Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold
Abstract
:1. Introduction
2. Related Works
2.1. Oil Shocks and Financial Markets
2.2. Econometric Approaches
3. Materials and Methods
3.1. Volatility Estimation
3.2. Diebold–Yilmaz (DY) Spillover Model
3.3. Baruník and Krehlik (BK) Model
4. Results and Discussion
4.1. Data and Descriptive Statistics
4.2. Time-Domain Analysis
4.3. Frequency-Domain Analysis
5. Conclusions, Recommendations, Policy Insights, Limitations, and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arouri, M.E.H.; Lahiani, A.; Nguyen, D.K. World gold prices and stock returns in China: Insights for hedging and diversification strategies. Econ. Model. 2015, 44, 273–282. [Google Scholar] [CrossRef]
- Basher, S.A.; Sadorsky, P. Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Econ. 2016, 54, 235–247. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Mishra, B.R.; Solarin, S.A. Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA. Energy J. 2021, 220, 119732. [Google Scholar] [CrossRef]
- Ding, S.; Cui, T.; Zheng, D.; Du, M. The effects of commodity financialization on commodity market volatility. Resour. Policy 2021, 73, 102220. [Google Scholar] [CrossRef]
- Natoli, F. Financialization of commodities before and after the great financial crisis. J. Econ. Surv. 2021, 35, 488–511. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, D.; Zhao, Y. Searching for safe-haven assets during the COVID-19 pandemic. Int. Rev. Financ. Anal. 2020, 71, 101526. [Google Scholar] [CrossRef]
- Urom, C.; Ndubuisi, G.; Del Lo, G.; Yuni, D. Global commodity and equity markets spillovers to Africa during the COVID-19 pandemic. Emerg. Mark. Rev. 2023, 55, 100948. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J. Crude oil price shocks, volatility spillovers, and global systemic financial risk transmission mechanisms: Evidence from the stock and foreign exchange markets. Resour. Policy 2023, 85, 103875. [Google Scholar] [CrossRef]
- Sadorsky, P. Oil price shocks and stock market activity. Energy Econ. 1999, 21, 449–469. [Google Scholar] [CrossRef]
- Hamilton, J.D. Understanding crude oil prices. Energy J. 2009, 30, 179–206. [Google Scholar] [CrossRef]
- Demirer, R.; Ferrer, R.; Shahzad, S.J.H. Oil price shocks, global financial markets and their connectedness. Energy Econ. 2020, 88, 104771. [Google Scholar] [CrossRef]
- Kilian, L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef]
- Kilian, L.; Park, C. The impact of oil price shocks on the US stock market. Int. Econ. Rev. 2009, 50, 1267–1287. [Google Scholar] [CrossRef]
- Kang, W.; Ratti, R.A.; Yoon, K.H. Time-varying effect of oil market shocks on the stock market. J. Bank. Financ. 2015, 61, S150–S163. [Google Scholar] [CrossRef]
- Basher, S.A.; Haug, A.A.; Sadorsky, P. The impact of oil-market shocks on stock returns in major oil-exporting countries. J. Int. Money Financ. 2018, 86, 264–280. [Google Scholar] [CrossRef]
- Umar, Z.; Aharon, D.Y.; Esparcia, C.; AlWahedi, W. Spillovers between sovereign yield curve components and oil price shocks. Energy Econ. 2022, 109, 105963. [Google Scholar] [CrossRef]
- Umar, Z.; Jareño, F.; Escribano, A. Oil price shocks and the return and volatility spillover between industrial and precious metals. Energy Econ. 2021, 99, 105291. [Google Scholar] [CrossRef]
- Karali, B.; Ramirez, O.A. Macro determinants of volatility and volatility spillover in energy markets. Energy Econ. 2014, 46, 413–421. [Google Scholar] [CrossRef]
