Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning
Abstract
:1. Introduction
- Recommends the current and effective optimization algorithm models for estimating instantaneous electricity peak load. Notably, it emphasizes the utilization and advantages of the recently developed DO and GRO in this context, showcasing their efficiency and suitability.
- Through an evaluation process using error metrics applied to inter-monthly data, this study rigorously assesses and analyses the accuracy of forecasting methods for predicting instantaneous peak load, offering comprehensive insights into the precision of the forecasting model.
- Provides predicted instantaneous peak load results as dependable and informative references for optimizing future energy resource planning and allocation strategies, facilitating informed decision making.
- Utilizing the framework of multiple linear regression (MLR), this study systematically investigates and analyses the impact of diverse combinations and subsets of independent inputs on the forecast output, particularly for estimating instantaneous peak load and elucidating critical dependencies and relationships.
- Involves a technical analysis aimed at determining the optimal parameters of the method, utilizing output–input correlation matrices. This reveals the extent to which the input (independent) data influence the output (dependent) data and provides deeper insights into the modelling process.
- The accurate prediction of instantaneous peak load, as accomplished in this study, significantly contributes to operational efficiency by effectively steering the prevention of unnecessary reserves and ensuring the optimized functioning of the energy system, thereby providing effective resource utilization.
2. Materials and Methods
2.1. Multiple Linear Regression Modelling
2.2. Artificial Neural Networks
2.3. Support Vector Regression
2.4. Particle Swarm Optimization
2.5. Dandelion Optimizer Algorithm
2.5.1. Initial Population
2.5.2. Calculation of Fitness Values
2.5.3. Ascension Stage
2.5.4. Descent Phase
2.5.5. Landing Location Determination
2.6. Gold Rush Optimizer Algorithm
2.7. Error Metrics
3. Proposed Model
4. Results and Discussion
4.1. Instantaneous Peak Load Forecasting
4.2. Error Metrics
4.3. Multi Regression Equations
4.4. Correlation Matrix
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinheiro, M.G.; Madeira, S.C.; Francisco, A.P. Short-term electricity load forecasting—A systematic approach from system level to secondary substations. Appl. Energy 2023, 332, 120493. [Google Scholar] [CrossRef]
- Aswanuwath, L.; Pannakkong, W.; Buddhakulsomsiri, J.; Karnjana, J.; Huynh, V.-N. A Hybrid Model of VMD-EMD-FFT, Similar Days Selection Method, Stepwise Regression, and Artificial Neural Network for Daily Electricity Peak Load Forecasting. Energies 2023, 16, 1860. [Google Scholar] [CrossRef]
- Saglam, M.; Spataru, C.; Karaman, O.A. Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island. Energies 2022, 15, 5950. [Google Scholar] [CrossRef]
- Li, L.-L.; Sun, J.; Wang, C.-H.; Zhou, Y.-T.; Lin, K.-P. Enhanced Gaussian process mixture model for short-term electric load forecasting. Inf. Sci. 2019, 477, 386–398. [Google Scholar] [CrossRef]
- Singh, P.; Dwivedi, P. A novel hybrid model based on neural network and multi-objective optimization for effective load forecast. Energy 2019, 182, 606–622. [Google Scholar] [CrossRef]
- Wu, H.; Liang, Y.; Heng, J. Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting. Appl. Energy 2023, 339, 120995. [Google Scholar] [CrossRef]
- Rubasinghe, O.; Zhang, X.; Chau, T.K.; Chow, Y.; Fernando, T.; Iu, H.H.-C. A Novel Sequence to Sequence Data Modelling Based CNN-LSTM Algorithm for Three Years Ahead Monthly Peak Load Forecasting. IEEE Trans. Power Syst. 2023, 39, 1932–1947. [Google Scholar] [CrossRef]
- Nie, R.-X.; Tian, Z.-P.; Long, R.-Y.; Dong, W. Forecasting household electricity demand with hybrid machine learning-based methods: Effects of residents’ psychological preferences and calendar variables. Expert Syst. Appl. 2022, 206, 117854. [Google Scholar] [CrossRef]
- Saglam, M.; Spataru, C.; Karaman, O.A. Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms. Energies 2023, 16, 4499. [Google Scholar] [CrossRef]
