Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector
Abstract
:1. Introduction
2. VAWTs and HAWTs in General
3. Types of VAWTs
3.1. Savonius VAWTs
3.2. Darrieus VAWTs
4. Discussion on Darrieus VAWT Potential
4.1. At Small Scale
- Almost 50% of the total turbines are of vertical-axis type.
- Taking the average of the minimum, maximum, and mean cut-in speeds across three small-scale turbine sizes, vertical-axis turbines have minimum, maximum, and mean values of 1.1 m/s, 4.6 m/s, and 2.5 m/s, respectively. For horizontal-axis turbines, the corresponding values are 1.8 m/s, 4.6 m/s, and 3.0 m/s, respectively.
- Taking the average of the minimum, maximum, and mean specific capital costs (capital cost divided by maximum electric output) across three small-scale turbine sizes, vertical-axis turbines have minimum, maximum, and mean values of 0.48 EUR/W, 21.88 EUR/W, and 3.93 EUR/W, respectively. For horizontal-axis turbines, the corresponding values are 0.58 EUR/W, 9.48 EUR/W, and 2.49 EUR/W, respectively.
4.2. At Large Scale
4.3. For On/Offshore Windfarm Applications
4.4. Closure Discussion
5. Conclusions
- On a small scale, for urban applications and local power generation, VAWTs are found to be a promising option as they have the ability to adjust themselves to changing flow conditions. In water, their ability to generate power within shallow rivers and throughout the whole tidal cycle is outstanding.
- On a large scale, the associated costs of maintenance and manufacturing for VAWT can be significantly lower than those of HAWT. The increase in Reynolds number can also lead to aerodynamic performance improvement compared to small-scale sizes.
- At windfarms, the power density of Darrieus VAWTs is higher. Their aerodynamic performance can benefit from being placed in an array, resulting in performance improvements overall as well as compared to isolated turbines. Integration of VAWTs and HAWTs in a windfarm can also be a solution to further enhance power density.
- At offshore sites, the maintenance convenience associated with VAWTs is more pronounced. Also, VAWTs have much more stability than HAWTs, which means their platform design can be simpler. In addition, integrated VAWTs on one platform can significantly reduce their oscillation and thus improve the stability of the platform.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azizi, M.; Jahangirian, A. Multi-site aerodynamic optimization of wind turbine blades for maximum annual energy production in East Iran. Energy Sci. Eng. 2020, 8, 2169–2186. [Google Scholar] [CrossRef]
- Bouckaert, S.; Pales, A.F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T. Net Zero by 2050: A Roadmap for the Global Energy Sector; OECD: Paris, France, 2021. [Google Scholar]
- Alam, F.; Jin, Y. The Utilisation of Small Wind Turbines in Built-Up Areas: Prospects and Challenges. Wind 2023, 3, 418–438. [Google Scholar] [CrossRef]
- Kumar, R.; Raahemifar, K.; Fung, A.S. A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 2018, 89, 281–291. [Google Scholar] [CrossRef]
- Ahmad, M.; Shahzad, A.; Qadri, M.N.M. An overview of aerodynamic performance analysis of vertical axis wind turbines. Energy Environ. 2023, 34, 2815–2857. [Google Scholar] [CrossRef]
- Xu, W.; Li, G.; Li, Y. Feasibility analysis of aerodynamic characteristics for vertical-axis turbines in offshore: A comprehensive analysis on scale and design of wind system. Ocean Eng. 2023, 285, 115406. [Google Scholar] [CrossRef]
- Möllerström, E.; Gipe, P.; Beurskens, J.; Ottermo, F. A historical review of vertical axis wind turbines rated 100 kW and above. Renew. Sustain. Energy Rev. 2019, 105, 1–13. [Google Scholar] [CrossRef]
- Damota, J.; Lamas, M.; Couce-Casanova, A.; Rodriguez-Garcia, J. Vertical axis wind turbines: Current technologies and future trends. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’15), La Coruña, Spain, 25–27 March 2015; pp. 530–535. [Google Scholar]
- Eldridge, F.R. Wind Machines: Report; The Foundation; Ohio State University Libraries: Columbus, OH, USA, 1975; Volume 75, p. 55. [Google Scholar]