- Naeem, M.A.; Peng, Z.; Suleman, M.T.; Nepal, R.; Shahzad, S.J.H. Time and frequency connectedness among oil shocks, electricity and clean energy markets. Energy Econ. 2020, 91, 104914. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L. A bibliometric review of volatility spillovers in financial markets: Knowledge bases and research fronts. Emerg. Mark. Financ. Trade 2021, 57, 1358–1379. [Google Scholar] [CrossRef]
- Goodell, J.W. COVID-19 and finance: Agendas for future research. Financ. Res. Lett. 2020, 35, 101512. [Google Scholar] [CrossRef] [PubMed]
- Laborda, R.; Olmo, J. Volatility spillover between economic sectors in financial crisis prediction: Evidence spanning the great financial crisis and COVID-19 pandemic. Res. Int. Bus. Financ. 2021, 57, 101402. [Google Scholar] [CrossRef]
- Li, W. COVID-19 and asymmetric volatility spillovers across global stock markets. N. Am. J. Econ. Financ. 2021, 58, 101474. [Google Scholar] [CrossRef]
- Antonakakis, N.; Kizys, R. Dynamic spillovers between commodity and currency markets. Int. Rev. Financ. Anal. 2015, 41, 303–319. [Google Scholar] [CrossRef]
- Liu, P.; Power, G.J.; Vedenov, D. Fair-weather Friends? Sector-specific volatility connectedness and transmission. Int. Rev. Econ. Financ. 2021, 76, 712–736. [Google Scholar] [CrossRef]
- Bouoiyour, J.; Selmi, R.; Wohar, M.E. Measuring the response of gold prices to uncertainty: An analysis beyond the mean. Econ. Model. 2018, 75, 105–116. [Google Scholar] [CrossRef]
- Chang, C.L.; McAleer, M.; Wang, Y. Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances. Energy J. 2018, 151, 984–997. [Google Scholar] [CrossRef]
- Bonato, M.; Gupta, R.; Lau, C.K.M.; Wang, S. Moments-based spillovers across gold and oil markets. Energy Econ. 2020, 89, 104799. [Google Scholar] [CrossRef]
- Creti, A.; Joëts, M.; Mignon, V. On the links between stock and commodity markets’ volatility. Energy Econ. 2013, 37, 16–28. [Google Scholar] [CrossRef]
- Basak, S.; Pavlova, A. A model of financialization of commodities. J. Financ. 2016, 71, 1511–1556. [Google Scholar] [CrossRef]
- Huang, S.; An, H.; Lucey, B. How do dynamic responses of exchange rates to oil price shocks co-move? From a time-varying perspective. Energy Econ. 2020, 86, 104641. [Google Scholar] [CrossRef]
- Sharif, A.; Aloui, C.; Yarovaya, L. COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. Int. Rev. Financ. Anal. 2020, 70, 101496. [Google Scholar] [CrossRef]
- Phan, D.H.B.; Sharma, S.S.; Narayan, P.K. Oil price and stock returns of consumers and producers of crude oil. J. Int. Financ. Mark. Inst. Money 2015, 34, 245–262. [Google Scholar] [CrossRef]
- Mugaloglu, E.; Polat, A.Y.; Tekin, H.; Dogan, A. Oil price shocks during the COVID-19 pandemic: Evidence from United Kingdom energy stocks. Energy Res. Lett. 2021, 2. [Google Scholar] [CrossRef]
- Du, L.; He, Y. Extreme risk spillovers between crude oil and stock markets. Energy Econ. 2015, 51, 455–465. [Google Scholar] [CrossRef]
- Mokni, K. Time-varying effect of oil price shocks on the stock market returns: Evidence from oil-importing and oil-exporting countries. Energy Rep. 2020, 6, 605–619. [Google Scholar] [CrossRef]
- Yaya, O.S.; Tumala, M.M.; Udomboso, C.G. Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis. Resour. Policy 2016, 49, 273–281. [Google Scholar] [CrossRef]
- Ewing, B.T.; Malik, F. Volatility transmission between gold and oil futures under structural breaks. Int. Rev. Econ. Financ. 2013, 25, 113–121. [Google Scholar] [CrossRef]
