Assessing the Impact of First-Life Lithium-Ion Battery Degradation on Second-Life Performance
Abstract
:1. Introduction
- Loss of active material (LAM);
- Loss of lithium inventory (LLI), and;
- Conductivity loss (CL).
2. Experimental Details
- ⮚
- Second-life data are analysed by considering only the first-life SoH of the cells.
- ⮚
- Second-life data are analysed by considering both first-life SoH and DM of the cells.
2.1. Reference Performance Test (RPT)
2.2. Second Life Degradation Test
2.3. Cell Disassembly
2.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Second-Life SoH Analysis Considering Only First Life SoH
3.2. Second-Life SoH Analysis Considering First-Life SoH and DM at Approximately 80% SoH
3.3. Second Life SoH Analysis Considering First Life SoH and DM at Approximately 95%, 90%, 85% and 80% SoH
4. Postmortem Analysis
4.1. Cell Disassembly
4.2. Scanning Electron Microscopy (SEM)
5. Further Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Huang, Y.; Surawski, N.C.; Organ, B.; Zhou, J.L.; Tang, O.H.; Chan, E.F. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Sci. Total Environ. 2019, 659, 275–282. [Google Scholar] [CrossRef]
- Grahn, M.; Azar, C.; Williander, M.; Anderson, J.E.; Mueller, S.A.; Wallington, T.J. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: Connections between transportation and other energy sectors. Environ. Sci. Technol. 2009, 43, 3365–3371. [Google Scholar] [CrossRef]
- Van Vliet, O.P.; Kruithof, T.; Turkenburg, W.C.; Faaij, A.P. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars. J. Power Sources 2010, 195, 6570–6585. [Google Scholar] [CrossRef]
- Ramoni, M.O.; Zhang, H.-C. End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technol. Environ. Policy 2013, 15, 881–891. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A.; Canal, C. Second life batteries lifespan: Rest of useful life and environmental analysis. J. Environ. Manag. 2019, 232, 354–363. [Google Scholar] [CrossRef]
- Hendrickson, T.P.; Kavvada, O.; Shah, N.; Sathre, R.; Scown, C.D. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett. 2015, 10, 014011. [Google Scholar] [CrossRef]
- Neubauer, J.S.; Wood, E.; Pesaran, A. A second life for electric vehicle batteries: Answering questions on battery degradation and value. SAE Int. J. Mater. Manuf. 2015, 8, 544–553. [Google Scholar] [CrossRef]
- Schuster, S.F.; Brand, M.J.; Berg, P.; Gleissenberger, M.; Jossen, A. Lithium-ion cell-to-cell variation during battery electric vehicle operation. J. Power Sources 2015, 297, 242–251. [Google Scholar] [CrossRef]
- Gong, X.; Xiong, R.; Mi, C.C. Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells. IEEE Trans. Ind. Appl. 2014, 51, 1872–1879. [Google Scholar] [CrossRef]
- Ahmadi, L.; Yip, A.; Fowler, M.; Young, S.B.; Fraser, R.A. Environmental feasibility of re-use of electric vehicle batteries. Sustain. Energy Technol. Assess. 2014, 6, 64–74. [Google Scholar] [CrossRef]
- Gogoana, R.; Pinson, M.B.; Bazant, M.Z.; Sarma, S.E. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life. J. Power Sources 2014, 252, 8–13. [Google Scholar] [CrossRef]
- Mowri, S.T.; Barai, A.; Gupta, A.; Marco, J. Modification of Degradation Mechanism Identification Technique for Cell Grading. In Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Virtual, 25 October–14 November 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Faraji-Niri, M.; Rashid, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques. J. Energy Storage 2023, 58, 106295. [Google Scholar] [CrossRef]
- WMG, University of Warwick. Used Nissan LEAF Batteries Given “Second Life” Thanks to WMG, University of Warwick. Available online: https://warwick.ac.uk/newsandevents/pressreleases/used_nissan_leaf/ (accessed on 25 May 2020).