- Wilberforce, T.; Olabi, A.; Sayed, E.T.; Alalmi, A.H.; Abdelkareem, M.A. Wind turbine concepts for domestic wind power generation at low wind quality sites. J. Clean. Prod. 2023, 394, 136137. [Google Scholar] [CrossRef]
- Xisto, C.M.; Páscoa, J.C.; Leger, J.A.; Trancossi, M. Wind Energy Production Using an Optimized Variable Pitch Vertical Axis Rotor. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; p. V001T01A007. [Google Scholar]
- Solomin, E.; Lingjie, X.; Jia, H.; Danping, D. Comprehensive comparison of the most effective wind turbines. In Advances in Automation: Proceedings of the International Russian Automation Conference, RusAutoCon 2019, Sochi, Russia, 8–14 September 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 588–595. [Google Scholar]
- Liu, J.; Lin, H.; Zhang, J. Review on the technical perspectives and commercial viability of vertical axis wind turbines. Ocean Eng. 2019, 182, 608–626. [Google Scholar] [CrossRef]
- Zamre, P.; Lutz, T. Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions. Wind Energy Sci. 2022, 7, 1661–1677. [Google Scholar] [CrossRef]
- Bianchi, S.; Bianchini, A.; Ferrara, G.; Ferrari, L. Small wind turbines in the built environment: Influence of flow inclination on the potential energy yield. J. Turbomach. 2014, 136, 041013. [Google Scholar] [CrossRef]
- Islam, M.R.; Mekhilef, S.; Saidur, R. Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 2013, 21, 456–468. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, H.; Shangguan, L.; Fan, Y. Review of tribological failure analysis and lubrication technology research of wind power bearings. Polymers 2022, 14, 3041. [Google Scholar] [CrossRef] [PubMed]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew. Energy 2015, 75, 560–571. [Google Scholar] [CrossRef]
- Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W. A numerical analysis to evaluate Betz’s Law for vertical axis wind turbines. J. Phys. Conf. Ser. 2016, 753, 022056. [Google Scholar] [CrossRef]
- Kirke, B.; Abdolahifar, A. Flexible blades to improve Darrieus turbine performance and reduce cost. Energy Sustain. Dev. 2023, 73, 54–65. [Google Scholar] [CrossRef]
- Le Fouest, S.; Mulleners, K. Optimal blade pitch control for enhanced vertical-axis wind turbine performance. Nat. Commun. 2024, 15, 2770. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Bernhoff, H.; Leijon, M. Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev. 2008, 12, 1419–1434. [Google Scholar] [CrossRef]
- Huang, M.; Sciacchitano, A.; Ferreira, C. On the wake deflection of vertical axis wind turbines by pitched blades. Wind Energy 2023, 26, 365–387. [Google Scholar] [CrossRef]
- Naccache, G. CFD Based Analysis and Parametric Study of a Novel Wind Turbine Design: The Dual Vertical Axis Wind Turbine; Concordia University: Montreal, QC, Canada, 2016. [Google Scholar]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Convers. Manag. 2018, 169, 45–77. [Google Scholar] [CrossRef]
- Cazzaro, D.; Bedon, G.; Pisinger, D. Vertical Axis Wind Turbine Layout Optimization. Energies 2023, 16, 2697. [Google Scholar] [CrossRef]
- Dabiri, J.O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 2011, 3, 043104. [Google Scholar] [CrossRef]
- De Tavernier, D.; Ferreira, C.; Goude, A. Vertical-axis wind turbine aerodynamics. In Handbook of Wind Energy Aerodynamics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1317–1361. [Google Scholar]
- Kinzel, M.; Mulligan, Q.; Dabiri, J.O. Energy exchange in an array of vertical-axis wind turbines. J. Turbul. 2012, 13, N38. [Google Scholar] [CrossRef]
- Mertens, S.; van Kuik, G.; van Bussel, G. Performance of an H-Darrieus in the skewed flow on a roof. J. Sol. Energy Eng. 2003, 125, 433–440. [Google Scholar] [CrossRef]
- Borg, M.; Shires, A.; Collu, M. Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: Aerodynamics. Renew. Sustain. Energy Rev. 2014, 39, 1214–1225. [Google Scholar] [CrossRef]
- Ghigo, A.; Faraggiana, E.; Giorgi, G.; Mattiazzo, G.; Bracco, G. Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review. Renew. Sustain. Energy Rev. 2024, 193, 114302. [Google Scholar] [CrossRef]