- Sari, R.; Hammoudeh, S.; Soytas, U. Dynamics of oil price, precious metal prices, and exchange rate. Energy Econ. 2010, 32, 351–362. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wei, Y.M. The crude oil market and the gold market: Evidence for cointegration, causality and price discovery. Resour. Policy 2010, 35, 168–177. [Google Scholar] [CrossRef]
- Luo, J.; Ji, Q. High-frequency volatility connectedness between the US crude oil market and China’s agricultural commodity markets. Energy Econ. 2018, 76, 424–438. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, W.L.; Ji, Q.; Zhang, D. Dependency, centrality and dynamic networks for international commodity futures prices. Int. Rev. Econ. Financ. 2020, 67, 118–132. [Google Scholar] [CrossRef]
- Ready, R.C. Oil prices and the stock market. Rev. Financ. 2018, 22, 155–176. [Google Scholar] [CrossRef]
- Benk, S.; Gillman, M. Granger predictability of oil prices after the Great Recession. J. Int. Money Financ. 2020, 101, 102100. [Google Scholar] [CrossRef]
- Elgammal, M.M.; Ahmed, W.M.; Alshami, A. Price and volatility spillovers between global equity, gold, and energy markets prior to and during the COVID-19 pandemic. Resour. Policy 2021, 74, 102334. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, R.; Loskot, P.; Nepal, R.; Parajuli, R.; Khadka, S.K. Mitigating the current energy crisis in Nepal with renewable energy sources. Renew. Sust. Energ. Rev. 2019, 116, 109388. [Google Scholar] [CrossRef]
- Pokhrel, B.; Bhattarai, N.; Poudyal, R.; Gautam, R.; Paudyal, K.N. Grid parameters analysis of 11 kV radial feeder on residential areas based on forecasted emerging load: A case study of Tarkeshwor Municipality, Nepal. J. Eng. Issues Solut. 2023, 2, 120–137. Available online: https://www.researchgate.net/profile/Rupesh-Gautam-8/publication/371335628_Grid_parameters_analysis_of_11_kV_radial_feeder_on_residential_areas_based_on_forecasted_emerging_load_A_case_study_of_Tarkeshwor_Municipality_Nepal/links/647f50afb3dfd73b7769752a/Grid-parameters-analysis-of-11-kV-radial-feeder-on-residential-areas-based-on-forecasted-emerging-load-A-case-study-of-Tarkeshwor-Municipality-Nepal.pdf (accessed on 2 January 2024). [CrossRef]
- Lin, J.; Kahrl, F.; Yuan, J.; Liu, X.; Zhang, W. Challenges and strategies for electricity market transition in China. Energy Policy 2019, 133, 110899. [Google Scholar] [CrossRef]
- Sha, Y.; Sharma, S.S. Research on pandemics special issue of the journal emerging markets finance and trade. Emerg. Mark. Financ. Trade 2020, 56, 2133–2137. [Google Scholar] [CrossRef]
- Santos, A.Q.O.; da Silva, A.R.; Ledesma, J.J.G.; de Almeida, A.B.; Cavallari, M.R.; Junior, O.H.A. Electricity Market in Brazil: A Critical Review on the Ongoing Reform. Energies 2021, 14, 2873. [Google Scholar] [CrossRef]
- Engle, R.F.; Ito, T.; Lin, W.L. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica 1990, 58, 525–542. [Google Scholar] [CrossRef]
- Engle, R.F.; Kroner, K.F. Multivariate simultaneous generalized ARCH. Econom. Theory 1995, 11, 122–150. [Google Scholar] [CrossRef]
- Liu, X.; An, H.; Huang, S.; Wen, S. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model. Phys. A Stat. Mech. Appl. 2017, 465, 374–383. [Google Scholar] [CrossRef]
- Cardona, L.; Gutiérrez, M.; Agudelo, D.A. Volatility transmission between US and Latin American stock markets: Testing the decoupling hypothesis. Res. Int. Bus. Financ. 2017, 39, 115–127. [Google Scholar] [CrossRef]