- Pastor-Fernández, C.; Bruen, T.; Widanage, W.D.; Gama-Valdez, M.A.; Marco, J. A Study of Cell-to-Cell Interactions and Degradation in Parallel Strings: Implications for the Battery Management System. J. Power Sources 2016, 329, 574–585. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Mowri, S.T.; Barai, A.; Gupta, A.; Marco, J. Verification of the Modified Degradation Mode Identification Technique by Employing Electrochemical Impedance Spectroscopy and Differential Voltage Analysis. Batteries 2022, 8, 274. [Google Scholar] [CrossRef]
- Barai, A.; Uddin, K.; Dubarry, M.; Somerville, L.; McGordon, A.; Jennings, P.; Bloom, I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog. Energy Combust. Sci. 2019, 72, 1–31. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A.; Liaw, B.Y. The value of battery diagnostics and prognostics. J. Energy Power Sources 2014, 1, 242–249. [Google Scholar]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Sarria, I.V.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.-M.; Goutam, S.; Omar, N.; Rodriguez, P. Technical viability of battery second life: A study from the ageing perspective. IEEE Trans. Ind. Appl. 2018, 54, 2703–2713. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Marongiu, A.; Nlandi, N.; Rong, Y.; Sauer, D.U. On-board capacity estimation of lithium iron phosphate batteries by means of half-cell curves. J. Power Sources 2016, 324, 158–169. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Yu, T.F.; Widanage, W.D.; Marco, J. Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 109, 138–159. [Google Scholar] [CrossRef]
- Xie, W.; He, R.; Gao, X.; Liu, X.; Wang, H.; Liu, X.; Yan, X.; Yang, S. Degradation identification of LiNi0. 8Co0. 1Mn0. 1O2/graphite lithium-ion batteries under fast charging conditions. Electrochim. Acta 2021, 392, 138979. [Google Scholar] [CrossRef]
- Laforgue, A.; Yuan, X.-Z.; Platt, A.; Brueckner, S.; Perrin-Sarazin, F.; Toupin, M.; Huot, J.-Y.; Mokrini, A. Effects of fast charging at low temperature on a high energy Li-ion battery. J. Electrochem. Soc. 2020, 167, 140521. [Google Scholar] [CrossRef]
- Bach, T.C.; Schuster, S.F.; Fleder, E.; Müller, J.; Brand, M.J.; Lorrmann, H.; Jossen, A.; Sextl, G. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. J. Energy Storage 2016, 5, 212–223. [Google Scholar] [CrossRef]
- Wu, W.; Ma, R.; Liu, J.; Liu, M.; Wang, W.; Wang, Q. Impact of low temperature and charge profile on the aging of lithium-ion battery: Non-invasive and post-mortem analysis. Int. J. Heat Mass Transf. 2021, 170, 121024. [Google Scholar] [CrossRef]
- Ouyang, M.; Chu, Z.; Lu, L.; Li, J.; Han, X.; Feng, X.; Liu, G. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 2015, 286, 309–320. [Google Scholar] [CrossRef]
- Schindler, M.; Sturm, J.; Ludwig, S.; Schmitt, J.; Jossen, A. Evolution of initial cell-to-cell variations during a three-year production cycle. ETransportation 2021, 8, 100102. [Google Scholar] [CrossRef]
- Huang, S.-C.; Tseng, K.-H.; Liang, J.-W.; Chang, C.-L.; Pecht, M.G. An online SOC and SOH estimation model for lithium-ion batteries. Energies 2017, 10, 512. [Google Scholar] [CrossRef]
- Ungurean, L.; Cârstoiu, G.; Micea, M.V.; Groza, V. Battery state of health estimation: A structured review of models, methods and commercial devices. Int. J. Energy Res. 2017, 41, 151–181. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y.; Gering, K.; Sazhin, S.; Jamison, D.; Michelbacher, C. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging. J. Power Sources 2011, 196, 10336–10343. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems. J. Power Sources 2017, 360, 301–318. [Google Scholar] [CrossRef]
- TeslaInfo. Tesla Battery Degradation and Health. Available online: https://tesla-info.com/blog/battery-degradation.php (accessed on 5 January 2024).