- Azevedo, J.; Mendonça, F. Small scale wind energy harvesting with maximum power tracking. AIMS Energy 2015, 3, 297–315. [Google Scholar] [CrossRef]
- Docrat, N. The Negative Impact of Wind Turbines on Wildlife in South Africa. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2023. [Google Scholar]
- Altan, B.D.; Atılgan, M. An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Convers. Manag. 2008, 49, 3425–3432. [Google Scholar] [CrossRef]
- Maldar, N.R.; Ng, C.Y.; Oguz, E. A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Convers. Manag. 2020, 226, 113495. [Google Scholar] [CrossRef]
- Tian, W.; Ni, X.; Mao, Z.; Wang, Y.-F. Study on the performance of a new VAWT with overlapped side-by-side Savonius rotors. Energy Convers. Manag. 2022, 264, 115746. [Google Scholar] [CrossRef]
- Morshed, K.N.; Rahman, M.; Molina, G.; Ahmed, M. Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine. Int. J. Energy Environ. Eng. 2013, 4, 18. [Google Scholar] [CrossRef]
- Kirke, B. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew. Energy 2011, 36, 3013–3022. [Google Scholar] [CrossRef]
- Testi, A.; de Souza, T.M.; de Barros Trannin, I.C. Technical and economic feasibility of a small vertical axis wind turbine in low wind conditions compared to other power sources for pumping water. J. Clean. Prod. 2024, 470, 143328. [Google Scholar] [CrossRef]
- Hand, B.; Cashman, A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application. Sustain. Energy Technol. Assess. 2020, 38, 100646. [Google Scholar] [CrossRef]
- Kwok, K.; Hu, G. Wind energy system for buildings in an urban environment. J. Wind Eng. Ind. Aerodyn. 2023, 234, 105349. [Google Scholar] [CrossRef]
- Toudarbari, S.; Maghrebi, M.J.; Hashemzadeh, A. Evaluation of Darrieus wind turbine for different highway settings using CFD simulation. Sustain. Energy Technol. Assess. 2021, 45, 101077. [Google Scholar] [CrossRef]
- Bani-Hani, E.H.; Sedaghat, A.; Al-Shemmary, M.; Hussain, A.; Alshaieb, A.; Kakoli, H. Feasibility of highway energy harvesting using a vertical axis wind turbine. Energy Eng. 2018, 115, 61–74. [Google Scholar] [CrossRef]
- Sharpe, T.; Proven, G. Crossflex: Concept and early development of a true building integrated wind turbine. Energy Build. 2010, 42, 2365–2375. [Google Scholar] [CrossRef]
- Silva-Llanca, L.; Inostroza-Lagos, S. Optimum power generation assessment in an H-Darrieus vertical axis wind turbine via Exergy Destruction Minimization. Energy Convers. Manag. 2021, 243, 114312. [Google Scholar] [CrossRef]
- Hassanian, R.; Myneni, H.; Helgadóttir, Á.; Riedel, M. Vertical axis wind turbine powers telecom towers: Green and clean configuration. In Proceedings of the 2023 6th International Conference on Electrical Engineering and Green Energy (CEEGE), Grimstad, Norway, 6–9 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 114–118. [Google Scholar]
- Nguyen, L.; Metzger, M. Optimization of a vertical axis wind turbine for application in an urban/suburban area. J. Renew. Sustain. Energy 2017, 9, 043302. [Google Scholar] [CrossRef]
- Atlaschian, O.; Metzger, M. Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions. Renew. Energy 2021, 165, 211–223. [Google Scholar] [CrossRef]
- Chong, W.T.; Wang, X.H.; Wong, K.H.; Mojumder, J.C.; Poh, S.C.; Saw, L.H.; Lai, S.H. Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings. Energy Build. 2016, 127, 1028–1042. [Google Scholar] [CrossRef]
- De Santoli, L.; Albo, A.; Garcia, D.A.; Bruschi, D.; Cumo, F. A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas. Sustain. Energy Technol. Assess. 2014, 8, 42–56. [Google Scholar] [CrossRef]
- Ali, N.M.; Ammari, H. Design of a hybrid wind-solar street lighting system to power LED lights on highway poles. AIMS Energy 2022, 10, 177–190. [Google Scholar] [CrossRef]
- Alnaimi, F.B.I.; Kazem, H.A.; Alzakri, A.B.; Alatir, A.M. Design and implementation of smart integrated hybrid Solar-Darrieus wind turbine system for in-house power generation. Renew. Energy Environ. Sustain. 2024, 9, 2. [Google Scholar] [CrossRef]