- Sultana, N.; Hossain, S.M.Z.; Almuhaini, S.H.; Düştegör, D. Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand. Energies 2022, 15, 3425. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola, J.E.T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138. [Google Scholar]
- Ray, S. A Quick Review of Machine Learning Algorithms; IEEE: Piscataway, NJ, USA, 2019; pp. 35–39. [Google Scholar]
- Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tang, Z.; Yin, H.; Yang, C.; Yu, J.; Guo, H. Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression. Sustain. Cities Soc. 2021, 66, 102690. [Google Scholar] [CrossRef]
- Kazemzadeh, M.-R.; Amjadian, A.; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 2020, 204, 117948. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Chen, X.; Zeng, X.; Kong, Y.; Chen, J.; Guo, Y.; Wang, T. Short-term load forecasting of industrial customers based on SVMD and XGBoost. Int. J. Electr. Power Energy Syst. 2021, 129, 106830. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Golabi, M.R. Modeling and predicting the electricity production in hydropower using conjunction of wavelet transform, long short-term memory and random forest models. Renew. Energy 2021, 170, 1367–1381. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Song, Z. A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning. Renew. Sustain. Energy Rev. 2020, 119, 109632. [Google Scholar] [CrossRef]
- Prado, F.; Minutolo, M.C.; Kristjanpoller, W. Forecasting based on an ensemble autoregressive moving average-adaptive neuro-fuzzy inference systems neural network-genetic algorithm framework. Energy 2020, 197, 117159. [Google Scholar] [CrossRef]
- Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical systematic review. Sustain. Cities Soc. 2017, 35, 257–270. [Google Scholar] [CrossRef]
- Zang, H.; Xu, R.; Cheng, L.; Ding, T.; Liu, L.; Wei, Z.; Sun, G. Residential load forecasting based on LSTM fusing self-attention mechanism with pooling. Energy 2021, 229, 120682. [Google Scholar] [CrossRef]
- de Freitas Viscondi, G.; Alves-Souza, S.N. A Systematic Literature Review on big data for solar photovoltaic electricity generation forecasting. Sustain. Energy Technol. Assess. 2019, 31, 54–63. [Google Scholar] [CrossRef]
- Gao, W.; Darvishan, A.; Toghani, M.; Mohammadi, M.; Abedinia, O.; Ghadimi, N. Different states of multi-block based forecast engine for price and load prediction. Int. J. Electr. Power Energy Syst. 2019, 104, 423–435. [Google Scholar] [CrossRef]
- Jiang, P.; Li, R.; Liu, N.; Gao, Y. A novel composite electricity demand forecasting framework by data processing and optimized support vector machine. Appl. Energy 2020, 260, 114243. [Google Scholar] [CrossRef]
- Ma, X.; Xie, M.; Suykens, J.A.K. A novel neural grey system model with Bayesian regularization and its applications. Neurocomputing 2021, 456, 61–75. [Google Scholar] [CrossRef]
- Liu, L.; Wu, L. Forecasting the renewable energy consumption of the European countries by an adjacent non-homogeneous grey model. Appl. Math. Model. 2021, 89, 1932–1948. [Google Scholar] [CrossRef]
- Ding, S.; Hipel, K.W.; Dang, Y.G. Forecasting China’s electricity consumption using a new grey prediction model. Energy 2018, 149, 314–328. [Google Scholar] [CrossRef]
- Salman, A.G.; Kanigoro, B. Visibility forecasting using autoregressive integrated moving average (ARIMA) models. Procedia Comput. Sci. 2021, 179, 252–259. [Google Scholar] [CrossRef]
- Oliveira, E.M.; Cyrino Oliveira, F.L. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Z.; Niu, X.; Zhang, L. A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting. Energy 2021, 217, 119361. [Google Scholar] [CrossRef]
- Xiao, L.; Shao, W.; Jin, F.; Wu, Z. A self-adaptive kernel extreme learning machine for short-term wind speed forecasting. Appl. Soft Comput. 2021, 99, 106917. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Wang, J.; Zhang, L. Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi objective version of mayfly optimization algorithm. Expert Syst. Appl. 2021, 177, 114974. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.S.; Wang, L.; Ma, X.; Wu, W.Q.; Ye, L.L.; Zhou, Y.; Luo, Y.X. Forecasting China’s energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model. Energy 2022, 259, 124935. [Google Scholar] [CrossRef]