- Lin, F.; Markus, I.M.; Nordlund, D.; Weng, T.-C.; Asta, M.D.; Xin, H.L.; Doeff, M.M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529. [Google Scholar] [CrossRef]
- Gao, X.-L.; Liu, X.-H.; Xie, W.-L.; Zhang, L.-S.; Yang, S.-C. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021, 40, 3038–3048. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Ren, D.; Ouyang, M.; Lu, L.; Han, X. Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 2019, 11, 46839–46850. [Google Scholar] [CrossRef]
Cell | P4 | P3 | P2 | P1 | DM Type | End of First Life SoH%/Starting of Second Life SoH% |
---|---|---|---|---|---|---|
Cell 1 | LAM | LLI | LAM | LLI | Type-1 | 80.57 |
Cell 2 | LAM | LLI | LAM | LLI | Type-1 | 80.54 |
Cell 3 | LAM | LLI | LAM | LLI | Type-1 | 78.76 |
Cell 4 | LAM | LLI | LAM | LLI | Type-1 | 77.56 |
Cell 5 | LAM | LLI | LLI | LLI | Type-2 | 79.35 |
Cell 6 | LLI | LLI | LLI | LLI | Type-3 | 79.35 |
Cell 7 | PD | LLI | LLI | LLI | Type-4 | 79.83 |
Cell 8 | PD | LLI | LLI | LLI | Type-4 | 79.42 |
Cell 9 | PD | LLI | LLI | LLI | Type-4 | 81.16 |
Cell 10 | PD | LLI | LLI | LLI | Type-4 | 79.75 |
Cell 11 | LLI | LLI | LLI | LLI | Type-3 | 81.16 |
Cell 12 | LLI | LLI | LLI | LLI | Type-3 | 80.2 |
Cell 13 | LLI | LLI | LLI | LLI | Type-3 | 78.58 |
Cell 14 | LAM | LLI | LLI | LLI | Type-2 | 77.96 |
Cell 15 | LAM | LLI | LLI | LLI | Type-2 | 78.36 |
Cell 16 | LAM | LLI | LLI | LLI | Type-2 | 79.74 |
Cell 17 | LAM | LLI | LLI | LLI | Type-2 | 79.76 |
Cell 18 | LAM | LLI | LLI | LLI | Type-2 | 80.56 |
Group | DM Type | ||||||
---|---|---|---|---|---|---|---|
Group 1 | Cell 1 | Cell 2 | Cell 3 | Cell 4 | Type-1 | ||
Group 2 | Cell 5 | Cell 14 | Cell 15 | Cell 16 | Cell 17 | Cell 18 | Type-2 |
Group 3 | Cell 6 | Cell 11 | Cell 12 | Cell 13 | Type-3 | ||
Group 4 | Cell 7 | Cell 8 | Cell 9 | Cell 10 | Type-4 |
Cell | Cycle | SoH | P4 | P3 | P2 | P1 |
---|---|---|---|---|---|---|
1 | 120 | 94.17 | LLI | LAM | U | U |
355 | 90.38 | LLI | LLI | LAM | U | |
585 | 84.15 | LLI | LLI | LAM | LLI | |
596 | 80.58 | LAM | LLI | LAM | LLI | |
2 | 120 | 94.55 | LLI | LAM | U | U |
355 | 90.74 | LLI | LLI | LAM | U | |
585 | 84.07 | LLI | LLI | LAM | LLI | |
596 | 80.54 | LAM | LLI | LAM | LLI | |
3 | 120 | 94.07 | LLI | LAM | U | U |
355 | 90.28 | LLI | LLI | LAM | U | |
585 | 83.33 | LLI | LLI | LAM | LLI | |
596 | 78.76 | LAM | LLI | LAM | LLI | |
4 | 120 | 94.51 | LLI | LAM | U | U |
355 | 90.58 | LLI | LLI | U | U | |
505 | 85.57 | LAM | LLI | LAM | U | |
525 | 77.56 | LAM | LLI | LAM | LLI |
Cell | Cycle | SoH | P4 | P3 | P2 | P1 |
---|---|---|---|---|---|---|
5 | 52 | 95.59 | LLI | LAM | LAM | U |
230 | 79.54 | LAM | LLI | LLI | LLI | |
14 | 80 | 94.15 | LAM | LAM | LLI | U |
125 | 89.52 | LLI | LLI | LLI | U | |
175 | 84.47 | LAM | LLI | LLI | LLI | |