- Irshad, A.S.; Kargar, N.; Elkholy, M.; Ludin, G.A.; Elias, S.; Hilali, A.; Senjyu, T.; Gamil, M.M.; Pinter, G. Techno-economic evaluation and comparison of the optimal PV/Wind and grid hybrid system with horizontal and vertical axis wind turbines. Energy Convers. Manag. X 2024, 23, 100638. [Google Scholar] [CrossRef]
- Alzahrani, K.M.; Hee, J.L.; Elsakka, M.; Ingham, D.; Ma, L.; Pourkashanian, M. Techno-economic assessment of vertical axis wind turbine driven RO desalination with compressed air energy storage for remote communities. Desalination 2024, 592, 118094. [Google Scholar] [CrossRef]
- Abdolahifar, A.; Azizi, M.; Zanj, A. Flow structure and performance analysis of Darrieus vertical axis turbines with swept blades: A critical case study on V-shaped blades. Ocean Eng. 2023, 280, 114857. [Google Scholar] [CrossRef]
- Kirke, B. Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy Sustain. Dev. 2019, 52, 1–10. [Google Scholar] [CrossRef]
- Kirke, B. Hydrokinetic turbines for moderate sized rivers. Energy Sustain. Dev. 2020, 58, 182–195. [Google Scholar] [CrossRef]
- Rezaei, F.; Paraschivoiu, M. Computational study of the effect of building height on the performance of roof-mounted VAWT. J. Wind Eng. Ind. Aerodyn. 2023, 241, 105540. [Google Scholar] [CrossRef]
- Rafiei, B.; Gharali, K.; Soltani, M. Optimized configuration with economic evaluation for shrouded vertical axis wind turbines applicable for urban structures. Energy Sci. Eng. 2023, 11, 3699–3720. [Google Scholar] [CrossRef]
- Pear River Tower Wind Turbine by Si-ye Zhang. Available online: https://www.som.com/projects/pearl-river-tower/ (accessed on 7 October 2024).
- Lincoln Financial Field in Philadelphia, PA, USA. Available online: https://www.visionairwind.eu/lincoln-financial-field/ (accessed on 7 October 2024).
- Hess Tower in Houston, TX, USA. Available online: https://galvanizeit.org/project-gallery/hess-tower1 (accessed on 7 October 2024).
- Škvorc, P.; Kozmar, H. Wind Energy Harnessing on tall buildings in urban environments. Renew. Sustain. Energy Rev. 2021, 152, 111662. [Google Scholar] [CrossRef]
- Rosato, A.; Perrotta, A.; Maffei, L. Commercial Small-Scale Horizontal and Vertical Wind Turbines: A Comprehensive Review of Geometry, Materials, Costs and Performance. Energies 2024, 17, 3125. [Google Scholar] [CrossRef]
- Ashwill, T.; Laird, D. Concepts to facilitate very large blades. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January 2007; p. 817. [Google Scholar]
- Ottermo, F.; Bernhoff, H. An upper size of vertical axis wind turbines. Wind Energy 2014, 17, 1623–1629. [Google Scholar] [CrossRef]
- Galinos, C.; Larsen, T.J.; Madsen, H.A.; Paulsen, U.S. Vertical axis wind turbine design load cases investigation and comparison with horizontal axis wind turbine. Energy Procedia 2016, 94, 319–328. [Google Scholar] [CrossRef]
- Paraschivoiu, I.; Ammar, S.; Saeed, F. VAWT versus HAWT: A comparative performance study of 2–6 MW rated capacity turbines. Trans. Can. Soc. Mech. Eng. 2018, 42, 393–403. [Google Scholar] [CrossRef]
- Govind, B. Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine. Appl. Energy 2017, 199, 479–494. [Google Scholar] [CrossRef]
- Azadani, L. Vertical axis wind turbines in cluster configurations. Ocean Eng. 2023, 272, 113855. [Google Scholar] [CrossRef]
- Sahebzadeh, S.; Rezaeiha, A.; Montazeri, H. Towards optimal layout design of vertical-axis wind-turbine farms: Double rotor arrangements. Energy Convers. Manag. 2020, 226, 113527. [Google Scholar] [CrossRef]
- Hansen, J.T.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach. Renew. Energy 2021, 171, 1371–1381. [Google Scholar] [CrossRef]
- Chen, D.; Ma, Y.; Hu, C.; Zhao, T. Efficiency optimization of twin vertical-axis helical hydrokinetic turbines (VAHHTs) based on Taguchi method. Appl. Ocean Res. 2023, 138, 103618. [Google Scholar] [CrossRef]
- Clary, V.; Oudart, T.; Larroudé, P.; Sommeria, J.; Maître, T. An optimally-controlled RANS Actuator force model for efficient computations of tidal turbine arrays. Ocean Eng. 2020, 212, 107677. [Google Scholar] [CrossRef]