- Jin, X.; Lin, S.X.; Tamvakis, M. Volatility transmission and volatility impulse response functions in crude oil markets. Energy Econ. 2012, 34, 2125–2134. [Google Scholar] [CrossRef]
- Thenmozhi, M.; Maurya, S. Crude oil volatility transmission across food commodity markets: A multivariate BEKK-GARCH approach. J. Emerg. Mark. Financ. 2020, 20, 131–164. [Google Scholar] [CrossRef]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Fiszeder, P.; Fałdziński, M.; Molnár, P. Range-based DCC models for covariance and value-at-risk forecasting. J. Empir. Financ. 2019, 54, 58–76. [Google Scholar] [CrossRef]
- Yu, L.; Li, J.; Tang, L. Dynamic volatility spillover effect analysis between carbon market and crude oil market: A DCC-ICSS approach. Int. J. Glob. Energy Issues 2015, 38, 242–256. [Google Scholar] [CrossRef]
- Tsuji, C. Return transmission and asymmetric volatility spillovers between oil futures and oil equities: New DCC-MEGARCH analyses. Econ. Model. 2018, 74, 167–185. [Google Scholar] [CrossRef]
- Hou, Y.; Li, S.; Wen, F. Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach. Energy Econ. 2019, 83, 119–143. [Google Scholar] [CrossRef]
- Fallahi, F.; Hghighat, J.; Sanoubar, N.; Jahangiri, K. Study of correlation between volatility of stock, exchange and gold coin markets in Iran with DCC-GARCH model. Econ. Res. 2014, 14, 123–147. [Google Scholar]
- Shehzad, K.; Liu, X.; Tiwari, A.; Arif, M.; Rauf, A. Analysing time difference and volatility linkages between China and the United States during financial crises and stable period using VARX-DCC-MEGARCH model. Int. J. Financ. Econ. 2021, 26, 814–833. [Google Scholar] [CrossRef]
- Molina-Muñoz, J.; Mora–Valencia, A.; Perote, J.; Rodríguez-Raga, S. Volatility transmission dynamics between energy and financial indices of emerging markets: A comparison between the subprime crisis and the COVID-19 pandemic. Int. J. Emerg. Mark. 2023. [Google Scholar] [CrossRef]
- De Almeida, D.; Hotta, L.K.; Ruiz, E. MGARCH models: Trade-off between feasibility and flexibility. Int. J. Forecast. 2018, 34, 45–63. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 2009, 119, 158–171. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Gamba-Santamaria, S.; Gomez-Gonzalez, J.E.; Hurtado-Guarin, J.L.; Melo-Velandia, L.F. Stock market volatility spillovers: Evidence for Latin America. Financ. Res. Lett. 2017, 20, 207–216. [Google Scholar] [CrossRef]
- Awartani, B.; Maghyereh, A.I. Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries. Energy Econ. 2013, 36, 28–42. [Google Scholar] [CrossRef]
- Zhang, D. Oil shocks and stock markets revisited: Measuring connectedness from a global perspective. Energy Econ. 2017, 62, 323–333. [Google Scholar] [CrossRef]
- Corbet, S.; Goodell, J.W.; Günay, S. Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19. Energy Econ. 2020, 92, 104978. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Cunado, J.; Gupta, R.; Wohar, M.E. Volatility spillovers across global asset classes: Evidence from time and frequency domains. Q. Rev. Econ. Financ. 2018, 70, 194–202. [Google Scholar] [CrossRef]
- Baruník, J.; Kočenda, E.; Vácha, L. Asymmetric connectedness on the US stock market: Bad and good volatility spillovers. J. Financ. Mark. 2016, 27, 55–78. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Trans-Atlantic equity volatility connectedness: US and European financial institutions, 2004–2014. J. Financ. Econ. 2015, 14, 81–127. [Google Scholar]
- Baruník, J.; Křehlík, T. Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econ. 2018, 16, 271–296. [Google Scholar] [CrossRef]