- Fan, G.F.; Wei, X.; Li, Y.T.; Hong, W.C. Forecasting electricity consumption using a novel hybrid model. Sustain. Cities Soc. 2020, 61, 102320. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Yan, J.; Zhang, S.; Xu, J. A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting. Energy 2021, 236, 121492. [Google Scholar] [CrossRef]
- Peng, J.; Gao, S.; Ding, A. Study of the short-term electric load forecast based on ANFIS. In Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China, 19–21 May 2017; pp. 832–836. [Google Scholar]
- Tay, K.G.; Muwafaq, H.; Tiong, W.K.; Choy, Y.Y. Electricity consumption forecasting using adaptive neuro-fuzzy inference system (ANFIS). Univ. J. Electr. Electron. Eng. 2019, 6, 37–48. [Google Scholar] [CrossRef]
- Al-Hamad, M.Y.; Qamber, I.S. GCC electrical long-term peak load forecasting modelling using ANFIS and MLR methods. Arab. J. Basic Appl. Sci. 2019, 26, 269–282. [Google Scholar] [CrossRef]
- Gellert, A.; Fiore, U.; Florea, A.; Chis, R.; Palmieri, F. Forecasting Electricity Consumption and Production in Smart Homes through Statistical Methods. Sustain. Cities Soc. 2022, 76, 103426. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Hong, M.; Ren, J.; Lin, R.; Liu, Y.; Liu, M.; Yi, M. Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithmda case study of papermaking process. Energy 2019, 170, 1215–1227. [Google Scholar] [CrossRef]
- Bourhnane, S.; Abid, M.R.; Lghoul, R.; Zine-Dine, K.; Elkamoun, N.; Benhaddou, D. Machine learning for energy consumption prediction and scheduling in smart buildings. SN Appl. Sci. 2020, 2, 297. [Google Scholar] [CrossRef]
- Runge, J.; Zmeureanu, R. Forecasting energy use in buildings using artificial neural networks: A review. Energies 2019, 12, 3254. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, J.; Liu, B.; Li, K.; Li, X. Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification. Energy Build. 2021, 241, 110929. [Google Scholar] [CrossRef]
- Shafiei Chafi, Z.; Afrakhte, H. Short-term load forecasting using neural network and particle swarm optimization (PSO) algorithm. Math. Probl. Eng. 2021, 2021, 5598267. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Base Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- He, Y.; Zheng, Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function. Energy 2018, 54, 143–156. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205–1225. [Google Scholar] [CrossRef]
- Li, R.; Jiang, P.; Yang, H.; Li, C. A novel hybrid forecasting scheme for electricity demand time series. Sustain. Cities Soc. 2020, 55, 102036. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A novel system for multi-step electricity price forecasting for electricity market management. Appl. Soft Comput. J. 2020, 88, 106029. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Wang, C.; Zhou, X. A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting. Appl. Energy 2021, 286, 116545. [Google Scholar] [CrossRef]
- Karaman, Ö.A. Prediction of Wind Power with Machine Learning Models. Appl. Sci. 2023, 13, 11455. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Applications of Physics-Informed Neural Networks in Power Systems—A Review. IEEE Trans. Power Syst. 2023, 38, 572–588. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, M.; Liu, S.; Chen, P.-Y.; Xiong, J. Fast learning of graph neural networks with guaranteed generalizability: One-hiddenlayer case. Int. Conf. Mach. Learn. 2020, 119, 11268–11277. [Google Scholar]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Zolfi, K. Gold rush optimizer. A new population-based metaheuristic algorithm. Oper. Res. Decis. 2023, 33, 113–150. [Google Scholar] [CrossRef]
- Halepoto, I.A.; Uqaili, M.A.; Chowdhry, B.S. Least Square Regression Based Integrated Multi-Parameteric Demand Modeling for Short Term Load Forecasting. Mehran Univ. Res. J. Eng. Technol. 2014, 33, 215–226. [Google Scholar]
- Karaman, Ö.A. Performance evaluation of seasonal solar irradiation models—Case study: Karapınar town, Turkey. Case Stud. Therm. Eng. 2023, 49, 103228. [Google Scholar] [CrossRef]
- Yalçın, C. Analysis of Instantaneous Fuel Consumption in Aircrafts with Support Vector Regression. Ph.D. Thesis, Mimar Sinan Fine Arts University, Istanbul, Turkey, 2016. [Google Scholar]