- Belabes, B.; Paraschivoiu, M. CFD modeling of vertical-axis wind turbine wake interaction. Trans. Can. Soc. Mech. Eng. 2023, 47, 4. [Google Scholar] [CrossRef]
- Shao, Y.; Su, J.; Tu, Y.; Kuang, L.; Han, Z.; Zhang, K.; Zhou, D. Assessment of the aerodynamic benefits of collocating horizontal-and vertical-axis wind turbines in tandem using actuator line model. Phys. Fluids 2023, 35, 075115. [Google Scholar] [CrossRef]
- Hansen, M.; Enevoldsen, P.; Abkar, M. Energy harvesting via co-locating horizontal-and vertical-axis wind turbines. J. Phys. Conf. Ser. 2020, 1618, 032004. [Google Scholar] [CrossRef]
- Sree Raj, V.; Solanki, R.S.; Chalamalla, V.K.; Sinha, S.S. Evaluation of the Performance of Twin Rotor Vertical Axis Wind Turbines Employing Large Eddy Simulations. J. Sol. Energy Eng. 2024, 146, 011006. [Google Scholar] [CrossRef]
- Tian, W.; Ni, X.; Li, B.; Yang, G.; Mao, Z. Improving the efficiency of Darrieus turbines through a gear-like turbine layout. Energy 2023, 267, 126580. [Google Scholar] [CrossRef]
- Hassanpour, M.; Azadani, L.N. Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Convers. Manag. 2021, 238, 114069. [Google Scholar] [CrossRef]
- Mohamed, O.S.; Melani, P.F.; Balduzzi, F.; Ferrara, G.; Bianchini, A. An insight on the physical mechanisms responsible of power augmentation in a pair of counter-rotating Darrieus turbines. Energy Convers. Manag. 2023, 284, 116991. [Google Scholar] [CrossRef]
- Yadav, S.; Veeravalli, S.V.; Singh, S.N. Effect of rotor spacing, overlapping and non-overlapping, on the performance of a coupled counter-rotating twin-rotor VAWT using CFD. Renew. Energy 2024, 221, 119811. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Yu, S.; Li, C. Investigation of the combined influence of arrangement and configuration parameters on the performance of vertical axis wind turbines in staggered arrangements. J. Renew. Sustain. Energy 2022, 14, 063305. [Google Scholar] [CrossRef]
- Sahebzadeh, S.; Rezaeiha, A.; Montazeri, H. Vertical-axis wind-turbine farm design: Impact of rotor setting and relative arrangement on aerodynamic performance of double rotor arrays. Energy Rep. 2022, 8, 5793–5819. [Google Scholar] [CrossRef]
- Gharaati, M.; Wei, N.J.; Dabiri, J.O.; Martínez-Tossas, L.A.; Yang, D. Large-eddy simulations of turbulent flows in arrays of helical-and straight-bladed vertical-axis wind turbines. J. Renew. Sustain. Energy 2023, 15, 063309. [Google Scholar] [CrossRef]
- Verma, M.; De, A. Performance analysis of vertical-axis wind turbine clusters: Effect of inter-turbine spacing and turbine rotation. Phys. Fluids 2023, 35, 105122. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. The properties of the global offshore wind turbine fleet. Renew. Sustain. Energy Rev. 2023, 186, 113667. [Google Scholar] [CrossRef]
- Hau, N.R.; Augier, B.; Paillard, B.; Träsch, M.; Matoug, C. The assessment of a fast computational method in predicting the unsteady loads of vertical axis wind turbines undergoing floating motion. J. Wind Eng. Ind. Aerodyn. 2023, 240, 105449. [Google Scholar]
- Griffith, D.T.; Paquette, J.; Barone, M.; Goupee, A.J.; Fowler, M.J.; Bull, D.; Owens, B. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines. J. Phys. Conf. Ser. 2016, 753, 102003. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanaka, K.; Uzawa, K. Floating axis wind turbines for offshore power generation—A conceptual study. Environ. Res. Lett. 2011, 6, 044017. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanaka, K.; Hara, Y. Gyroscopic effects on the dynamics of floating axis wind turbine. In Proceedings of the Grand Renewable Energy Conference, Tokyo, Japan, 27 July–1 August 2014. [Google Scholar]
- Ashwill, T.D.; Sutherland, H.J.; Berg, D.E. A Retrospective of VAWT Technology; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2012; pp. 1–64. [Google Scholar] [CrossRef]
- Energy Technologies Institute. NOVA Project. Available online: https://www.eti.co.uk/programmes/offshore-wind/nova (accessed on 7 October 2024).
