Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems
Abstract
:1. Introduction
2. State of Technology and Research
2.1. State of Technology
2.2. Literature Search Approach
2.3. State of Research
2.4. Literature Search Conclusion
2.5. Own Preliminary Work
3. Methodology
- 1.
- Pattern name and classification;
- 2.
- Intent;
- 3.
- Also known as;
- 4.
- Motivation;
- 5.
- Applicability;
- 6.
- Structure;
- 7.
- Participants;
- 8.
- Collaboration;
- 9.
- Consequences;
- 10.
- Implementation;
- 11.
- Sample code;
- 12.
- Known uses;
- 13.
- Related patterns.
4. Results: Framework for Rapid Implementation of Building Automation Control Programs
4.1. Framework Overview
4.2. Design Pattern ’Actuators’
Listing 1. Sample code from the structured text implementation of the function block of a Grundfos MAGNA3 pump. |
4.3. Design Pattern ’Sensors’
Listing 2. Sample code from the structured text implementation of the function block of a temperature sensor. |
4.4. Design Pattern ’Systems’
Listing 3. Sample code from the structured text implementation of the function block of a heat pump. |
4.5. Design Pattern ’Thermal Networks’
Listing 4. Sample code from the structured text implementation of the function block of thermal networks. |
4.6. Design Pattern Strategy
Listing 5. Sample code from the structured text implementation of the function block of a strategy controller. |
5. Application
5.1. System Description
5.2. Experimental Investigations
5.3. Validation Remarks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATS | Automatic test system |
Temperature | |
amb | Ambient |
BH | Basement heating |
BS | Buffer storage |
CAN | Controller area network |
CB | Condensing boiler |
CHP | Combined heat and power unit |
CMC | Central machine cooling |
CMH | Central machine heating |
CN | Cooling network |
COMP | Compressor |
CU | Cooling unit |
DCS | Distributed control systems |
DR | Demand response |
HEX | Heat exchanger |
HNHT | Heating network high temperature |
HNLT | Heating network low temperature |
HP | Heat pump |
ICTM | Inner capillary tube mats |
iCPS | Industrial cyber-physical system |
MVC | Model-view-controller |
OCTM | Outer capillary tube mats |
SDL | Specification and description language |
SOA | Service-oriented architecture |
ST | (Additional) storage |
UFH | Underfloor heating |
UML | Unified modeling language |
VSI | Vacuum super insulated |
Appendix A
References
- Fraunhofer ISI. Erstellung von Anwendungsbilanzen für Die Jahre 2018 Bis 2020 für Die Sektoren Industrie und GHD; Studie für die Arbeitsgemeinschaft Energiebilanzen e. V. (AGEB): Berlin, Germany, 2021. [Google Scholar]
- Madeddu, S.; Ueckerdt, F.; Pehl, M.; Peterseim, J.; Lord, M.; Kumar, K.A.; Krüger, C.; Luderer, G. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 2020, 15, 124004. [Google Scholar] [CrossRef]
- Byfield, S. (Ed.) Das Energiesystem Resilient Gestalten: Maßnahmen für Eine Gesicherte Versorgung: Stellungnahme; Stellungnahme; Deutsche Akademie der Naturforscher Leopoldina: München, Germany; acatech-Deutsche Akademie der Technikwissenschaften and Deutsche Akademie der Naturforscher Leopoldina e.V.: Halle (Saale), Germany; Nationale Akademie der Wissenschaften and Union der Deutschen Akademien der Wissenschaften e.V.: Mainz, Germany, 2017. [Google Scholar]
- Weidlich, I. Wärmenetze. In Erneuerbare Energien: Systemtechnik·Wirtschaftlichkeit·Umweltaspekte; Kaltschmitt, M., Streicher, W., Wiese, A., Eds.; Springer Vieweg: Berlin/Heidelberg, Germany, 2020; pp. 1203–1226. [Google Scholar] [CrossRef]
- Lichtenegger, K.; Wöss, D.; Halmdienst, C.; Höftberger, E.; Schmidl, C.; Pröll, T. Intelligent heat networks: First results of an energy-information-cost-model. Sustain. Energy Grids Netw. 2017, 11, 1–12. [Google Scholar] [CrossRef]
- Prasanna, A.; Dorer, V.; Vetterli, N. Optimisation of a district energy system with a low temperature network. Energy 2017, 137, 632–648. [Google Scholar] [CrossRef]
- Quaggiotto, D.; Vivian, J.; Zarrella, A. Management of a district heating network using model predictive control with and without thermal storage. Optim. Eng. 2021, 22, 1897–1919. [Google Scholar] [CrossRef]