- Zhang, W.; Hamori, S. Crude oil market and stock markets during the COVID-19 pandemic: Evidence from the US, Japan, and Germany. Int. Rev. Financ. Anal. 2021, 74, 101702. [Google Scholar] [CrossRef]
- Mensi, W.; Al-Yahyaee, K.H.; Al-Jarrah, I.M.W.; Vo, X.V.; Kang, S.H. Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis. Int. Rev. Econ. Financ. 2021, 76, 96–113. [Google Scholar] [CrossRef]
- Ferrer, R.; Shahzad, S.J.H.; López, R.; Jareño, F. Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. Energy Econ. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A.; Aiube, F.A.L. Network connectedness of green bonds and asset classes. Energy Econ. 2020, 86, 104629. [Google Scholar] [CrossRef]
- Ferrer, R.; Shahzad, S.J.H.; Soriano, P. Are green bonds a different asset class? Evidence from time-frequency connectedness analysis. J. Clean. Prod. 2021, 292, 125988. [Google Scholar] [CrossRef]
- Kumar, A.; Iqbal, N.; Mitra, S.K.; Kristoufek, L.; Bouri, E. Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak. J. Int. Financ. Mark. Inst. Money 2022, 77, 101523. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Wang, Q.; Liu, Y. International stock market risk contagion during the COVID-19 pandemic. Financ. Res. Lett. 2022, 45, 102145. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, P.; Huang, L. Time-frequency volatility spillovers between major international financial markets during the COVID-19 pandemic. Financ. Res. Lett. 2022, 46, 102244. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, M. The extreme value method for estimating the variance of the rate of return. J. Bus. 1980, 53, 61–65. [Google Scholar] [CrossRef]
- Baumeister, C.; Hamilton, J.D. Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. Am. Econ. Rev. 2019, 109, 1873–1910. [Google Scholar] [CrossRef]
- Yaya, O.S.; Ogbonna, A.E.; Adesina, O.A.; Alobaloke, K.A.; Vo, X.V. Time-variation between metal commodities and oil, and the impact of oil shocks: GARCH-MIDAS and DCC-MIDAS analyses. Resour. Policy 2022, 79, 103036. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Yin, L. Asymmetric volatility spillovers between international economic policy uncertainty and the US stock market. N. Am. J. Econ. Financ. 2020, 51, 101084. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yan, X.X. The impact of US economic policy uncertainty on WTI crude oil returns in different time and frequency domains. Int. Rev. Econ. Financ. 2020, 69, 750–768. [Google Scholar] [CrossRef]
- Hanif, W.; Teplova, T.; Rodina, V.; Alomari, M.; Mensi, W. Volatility spillovers and frequency dependence between oil price shocks and green stock markets. Resour. Policy 2023, 85, 103860. [Google Scholar] [CrossRef]
- Basher, S.A.; Sadorsky, P. Oil price risk and emerging stock markets. Glob. Financ. J. 2006, 17, 224–251. [Google Scholar] [CrossRef]
- Baumeister, C.; Kilian, L. Understanding the Decline in the Price of Oil since June 2014. J. Assoc. Environ. Resour. Econ. 2016, 3, 131–158. [Google Scholar]
Variable | Description | Ticker | Source |
---|---|---|---|
Emerging markets energy index | Includes 57 large and mid-cap securities classified in the energy sector across 24 emerging markets | MXEF0EN | Bloomberg |
Emerging markets stock index | Includes 1421 securities, which represent large and mid-cap firms across 24 emerging markets | MXEF | Bloomberg |
Gold | Spot exchange rate of gold (XAU) against the US dollar index | USDXAU:CUR | Bloomberg |