- Erdemci, H. Turkey’s Energy Demand Forecast Until 2040 Using Machine Learning Algorithms. Master’s Thesis, Batman University, Batman, Turkey, 2023. [Google Scholar]
- Anand, A.; Suganthi, L. Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand. Energies 2018, 11, 728. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Ye, L.; Zhu, Q.; Geng, Z.; He, Y.L.; Han, Y. A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction. Energy 2018, 164, 137–146. [Google Scholar]
- Javanmard, M.E.; Ghaderi, S. Energy demand forecasting in seven sectors by an optimization model based on machine learning algorithms. Sustain. Cities Soc. 2023, 95, 104623. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Pourghasemi, H.R. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 2017, 157, 310–324. [Google Scholar] [CrossRef]
- Saoud, A.; Recioui, A. Load Energy Forecasting based on a Hybrid PSO LSTM-AE Model. Alger. J. Environ. Sci. Technol. 2023, 9, 2938–2946. [Google Scholar]
- Geng, G.; He, Y.; Zhang, J.; Qin, T.; Yang, B. Short-Term Power Load Forecasting Based on PSO-Optimized VMD-TCN-Attention Mechanism. Energies 2023, 16, 4616. [Google Scholar] [CrossRef]
- Hua, H.; Qin, Z.; Dong, N.; Qin, Y.; Ye, M.; Wang, Z.; Chen, X.; Cao, J. Data-Driven Dynamical Control for Bottom-up Energy Internet System. IEEE Trans. Sustain. Energy 2022, 13, 315–327. [Google Scholar] [CrossRef]
- Abbassi, R.; Saidi, S.; Abbassi, A.; Jerbi, H.; Kchaou, M.; Alhasnawi, B.N. Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm. Mathematics 2023, 11, 1298. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Abualigah, L.; Hussien, A.G. DETDO: An adaptive hybrid dandelion optimizer for engineering optimization. Adv. Eng. Inform. 2023, 57, 102004. [Google Scholar] [CrossRef]
- Kaveh, A.; Zaerreza, A.; Zaerreza, J. Enhanced dandelion optimizer for optimum design of steel frames. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 2591–2604. [Google Scholar] [CrossRef]
- Einstein, A. Investigations on the Theory of the Brownian Movement; Courier Corporation: Chelmsford, MA, USA, 1956. [Google Scholar]
- Shlesinger, M.F.; Klafter, J. Lévy walks versus Lévy flights. In On Growth and Form: Fractal and Non-Fractal Patterns in Physics; Springer: Dordrecht, The Netherlands, 1986; pp. 279–283. [Google Scholar]
- Sarjamei, S.; Massoudi, M.S.; Sarafraz, M.E. Frequency-Constrained Optimization of a Real-Scale Symmetric Structural Using Gold Rush Algorithm. Symmetry 2022, 14, 725. [Google Scholar] [CrossRef]
- Naser, M.Z.; Alavi, A.H. Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Archit. Struct. Constr. 2023, 3, 499–517. [Google Scholar] [CrossRef]
- Ran, P.; Dong, K.; Liu, X.; Wang, J. Short-term load forecasting based on CEEMDAN and Transformer. Electr. Power Syst. Res. 2023, 214, 108885. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Wang, J.; Niu, X. Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting. Appl. Energy 2020, 277, 115561. [Google Scholar] [CrossRef]
- Houimli, R.; Zmami, M.; Ben-Salha, O. Short-term electric load forecasting in Tunisia using artificial neural networks. Energy Syst. 2020, 11, 357–375. [Google Scholar] [CrossRef]
- Cebekhulu, E.; Onumanyi, A.J.; Isaac, S.J. Performance Analysis of Machine Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids. Sustainability 2022, 14, 2546. [Google Scholar] [CrossRef]
- Shah, I.; Jan, F.; Ali, S. Functional Data Approach for Short-Term Electricity Demand Forecasting. Math. Probl. Eng. 2022, 2022, 6709779. [Google Scholar] [CrossRef]
- Soyler, I.; Izgi, E. Electricity Demand Forecasting of Hospital Buildings in Istanbul. Sustainability 2022, 14, 8187. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Moayyed, H.; Zare, K.; Mohammadi-Ivatloo, B. Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory. Sustain. Energy Technol. Assess. 2022, 52, 102209. [Google Scholar] [CrossRef]
- Aponte, O.; McConky, K.T. Forecasting an electricity demand threshold to proactively trigger cost saving demand response actions. Energy Build. 2022, 27, 112221. [Google Scholar] [CrossRef]
- Turkish Electricity Transmission Corporation. Available online: https://www.teias.gov.tr/en-US/interconnections (accessed on 13 September 2023).