187 | 77.96 | LAM | LLI | LLI | LLI | |
15 | 80 | 94.37 | LAM | LAM | LAM | U |
175 | 89.18 | LLI | LLI | LLI | U | |
230 | 85.37 | LLI | LLI | LLI | LLI | |
285 | 78.36 | LAM | LLI | LLI | LLI | |
16 | 80 | 94.31 | LLI | LAM | LLI | U |
125 | 90.06 | LLI | LLI | LLI | U | |
175 | 83.65 | LAM | LLI | LLI | LLI | |
182 | 79.74 | LAM | LLI | LLI | LLI | |
17 | 80 | 94.11 | LAM | LAM | LLI | U |
125 | 89.18 | LLI | LLI | LLI | U | |
175 | 83.17 | LAM | LLI | LLI | LLI | |
183 | 79.76 | LAM | LLI | LLI | LLI | |
18 | 100 | 93.39 | LLI | LAM | LAM | U |
180 | 89.38 | LLI | LLI | LLI | U | |
245 | 84.37 | LAM | LLI | LLI | U | |
280 | 80.56 | LAM | LLI | LLI | LLI |
Cell | Cycle | SoH % | P4 | P3 | P2 | P1 |
---|---|---|---|---|---|---|
7 | 52 | 95.25 | LAM | LAM | U | U |
225 | 81.30 | LLI | LLI | LLI | LLI | |
230 | 79.72 | PD | LLI | LLI | LLI | |
8 | 52 | 95.11 | LAM | LAM | U | U |
225 | 81.24 | LLI | LLI | LLI | LLI | |
230 | 79.26 | PD | LLI | LLI | LLI | |
9 | 150 | 94.39 | LLI | LAM | LAM | U |
520 | 89.98 | LLI | LAM | LLI | U | |
570 | 85.57 | PD | LLI | LAM | LLI | |
600 | 81.16 | PD | LLI | LLI | LLI | |
10 | 150 | 94.34 | LLI | LAM | LAM | U |
520 | 88.98 | LLI | LAM | LLI | LLI | |
570 | 84.37 | PD | LLI | LAM | LLI | |
600 | 79.76 | PD | LLI | LLI | LLI |
Cell | Cycle | SoH % | P4 | P3 | P2 | P1 |
---|---|---|---|---|---|---|
6 | 52 | 95.45 | LAM | LAM | LAM | U |
247 | 79.56 | LLI | LLI | LLI | LLI | |
11 | 150 | 94.28 | LLI | LAM | LAM | U |
300 | 91.88 | LLI | LAM | LLI | U | |
370 | 85.97 | LLI | LLI | LAM | LLI | |
403 | 81.16 | LLI | LLI | LLI | LLI | |
12 | 40 | 95.87 | LAM | LAM | LAM | U |
120 | 89.58 | LAM | LAM | LAM | U | |
190 | 84.23 | LAM | LLI | LLI | LLI | |
201 | 80.2 | LLI | LLI | LLI | LLI | |
13 | 40 | 96.13 | LAM | LAM | LAM | U |
120 | 78.58 | LLI | LLI | LLI | LLI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasnim Mowri, S.; Barai, A.; Moharana, S.; Gupta, A.; Marco, J. Assessing the Impact of First-Life Lithium-Ion Battery Degradation on Second-Life Performance. Energies 2024, 17, 501. https://doi.org/10.3390/en17020501
Tasnim Mowri S, Barai A, Moharana S, Gupta A, Marco J. Assessing the Impact of First-Life Lithium-Ion Battery Degradation on Second-Life Performance. Energies. 2024; 17(2):501. https://doi.org/10.3390/en17020501
Chicago/Turabian StyleTasnim Mowri, Sadia, Anup Barai, Sanghamitra Moharana, Aniruddha Gupta, and James Marco. 2024. "Assessing the Impact of First-Life Lithium-Ion Battery Degradation on Second-Life Performance" Energies 17, no. 2: 501. https://doi.org/10.3390/en17020501
APA StyleTasnim Mowri, S., Barai, A., Moharana, S., Gupta, A., & Marco, J. (2024). Assessing the Impact of First-Life Lithium-Ion Battery Degradation on Second-Life Performance. Energies, 17(2), 501. https://doi.org/10.3390/en17020501