Sensorless DFIG System Control via an Electromagnetic Torque Based on MRAS Speed Estimator
Abstract
:1. Introduction
2. Model of the Wind Turbine and Maximum Power Point Tracking
2.1. Wind Turbine Model
2.2. Maximum Power Extracted without Control Speed
3. Modeling and Vector Control of DFIG
3.1. Description of DFIG System
3.2. Modelling of DFIG
3.3. Field Oriented Control of DFIG
4. System Design of the Electromagnetic Torque-Based MRAS Estimator
4.1. Reference Model
4.2. Adjustable Model
4.3. Adaptation Mechanism
5. Sensorless Control and Stability Analysis of the System
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
vds, vqs | d-q axes stator voltage components. |
ids, iqs | d-q axes stator current components. |
ds, qs | d-q axes estimated stator current components. |
Rs, Rr | Stator and rotor resistances. |
Ls, Lr | Stator and rotor inductances. |
Stator and rotor fluxes. | |
M | Mutual inductance. |
P | Number of poles. |
TL | Load torque. |
Tem | Electromagnetic torque. |
em | Estimated electromagnetic torque. |
ωr | Electrical rotor speed. |
r | Estimated electrical rotor speed. |
θr | Rotor position. |
r | Estimated rotor position. |
References
- Muller, S.; Deicke, M.; De Doncker, R.W. Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag. 2002, 8, 26–33. [Google Scholar] [CrossRef]
- Cardenas, R.; Pena, R.; Proboste, J.; Asher, G.; Clare, J. Sensorless control of a doubly-fed induction generator for stand alone operation. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; Volume 5, pp. 3378–3383. [Google Scholar]
- Yuan, G.; Li, Y.; Chai, J.; Jiang, X. A novel position sensor-less control scheme of doubly fed induction wind generator based on mras method. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2723–2727. [Google Scholar]
- Mohamed, M.; Jemli, M.; Gossa, M.; Jemli, K. Doubly fed induction generator (DFIG) in wind turbine modeling and power flow control. In Proceedings of the 2004 IEEE International Conference on Industrial Technology, Hammamet, Tunisia, 8–10 December 2004; IEEE ICIT’04. Volume 2, pp. 580–584. [Google Scholar]
- Cardenas, R.; Pena, R.; Proboste, J.; Asher, G.; Clare, J. MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans. Energy Convers. 2005, 20, 710–718. [Google Scholar] [CrossRef]
- Payam, A.F.; Jalalifar, M. Robust speed sensorless control of doubly-fed induction machine based on input-output feedback linearization control using a sliding-mode observer. In Proceedings of the 2006 International Conference on Power Electronic, Drives and Energy Systems, New Delhi, India, 12-15 December 2006; pp. 1–5. [Google Scholar]
- Dendouga, A.; Abdessemed, R.; Bendaas, M.; Chaiba, A. Decoupled active and reactive power control of a doubly-fed induction generator (DFIG). In Proceedings of the 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 June 2007; pp. 1–5. [Google Scholar]
- Aouzellag, D.; Ghedamsi, K.; Berkouk, E. Network power flow control of variable speed wind turbine. In Proceedings of the 2007 International Conference on Power Engineering, Energy and Electrical Drives, Setubal, Portugal, 12–14 April 2007; pp. 435–439. [Google Scholar]
- Aktarujjaman, M.; Haque, M.E.; Muttaqi, K.; Negnevitsky, M.; Ledwich, G. Control Dynamics of a doubly fed induction generator under sub-and super-synchronous modes of operation. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–9. [Google Scholar]
- Pena, R.; Cardenas, R.; Proboste, J.; Asher, G.; Clare, J. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Trans. Ind. Electron. 2008, 55, 330–339. [Google Scholar] [CrossRef]
- Thomsen, S.; Rothenhagen, K.; Fuchs, F.W. Online parameter identification methods for doubly fed induction generators. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2735–2741. [Google Scholar]
- Ghennam, T.; Berkouk, E.; Francois, B. Modeling and control of a doubly fed induction generator (DFIG) based wind conversion system. In Proceedings of the 2009 International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 18–20 March 2009; pp. 507–512. [Google Scholar]
- Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Ouriagli, M. Implementation of a new MRAS speed sensorless vector control of induction machine. IEEE Trans. Energy Convers. 2014, 30, 588–595. [Google Scholar] [CrossRef]
- Serhoud, H.; Benattous, D. Sensorless optimal power control of brushless doubly-fed machine in wind power generator based on extended kalman filter. Int. J. Syst. Assur. Eng. Manag. 2013, 4, 57–66. [Google Scholar] [CrossRef]
- Serhoud, H.; Benattous, D. Simulation of grid connection and maximum power point tracking control of brushless doubly-fed generator in wind power system. Front. Energy 2013, 7, 380–387. [Google Scholar] [CrossRef]
- Mazouz, F.; Belkacem, S.; Harbouche, Y.; Abdessemed, R.; Ouchen, S. Active and reactive power control of a DFIG for variable speed wind energy conversion. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017; pp. 27–32. [Google Scholar]
- Prabhakaran, K.; Karthikeyan, A.; Blaabjerg, F. Laboratory implementation of electromagnetic torque based MRAS speed estimator for sensorless SMPMSM drive. Electron. Lett. 2019, 55, 1145–1147. [Google Scholar] [CrossRef]
- Mbukani, M.; Gitau, M.; Naidoo, R.; Masike, L. A torque-based MRAS estimator for position/speed sensor-less control of DFIG systems. In Proceedings of the 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), Kharagpur, India, 9–11 December 2022; pp. 1–6. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
Rated power, Pn | 10 | KW |
Stator resistance, Rs | 0.474 | Ω |
Rotor resistance, Rr | 0.7614 | Ω |
Mutual inductance, M | 0.107 | H |
Stator inductance, Ls | 0.12 | H |
Rotor inductance, Lr | 0.122 | H |
Number of pair poles | 2 | |
Utilized grid voltage | 220 | V |
Frequency of grid | 50 | Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, A.; Serhoud, H.; Benchouia, M.T. Sensorless DFIG System Control via an Electromagnetic Torque Based on MRAS Speed Estimator. Energies 2024, 17, 4980. https://doi.org/10.3390/en17194980
Lama A, Serhoud H, Benchouia MT. Sensorless DFIG System Control via an Electromagnetic Torque Based on MRAS Speed Estimator. Energies. 2024; 17(19):4980. https://doi.org/10.3390/en17194980
Chicago/Turabian StyleLama, Abdelbadia, Hicham Serhoud, and Mohamed Toufik Benchouia. 2024. "Sensorless DFIG System Control via an Electromagnetic Torque Based on MRAS Speed Estimator" Energies 17, no. 19: 4980. https://doi.org/10.3390/en17194980
APA StyleLama, A., Serhoud, H., & Benchouia, M. T. (2024). Sensorless DFIG System Control via an Electromagnetic Torque Based on MRAS Speed Estimator. Energies, 17(19), 4980. https://doi.org/10.3390/en17194980