
APA StyleSundaram, A., & Alkhaldi, N. S. (2024). Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model. Energies, 17(4), 860. https://doi.org/10.3390/en17040860