- Dai, W.; Vyatkin, V. A component-based design pattern for improving reusability of automation programs. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 4328–4333. [Google Scholar] [CrossRef]
- Kanai, S.; Kishinami, T.; Tomura, T.; Uehiro, K.; Ibuka, K.; Yamamoto, S. Object-Oriented Design Pattern Approach to Seamless Modeling, Simulation and Implementation of Distributed Control Systems. In Knowledge and Skill Chains in Engineering and Manufacturing; Arai, E., Kimura, F., Goossenaerts, J., Shirase, K., Eds.; Springer: Boston, MA, USA, 2005; pp. 67–74. [Google Scholar]
- Trkaj, K. Users introduce component based automation solutions. Comput. Control Eng. 2004, 15, 32–37. [Google Scholar] [CrossRef]
- Xia, F.; Wang, Z.; Sun, Y. A framework-based approach to control system engineering following IEC61499. In Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society. IECON 2004, Busan, Republic of Korea, 2–6 November 2004; Volume 2, pp. 1918–1923. [Google Scholar] [CrossRef]
- Lüder, A.; Peschke, J. Incremental design of distributed control systems using GAIA-UML. In Proceedings of the 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), Patras, Greece, 25–28 September 2007; pp. 1076–1083. [Google Scholar] [CrossRef]
- Vyatkin, V. IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art Review. IEEE Trans. Ind. Inform. 2011, 7, 768–781. [Google Scholar] [CrossRef]
- IEC 61131-3; Programmable Controllers—Part 3: Programming Languages. IEC: Geneva, Switzerland, 2013.
- IEC 61499-1; Function Blocks—Part 1: Architecture. IEC: Geneva, Switzerland, 2012.
- Fuhrländer-Völker, D.; Borst, F.; Theisinger, L.; Ranzau, H.; Weigold, M. Modular data model for energy-flexible cyber-physical production systems. Procedia CIRP 2022, 107, 215–220. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Wang, Y.; Yan, P.; Liu, X. A framework for characterising energy consumption of machining manufacturing systems. Int. J. Prod. Res. 2014, 52, 314–325. [Google Scholar] [CrossRef]
- Frank, U.; Papenfort, J.; Schütz, D. Real-time capable software agents on IEC 61131 systems—Developing a tool supported method. IFAC Proc. Vol. 2011, 44, 9164–9169. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z. Supervisory and Optimal Control of Building HVAC Systems: A Review. HVAC R Res. 2008, 14, 3–32. [Google Scholar] [CrossRef]
- Borst, F.; Frank, M.G.; Theisinger, L.; Weigold, M. ThermalSystemsControlLibrary: A modelica library for developing control strategies of industrial energy systems. In Proceedings of the 15th International Modelica Conference 2023, Aachen, Germany, 9–11 October 2023; Modelica Association and Linköping University Electronic Press: Linköping, Sweden, 2023; Volume 204. [Google Scholar] [CrossRef]
- Fuhrländer-Völker, D. Automation Architecture for Demand Response on Aqueous Parts Cleaning Machines, 1st ed.; Schriftenreihe des PTW: “Innovation Fertigungstechnik”; Shaker: Düren, Germany, 2024. [Google Scholar]
- Gamma, E.; Johnson, R.; Vlissides, J.M.; Helm, R. Design Patterns: Elements of Reusable Object-Oriented Software, 40th ed.; Addison-Wesley Professional Computing Series; Addison-Wesley: Boston, MA, USA, 2012. [Google Scholar]
- Tiegelkamp, M.; John, K.H. SPS-Programmierung mit IEC 61131-3: Konzepte und Programmiersprachen, Anforderungen an Programmiersysteme, Entscheidungshilfen, 4th ed.; VDI-Buch; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bezák, T.; Husar, P.; Resetova, K. Usage of IEC 61131 and IEC 61499 Standards for Creating Distributed Control Systems; Universitätsverlag Ilmenau: München, Germany, 2011; Volume 3, pp. 2193–6439. [Google Scholar]
- Hirsch, M.; Vyatkin, V.; Hanisch, H.m. IEC 61499 Function Blocks for Distributed Networked Embedded Applications. In Proceedings of the 2006 4th IEEE International Conference on Industrial Informatics, Singapore, 16–18 August 2006; pp. 670–675. [Google Scholar] [CrossRef]
- Weule, H.; Spath, D.; Schelberg, H.J. Object-oriented programming of PLC based on IEC1131. Prod. Eng. 1994, 2, 197–200. [Google Scholar]