- The DeepWind Project. Available online: https://www.deepwind.eu/ (accessed on 7 October 2024).
- CORDIS EU Research Results. INFLOW: Industrialization Setup of a Floating Offshore Wind Turbine. Available online: https://cordis.europa.eu/project/id/296043 (accessed on 7 October 2024).
- H2OCEAN. Development of a Wind-Wave Power Open-Sea Platform Equipped for Hydrogen Generation with Support for Multiple Users of Energy. Available online: https://mcc.jrc.ec.europa.eu/main/dev.py?N=simple&O=299&titre_chap=%C2%A0&titre_page=H2OCEAN (accessed on 7 October 2024).
- SeaTwirl. SeaTwirl—The Future of Offshore Wind. Available online: https://seatwirl.com/ (accessed on 7 October 2024).
- CORDIS EU Research Results. X-Rotor: X-Shaped Radical Offshore Wind Turbine for Overall Cost of Energy Reduction. Available online: https://cordis.europa.eu/project/id/101007135 (accessed on 7 October 2024).
- X-Rotor Project. X-Shaped Radical Offshore Wind Turbine for Overall Cost of Energy Reduction. Available online: https://xrotor-project.eu/ (accessed on 7 October 2024).
- Le Fouest, S. Dynamic Stall Characterisation and Control for Vertical-Axis Wind Turbines; EPFL: Lausanne, Switzerland, 2023. [Google Scholar]
- Abdolahifar, A.; Zanj, A. A Comprehensive Exploration into the Complex Aerodynamics of Darrieus Vertical-Axis Wind Turbines. College of Science and Engineering, Flinders University: Adelaide, SA, Australia, 2024; to be submitted. [Google Scholar]
- Zhang, D.; Wu, Z.; Chen, Y.; Kuang, L.; Peng, Y.; Zhou, D.; Tu, Y. Full-scale vs. scaled aerodynamics of 5-MW offshore VAWTs under pitch motion: A numerical analysis. Appl. Energy 2024, 372, 123822. [Google Scholar] [CrossRef]
Turbine | Advantages | Disadvantages |
---|---|---|
HAWTs |
|
|
VAWTs |
|
|
Name | Period | Budget | Current Status |
---|---|---|---|
NOVA [32,94] | 2009–2010 | GBP 2.8 M | V-rotor led to an ongoing project on X-rotor. |
DeepWind [32,95] | 2010–2014 | EUR 4.18 M | Concluded with the main challenge being the blades. |
INFLOW [32,96] | 2011–2015 | EUR 21.5 M | Concluded. |
H2OCEAN [32,97] | 2012–2014 | EUR 6.5 M | Concluded. |
SeaTwirl [32,98] | 2019–2022 | EUR 3.5 M | Concluded, and S2 technology is ongoing. |
X-rotor [32,99,100] | 2021–2023 | EUR 3.9 M | Ongoing, in continuation of NOVA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdolahifar, A.; Zanj, A. Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector. Energies 2024, 17, 5052. https://doi.org/10.3390/en17205052
Abdolahifar A, Zanj A. Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector. Energies. 2024; 17(20):5052. https://doi.org/10.3390/en17205052
Chicago/Turabian StyleAbdolahifar, Abolfazl, and Amir Zanj. 2024. "Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector" Energies 17, no. 20: 5052. https://doi.org/10.3390/en17205052
APA StyleAbdolahifar, A., & Zanj, A. (2024). Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector. Energies, 17(20), 5052. https://doi.org/10.3390/en17205052