Supply oil shocks | Includes the supply oil shocks estimated by [81] | NA | https://sites.google.com/site/cjsbaumeister/research (accessed on 1 October 2023). |
Demand oil shocks | Includes the oil inventory demand shocks developed by [81] | NA | https://sites.google.com/site/cjsbaumeister/research (accessed on 1 October 2023). |
Mean | Max. | Min. | Std. Dev. | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
EM energy | 22.68 | 156.1 | 5.77 | 15.81 | 3.77 | 23.32 |
EM stocks | 17.54 | 119.83 | 4.76 | 11.47 | 4.01 | 26.93 |
Gold | 15.99 | 64.51 | 5.47 | 7.84 | 2.09 | 7.22 |
Supply OS | −0.13 | 3.5 | −10.81 | 1.3 | −2.04 | 17.66 |
Demand OS | 0.12 | 8.76 | −20.38 | 3.99 | −0.65 | 2.17 |
EM Stocks | EM Energy | Gold | Supply OS | Demand OS | FROM | |
---|---|---|---|---|---|---|
EM stocks | 41.67 | 34.18 | 20.16 | 1.84 | 2.15 | 58.33 |
EM energy | 32.93 | 42.48 | 18.67 | 3.27 | 2.65 | 57.52 |
Gold | 16.32 | 18.14 | 61.92 | 1.99 | 1.62 | 38.08 |
Supply OS | 4.53 | 6.94 | 2.92 | 71.04 | 14.56 | 28.96 |
Demand OS | 4.75 | 5.33 | 3.48 | 14.62 | 71.82 | 28.18 |
TO | 58.53 | 64.6 | 45.23 | 21.72 | 20.99 | 211.07 |
Inc. Own | 100.2 | 107.08 | 107.15 | 92.76 | 92.81 | OCM |
NET | 0.2 | 7.08 | 7.15 | −7.24 | −7.19 | 42.41 |
Panel A. Short Term (1 to 6 Months) | ||||||
---|---|---|---|---|---|---|
EM Stocks | EM Energy | Gold | Supply OS | Demand OS | FROM | |
EM stocks | 40.1 | 34.2 | 21.17 | 2.34 | 2.19 | 59.9 |
EM energy | 31.85 | 41.94 | 19.58 | 3.87 | 2.76 | 58.06 |
Gold | 15.64 | 18.61 | 61.76 | 2.11 | 1.88 | 38.24 |
Supply OS | 5.35 | 7.45 | 3.88 | 68.38 | 14.94 | 31.62 |
Demand OS | 5.67 | 5.58 | 3.8 | 14.86 | 70.09 | 29.91 |
TO | 58.51 | 65.84 | 48.43 | 23.18 | 21.76 | 217.72 |
Inc.Own | 98.61 | 107.78 | 110.19 | 91.56 | 91.85 | OCM |
NET | −1.39 | 7.78 | 10.19 | −8.44 | −8.15 | 43.54 |
Panel B. Medium term (6 to 12 months) | ||||||
EM stocks | 18.03 | 13.27 | 5.09 | 0.65 | 1.34 | 20.36 |
EM energy | 14.65 | 19.12 | 5.29 | 1.04 | 1.49 | 22.47 |
Gold | 6.09 | 5.9 | 22.62 | 1.14 | 0.92 | 14.05 |
Supply OS | 4.4 | 5.93 | 2.2 | 52.03 | 12.92 | 25.45 |
Demand OS | 4.27 | 3.83 | 2.39 | 12.13 | 53.21 | 22.62 |
TO | 29.41 | 28.93 | 14.97 | 14.96 | 16.67 | 104.95 |
Inc.Own | 47.45 | 48.05 | 37.59 | 66.99 | 69.88 | OCM |
NET | 9.05 | 6.45 | 0.92 | −10.49 | −5.94 | 20.99 |
Panel C. Long term (12 to inf. months) | ||||||
EM stocks | 9 | 7.81 | 5 | 0.31 | 0.6 | 13.72 |
EM energy | 7.46 | 9.49 | 4.67 | 0.78 | 0.87 | 13.78 |
Gold | 3.85 | 4.25 | 13.56 | 0.19 | 0.22 | 8.5 |
Supply OS | 0.36 | 0.8 | 0.08 | 10.35 | 1.79 | 3.02 |
Demand OS | 1.36 | 1.46 | 1.27 | 2.1 | 11.12 | 6.19 |
TO | 13.03 | 14.3 | 11.01 | 3.38 | 3.48 | 45.2 |
Inc.Own | 22.02 | 23.79 | 24.57 | 13.73 | 14.6 | OCM |
NET | −0.69 | 0.52 | 2.51 | 0.36 | −2.71 | 9.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzate-Ortega, A.; Garzón, N.; Molina-Muñoz, J. Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold. Energies 2024, 17, 378. https://doi.org/10.3390/en17020378
Alzate-Ortega A, Garzón N, Molina-Muñoz J. Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold. Energies. 2024; 17(2):378. https://doi.org/10.3390/en17020378
Chicago/Turabian StyleAlzate-Ortega, Ana, Natalia Garzón, and Jesús Molina-Muñoz. 2024. "Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold" Energies 17, no. 2: 378. https://doi.org/10.3390/en17020378
APA StyleAlzate-Ortega, A., Garzón, N., & Molina-Muñoz, J. (2024). Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold. Energies, 17(2), 378. https://doi.org/10.3390/en17020378