- Vom Brocke, J.; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A. Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature Search Process. In Proceedings of the 17th European Conference on Information Systems, Verona, Italy, 8–10 June 2009. [Google Scholar]
- Glock, C.H.; Hochrein, S. Purchasing Organization and Design: A Literature Review. Bus. Res. 2011, 4, 149–191. [Google Scholar] [CrossRef]
- Reynolds, N.; Simintiras, A.; Vlachou, E. International business negotiations. Int. Mark. Rev. 2003, 20, 236–261. [Google Scholar] [CrossRef]
- Gotzhein, R.; Schaible, P. Pattern-based development of communication systems. Ann. Des Télécommun. 1999, 54, 508–525. [Google Scholar] [CrossRef]
- Xia, F.; Wang, Z.; Sun, Y. A design pattern for holonic manufacturing system in the IEC61499-based model-view-controller framework. In Proceedings of the IEEE International Conference on Industrial Informatics, 2003. INDIN 2003. Proceedings, Banff, AB, Canada, 21–24 August 2003; pp. 233–246. [Google Scholar] [CrossRef]
- He, H.; Aendenroomer, A. Diner-Waiter pattern in distributed control. In Proceedings of the 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN ’04. 2004, Berlin, Germany, 24–26 June 2004; pp. 74–79. [Google Scholar] [CrossRef]
- Machado, R.J.; Fernandes, J.M. A Multi-Level Design Pattern for Embedded Software. In Design Methods and Applications for Distributed Embedded Systems; Kleinjohann, B., Gao, G.R., Kopetz, H., Kleinjohann, L., Rettberg, A., Eds.; Springer: Boston, MA, USA, 2004; pp. 247–256. [Google Scholar]
- Soundararajan, K.; Brennan, R.W. Design Patterns for Distributed Control System Benchmaking. In Information Technology for Balanced Manufacturing Systems; Springer: Boston, MA, USA, 2006; pp. 99–108. [Google Scholar]
- Lüder, A.; Peschke, J.; Sanz, R. Design Patterns for Distributed Control Applications. In Distributed Manufacturing: Paradigm, Concepts, Solutions and Examples; Kühnle, H., Ed.; Springer: London, UK, 2010; pp. 155–175. [Google Scholar] [CrossRef]
- Mei, Y.; Lingjie, F. ATS Software Framework Design Pattern and Application. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 141–146. [Google Scholar] [CrossRef]
- Lyu, G.; Brennan, R.W. Evaluating a self-manageable architecture for industrial automation systems. Robot. Comput.-Integr. Manuf. 2024, 85, 102627. [Google Scholar] [CrossRef]
- Fuhrländer-Völker, D.; Lindner, M.; Weigold, M. Design Method for Building Automation Control Programs to Enable the Energetic Optimization of Industrial Supply Systems. Procedia CIRP 2021, 104, 229–234. [Google Scholar] [CrossRef]
- Fuhrländer-Völker, D.; Magin, J.; Weigold, M. Automation architecture for harnessing the demand response potential of aqueous parts cleaning machines. Prod. Eng. 2023, 17, 785–803. [Google Scholar] [CrossRef]
- Borky, J.M.; Bradley, T.H. (Eds.) Effective Model-Based Systems Engineering; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Broy, M. (Ed.) Logische und Methodische Grundlagen der Programm- und Systementwicklung: Datenstrukturen, Funktionale, Sequenzielle und Objektorientierte Programmierung; Springer Vieweg: Wiesbaden, Germany, 2019. [Google Scholar] [CrossRef]
- Silberbauer, C. Einstieg in Java und OOP: Grundelemente, Objektorientierung, Design-Patterns und Aspektorientierung, 2nd ed.; Springer Vieweg: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Lauder, A.; Kent, S. Precise visual specification of design patterns. In ECOOP’98—Object-Oriented Programming; Lecture Notes in Computer Science; Jul, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 114–134. [Google Scholar]
- Cook, S.; Bock, C.; Rivett, P.; Rutt, T.; Seidewitz, E.; Selic, B.; Doug Tolbert, D. Unified Modeling Language (UML) Version 2.5.1: Standard. Available online: https://www.omg.org/spec/UML/2.5.1/About-UML (accessed on 10 September 2024).
- Isermann, R. Mechatronische Systeme: Grundlagen, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Frank, M.; Magin, J.; TU Darmstadt. Cleaning Machine MAFAC KEA. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4145 (accessed on 10 September 2024).
