Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook
Author Contributions
Conflicts of Interest
List of Contributions
- Łukaniszyn, M.; Baron, B.; Kolańska-Płuska, J.; Majka, Ł. Inrush Current Reduction Strategy for a Three-Phase Dy Transformer Based on Pre-Magnetization of the Columns and Controlled Switching. Energies 2023, 16, 5238. https://doi.org/10.3390/en16135238.
- Osinski, P.; Witczak, P. Analysis of Core Losses in Transformer Working at Static Var Compensator. Energies 2023, 16, 4584. https://doi.org/10.3390/en16124584.
- Smoliński, M.; Witczak, P. Numerical and Analytical Determination of Steady-State Forces Acting on Cleats and Leads Conductor of the Power Transformer. Energies 2023, 16, 3600. https://doi.org/10.3390/en16083600.
- Witczak, P.; Swiatkowski, M. Transmission of Vibrations from Windings to Tank in High Power Transformers. Energies 2023, 16, 2886. https://doi.org/10.3390/en16062886.
- Krupa, M.; Gasior, M. A new wall current transformer for accurate beam intensity measurements in the Large Hadron Collider. Energies 2023, 16, 7442. https://doi.org/10.3390/en16217442.
- Kaczmarek, M.; Stano, E. New Approach to Evaluate the Transformation Accuracy of Inductive CTs for Distorted Current. Energies 2023, 16, 3026. https://doi.org/10.3390/en16073026.
- Kaczmarek, M.; Stano, E. Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers. Energies 2023, 16, 2648. https://doi.org/10.3390/en16062648.
- Tomczuk, B.; Weber, D. Effect of Magnetic Shunts on Shell-Type Transformers Characteristics. Energies 2023, 16, 6814. https://doi.org/10.3390/en16196814.
- Lesniewska, E.; Daniel Roger, D. Selection of the Winding Type of Solid-State Transformers in Terms of Transmitting the Greatest Possible Power in the Frequency Range from 500 Hz to 6000 Hz. Energies 2023, 16, 6528. https://doi.org/10.3390/en16186528.
- Zhu, M.; Tang, H.; He, Z.; Liao, Y.; Tang, B.; Zhang, Q.; Shu, H.; Deng, Y.; Zeng, F.; Cao, P. Field Test Method and Equivalence Analysis of Delay Characteristics of DC Electronic Current Transformer. Energies 2023, 16, 5727. https://doi.org/10.3390/en16155727.
- Górecki, K.; Detka, K. SPICE-Aided Models of Magnetic Elements—A Critical Review. Energies 2023, 16, 6568. https://doi.org/10.3390/en16186568.
References
- Wiszniewski, A. Instrument Transformers in the Power Industry; WNT: Warsow, Poland, 1983; pp. 1–302. ISBN 8320403707. (In Polish) [Google Scholar]
- Jezierski, E. Power Transformer; WNT: Warsow, Poland, 1983; pp. 1–650. ISBN 5905279053229. (In Polish) [Google Scholar]
- Koszmider, A.; Olak, J.; Piotrowski, Z. Current Transformers; WNT: Warsow, Poland, 1985; pp. 1–283. ISBN 8320407109. (In Polish) [Google Scholar]
- Lesniewska, E. Modern Methods of Construction Problem Solving in Designing Various Types of Instrument Transformers. Energies 2022, 15, 8199. [Google Scholar] [CrossRef]
- Mihailovic, P.; Petricevic, S. Fiber Optic Sensors Based on the Faraday Effect. Sensors 2021, 21, 6564. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, K.; Yoshida, S.; Mori, E.; Takahashi, G.; Saito, S. Development of an optical instrument transformer for DC voltage measurement. IEEE Trans. Power Deliv. 1993, 8, 1721–1726. [Google Scholar] [CrossRef]
- Sakhno, L.; Sakhno, O.; Dubitsky, S. Field-circuit modelling of an advanced welding transformer with two parallel rectifiers. Arch. Electr. Eng. 2015, 64, 249–257. [Google Scholar] [CrossRef]
- Lesniewska, E.; Olak, J. Analysis of the Operation of Cascade Current Transformers for Measurements of Short-Circuit Currents with a Non-Periodic Component with a Large Time Constant of Its Decay. Energies 2022, 15, 2925. [Google Scholar] [CrossRef]
- Yi, R.; Chen, S.; Zhang, J.; Zhao, H.; Yu, Y.; Zhu, H. Research on Reverse optimized Control of Dual Active Bridge Based on PSpice-MATLAB/Simulink. In Proceedings of the 2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, China, 13–16 May 2022; pp. 243–248, ISBN 978-1-6654-8509-8. [Google Scholar]