- Turkish Statistical Institute. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (accessed on 1 September 2023).
- World Bank. Available online: https://data.worldbank.org/?intcid=ecr_hp_BeltD_en_ext (accessed on 23 May 2023).
- Binici, M. Turkey’s Energy Consumption Forecast by Using Mathematical Modeling. Master’s Thesis, Sivas Cumhuriyet University, Sivas, Turkey, 2019. [Google Scholar]
- Kaboli, S.H.A.; Selvaraj, J.; Rahim, N. Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy 2016, 115, 857–871. [Google Scholar] [CrossRef]
- Agbulut, Ü. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141–157. [Google Scholar] [CrossRef]
- Atik, I. A new CNN-based method for short-term forecasting of electrical energy consumption in the COVID-19 period: The case of Turkey. IEEE Access 2022, 10, 22586–22598. [Google Scholar] [CrossRef]
ANN | SVR | MLR | PSO | DO | GRO | |
---|---|---|---|---|---|---|
R2 | 0.938 | 0.894 | 0.844 | 0.881 | 0.915 | 0.966 |
RMSE | 910.63 | 1033.36 | 1502.9 | 1164.88 | 948.69 | 870.09 |
MSE | 829,246.9 | 1,067,839.91 | 2,258,715.72 | 1,356,945.4 | 900,012.71 | 757,057.01 |
MAE | 784.63 | 823.41 | 1233.17 | 976.23 | 802.45 | 704.17 |
MAPE | 5.14 | 7.26 | 8.58 | 7.83 | 7.05 | 4.78 |
Equation No | Parameters | Multi Regression Equations | R2 | p-Value |
---|---|---|---|---|
(45) | a, b, c, d | F = −33,584 + 156.19 ∗ a − 324.41 ∗ b + 2698.8 ∗ c + 717.15 ∗ d | 0.995 | 2.41 × 10−37 |
(46) | b, c, d | F = −33,167 − 243.75 ∗ b + 2732.5 ∗ c + 738.83 ∗ d | 0.993 | 2.25 × 10−38 |
(47) | a, c, d | F = −28,086 − 23.476 ∗ a + 3165.8 ∗ c + 558.26 ∗ d | 0.991 | 1.92 × 10−36 |
(48) | c, d | F = −27,886 + 3183.1 ∗ c + 545.38 ∗ d | 0.99 | 3.98 × 10−38 |
(49) | a, b, c | F = −8827.2 + 255.2 ∗ a + 1.357 ∗ b + 5195.9 ∗ c | 0.981 | 4.43 × 10−31 |
(50) | a, b, d | F = −57,645 + 196.1 ∗ a − 572.63 ∗ b + 1364.5 ∗ d | 0.981 | 3.34 × 10−31 |
(51) | a, c | F = −8827.3 + 256.28 ∗ a + 5196.4 ∗ c | 0.981 | 1.26 × 10−32 |
(52) | b, d | F = −57,498 − 474.93 ∗ b + 1402 ∗ d | 0.981 | 2.27 × 10−32 |
(53) | b, c | F = −6884.8 + 152.14 ∗ b + 5377.9 ∗ c | 0.98 | 5.47 × 10−32 |
(54) | a, d | F = −54,928 − 155.37 ∗ a + 1269.1 ∗ d | 0.972 | 1.99 × 10−29 |
(55) | a, b | F = −28,844 + 1765.9 ∗ a + 536.96 ∗ b | 0.717 | 7.06 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saglam, M.; Lv, X.; Spataru, C.; Karaman, O.A. Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning. Energies 2024, 17, 777. https://doi.org/10.3390/en17040777
Saglam M, Lv X, Spataru C, Karaman OA. Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning. Energies. 2024; 17(4):777. https://doi.org/10.3390/en17040777
Chicago/Turabian StyleSaglam, Mustafa, Xiaojing Lv, Catalina Spataru, and Omer Ali Karaman. 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning" Energies 17, no. 4: 777. https://doi.org/10.3390/en17040777
APA StyleSaglam, M., Lv, X., Spataru, C., & Karaman, O. A. (2024). Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning. Energies, 17(4), 777. https://doi.org/10.3390/en17040777