- Fuhrländer-Völker, D.; Borst, F.; Theisinger, L.; Ranzau, H.; Weigold, M. Implementation of Building Automation Base Classes. Available online: https://github.com/PTW-TUDa/eta-factory-building-automation-base-classes (accessed on 10 September 2024).
- VDMA-Verband Deutscher Maschinen- und Anlagenbau e.V. Messvorschrift zur Bestimmung des Energie- und Medienbedarfs von Werkzeugmaschinen in der Serienfertigung; VDMA-Verband Deutscher Maschinen- und Anlagenbau e.V.: Hamburg, Germany, 2019.
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Buffer Storage Vitocell 100-E. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4159 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Storage Vacuum Superisolated 7. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4165 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Combined Heat and Power Unit Vitobloc 200 EM-6/15. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4157 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Combined Heat and Power Unit Vitobloc 200 EM-9/20. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4156 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Condensing Boiler Vitodens 200-W B2HA. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4209 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T. Hydraulic scheme ETA Factory Thermal Supply Systems, 17 May 2024. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4231 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Pump Vitocal 200-G. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4162 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Exchanger SWEP B35Hx142/P-SC-S. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4229 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Storage High Volume Fly Ash 25. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4164 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Compressor Atlas Copco GA22_VSD. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4226 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Pump Vitocal 350-G. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4161 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Heat Storage High Volume Fly Ash 13. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4163 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; TU Darmstadt. Cooling Unit Efficient Energy eChiller 45-II. Available online: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4158 (accessed on 10 September 2024).
- Frank, M.; Borst, F.; Theisinger, L.; Lademann, T.; Fuhrländer-Völker, D.; Weigold, M. Building Automation Program of the ETA Research Factory. Available online: https://github.com/PTW-TUDa/eta-factory-building-automation (accessed on 10 September 2024).
System | Capacity | Temperature | Purpose | Reference |
---|---|---|---|---|
HNHT | ||||
BS | 1000 L | 80–60 °C | hydraulic and time decoupling | [49] |
HNLT-ST | 7000 L | 80–60 °C | heat storage | [50] |
CHP1 | 12 kW | 85 °C | heating unit | [51] |
CHP2 | 15 kW | 85 °C | heating unit | [52] |
CB | 24 kW | 80 °C | heating unit | [53] |
BH | 6 kW | 75 °C | basement heating | [54] |
CMH | 25 kW | 75 °C | central machine heating | [54] |
HNHT–HNLT Linkage | ||||
HP1 | 13 kW | 65 °C | waste heat usage (summer) | [55] |
HEX1 | 46 kW | 45 °C | low-temperature heat supply (winter) | [56] |
HNLT | ||||
BS | 1000 L | 45–35 °C | hydraulic and time decoupling | [49] |
HNLT-ST | 25,000 L | 45–35 °C | waste heat storage | [57] |
OCTM | 29 kW | 38 °C | recooling unit | [54] |
COMP | 22 kW | 60 °C | waste heat source | [58] |
HNLT–CN Linkage | ||||
HP2 | 7 kW | 45 °C | waste heat usage (summer) | [59] |
UFH | 20 kW | 40 °C/15 °C | office heating and cooling | [54] |
ICTM | 40 kW | 40 °C/15 °C | shop-floor heating and cooling | [54] |
CN | ||||
BS | 1000 L | 5–20 °C | hydraulic and time decoupling | [49] |
CN-ST | 25,000 L | 5–20 °C | cold storage | [60] |
CU | 40 kW | 15–20 °C | cooling unit | [61] |
CMC | 10 kW | 15 °C | central machine cooling | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank , M.; Borst , F.; Theisinger , L.; Lademann , T.; Fuhrländer-Völker , D.; Weigold , M. Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems. Energies 2024, 17, 5361. https://doi.org/10.3390/en17215361
Frank M, Borst F, Theisinger L, Lademann T, Fuhrländer-Völker D, Weigold M. Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems. Energies. 2024; 17(21):5361. https://doi.org/10.3390/en17215361
Chicago/Turabian StyleFrank , Michael, Fabian Borst , Lukas Theisinger , Tobias Lademann , Daniel Fuhrländer-Völker , and Matthias Weigold . 2024. "Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems" Energies 17, no. 21: 5361. https://doi.org/10.3390/en17215361
APA StyleFrank , M., Borst , F., Theisinger , L., Lademann , T., Fuhrländer-Völker , D., & Weigold , M. (2024). Framework for Implementation of Building Automation Control Programs for Industrial Heating and Cooling Systems. Energies, 17(21), 5361. https://doi.org/10.3390/en17215361