- Hamilton, R. Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection. IEEE Trans. Ind. Appl. 2013, 49, 1890–1899. [Google Scholar] [CrossRef]
- Girgis, R.; Nyenhuis, G.E. Hydrogen Gas Generation Due to Moderately Overheated Transformer Cores. In Proceedings of the IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar] [CrossRef]
- Jiles, D.; Atherton, D. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Ciesielski, M.; Witczak, P. The use of finite elements modeling to analyze phase shifting transformer in steady-state service conditions. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 1214–1222. [Google Scholar] [CrossRef]
- Faiz, J.; Ebrahimi, B.M.; Noori, T. Three- and Two-Dimensional Finite-Element Computation of Inrush Current and Short-Circuit Electromagnetic Forces on Windings of a Three-Phase Core-Type Power Transformer. IEEE Trans. Magn. 2008, 44, 590–597. [Google Scholar] [CrossRef]
- Szulborski, M.; Łapczynski, S.; Kolimas, Ł.; Kozarek, Ł.; Rasolomampionona, D.D. Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM. Energies 2020, 13, 5477. [Google Scholar] [CrossRef]
- Kadkhodaei, G.; Sheshyekani, K.; Hamzeh, M.; Dadjo Tavakoli, S. Multiphysics analysis of busbars with various arrangements under short-circuit condition. IET Electr. Syst. Transp. 2016, 6, 250–260. [Google Scholar] [CrossRef]
- Ertl, M.; Landes, H. Investigation of load noise generation of large power transformer by means of coupled 3D FEM analysis. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2007, 26, 788–799. [Google Scholar] [CrossRef]
- Rausch, M.; Kaltenbacher, M.; Landes, H.; Lerch, R.; Anger, J.; Gerth, J.; Boss, P. Combination of finite and boundary element methods in investigation and prediction of load-controlled noise of power transformers. J. Sound Vib. 2002, 250, 323–338. [Google Scholar] [CrossRef]
- Cataliotti, A.; Cosentino, V.; Crotti, G.; Giordano, D.; Modarres, M.; Di Cara, D.; Tinè, G.; Gallo, D.; Landi, C.; Luiso, M. Metrological performances of voltage and current instrument transformers in harmonics measurements. In Proceedings of the I2MTC—2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Tianshu, B.; Fei, S.; Hao, L.; Kenneth, E.M.; JInsong, L. Rogowski Electronic Transformer Performance Evaluation and Its Impact on PMUs. FAC-PapersOnLine 2016, 49, 96–102. [Google Scholar]
- Bahmani, M.A.; Thiringer, T.; Kharezy, M. Design Methodology and Optimization of a Medium-Frequency Transformer for High-Power DC–DC Applications. IEEE Trans. Ind. Applicat. 2016, 52, 4225–4233. [Google Scholar] [CrossRef]
- Castelnovo, P.; Florio, M.; Forte, S.; Rossi, L.; Sirtori, E. The economic impact of technological procurement for large-scale research infrastructures: Evidence from the Large Hadron Collider at CERN. Res. Policy 2018, 47, 1853–1867. [Google Scholar] [CrossRef]
- Otomo, Y.; Igarashi, H.; Sano, H.; Yamada, T. Analysis of Litz Wire Losses Using Homogenization-Based FEM. IEEE Trans. Magn. 2021, 57, 7402409. [Google Scholar] [CrossRef]
- Sullivan, C.R. Prospects for advances in power magnetics. In Proceedings of the CIPS 2016—9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 8–10 March 2016. [Google Scholar]
- Gradinger, T.B.; Mogorovic, M. Foil-winding design for medium-frequency medium-voltage transformers. In Proceedings of the 2021 23rd European Conference on Power Electronics and Applications, Ghent, Belgium, 6–10 September 2021; pp. 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesniewska, E.; Witczak, P. Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook. Energies 2024, 17, 363. https://doi.org/10.3390/en17020363
Lesniewska E, Witczak P. Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook. Energies. 2024; 17(2):363. https://doi.org/10.3390/en17020363
Chicago/Turabian StyleLesniewska, Elzbieta, and Pawel Witczak. 2024. "Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook" Energies 17, no. 2: 363. https://doi.org/10.3390/en17020363
APA StyleLesniewska, E., & Witczak, P. (2024). Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook. Energies, 17(2), 363. https://doi.org/10.3390/en17020363