Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Battery Cycling and Data Collection
2.1.1. Battery Production
2.1.2. Battery Testing
2.1.3. Battery Formation Cycling
2.1.4. Battery Aging Cycling
2.1.5. Battery Characterization
2.2. Machine Learning Methodology
2.2.1. Task and Objective
2.2.2. Feature Engineering
2.2.3. Model
- validation loss minimization as the objective;
- 500 trials;
- 2 executions per trial;
- models validated every 10 iterations;
- Adam optimizer;
- Huber loss function.
- K-fold validation:
- 14 folds;
- Data from one set fold definition;
- Validation set used one time.
- Training and evaluation:
- After early stopping, best weights returned;
- 10 epochs patience;
- Adam optimizer;
- Huber loss function.
2.2.4. Evaluation
2.3. Machine Learning Approaches
2.3.1. Feed Forward Neural Network
2.3.2. Recurrent Neural Network
2.3.3. Long Short-Term Memory Neural Network
3. Results
3.1. Differential Capacity Analysis
3.2. Machine Learning
3.2.1. Differential Capacity Profile Prediction Accuracy
3.2.2. Predicted Differential Capacity Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ralls, A.M.; Leong, K.; Clayton, J.; Fuelling, P.; Mercer, C.; Navarro, V.; Menezes, P.L. The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles. Materials 2023, 16, 6063. [Google Scholar] [CrossRef]
- Burheim, O.S. Chapter 6—Electrochemical Energy Storage. In Engineering Energy Storage; Burheim, O.S., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 75–110. ISBN 978-0-12-814100-7. [Google Scholar]
- Jenu, S.; Deviatkin, I.; Hentunen, A.; Myllysilta, M.; Viik, S.; Pihlatie, M. Reducing the Climate Change Impacts of Lithium-Ion Batteries by Their Cautious Management through Integration of Stress Factors and Life Cycle Assessment. J. Energy Storage 2020, 27, 101023. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The Environmental Impact of Li-Ion Batteries and the Role of Key Parameters—A Review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Jalkanen, K.; Karppinen, J.; Skogström, L.; Laurila, T.; Nisula, M.; Vuorilehto, K. Cycle Aging of Commercial NMC/Graphite Pouch Cells at Different Temperatures. Appl. Energy 2015, 154, 160–172. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation Diagnostics for Lithium Ion Cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing Mechanisms in Lithium-Ion Batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries–A Post-Mortem Study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Spitthoff, L.; Shearing, P.R.; Burheim, O.S. Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies 2021, 14, 1248. [Google Scholar] [CrossRef]
- Jaime-Barquero, E.; Bekaert, E.; Olarte, J.; Zulueta, E.; Lopez-Guede, J.M. Artificial Intelligence Opportunities to Diagnose Degradation Modes for Safety Operation in Lithium Batteries. Batteries 2023, 9, 388. [Google Scholar] [CrossRef]
- Ren, Z.; Du, C. A Review of Machine Learning State-of-Charge and State-of-Health Estimation Algorithms for Lithium-Ion Batteries. Energy Rep. 2023, 9, 2993–3021. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef]
- Barai, A.; Uddin, K.; Dubarry, M.; Somerville, L.; McGordon, A.; Jennings, P.; Bloom, I. A Comparison of Methodologies for the Non-Invasive Characterisation of Commercial Li-Ion Cells. Prog. Energy Combust. Sci. 2019, 72, 1–31. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Yu, T.F.; Widanage, W.D.; Marco, J. Critical Review of Non-Invasive Diagnosis Techniques for Quantification of Degradation Modes in Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2019, 109, 138–159. [Google Scholar] [CrossRef]
- Wood, K.; Hawley, W.B.; Less, G.; Gallegos, J. Extracting Thermodynamic, Kinetic, and Transport Properties from Batteries Using a Simple Analytical Pulsing Protocol. J. Electrochem. Soc. 2024, 171, 080501. [Google Scholar] [CrossRef]
- Dubarry, M.; Anseán, D. Best Practices for Incremental Capacity Analysis. Front. Energy Res. 2022, 10, 1023555. [Google Scholar] [CrossRef]
- Sui, X.; He, S.; Vilsen, S.B.; Meng, J.; Teodorescu, R.; Stroe, D.-I. A Review of Non-Probabilistic Machine Learning-Based State of Health Estimation Techniques for Lithium-Ion Battery. Appl. Energy 2021, 300, 117346. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Zhen, D.; Gu, F.; Ball, A. A Review on Online State of Charge and State of Health Estimation for Lithium-Ion Batteries in Electric Vehicles. Energy Rep. 2021, 7, 5141–5161. [Google Scholar] [CrossRef]
- Wei, Z.; He, Q.; Zhao, Y. Machine Learning for Battery Research. J. Power Sources 2022, 549, 232125. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science. APL Mater. 2016, 4, 053208. [Google Scholar] [CrossRef]
- Lombardo, T.; Duquesnoy, M.; El-Bouysidy, H.; Årén, F.; Gallo-Bueno, A.; Jørgensen, P.B.; Bhowmik, A.; Demortière, A.; Ayerbe, E.; Alcaide, F.; et al. Artificial Intelligence Applied to Battery Research: Hype or Reality? Chem. Rev. 2021, 122, 10899–10969. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Spitthoff, L.; Vie, P.J.; Wahl, M.S.; Wind, J.; Burheim, O.S. Incremental Capacity Analysis (dQ/dV) as a Tool for Analysing the Effect of Ambient Temperature and Mechanical Clamping on Degradation. J. Electroanal. Chem. 2023, 944, 117627. [Google Scholar] [CrossRef]
- Spitthoff, L.; Wahl, M.S.; Lamb, J.J.; Shearing, P.R.; Vie, P.J.S.; Burheim, O.S. On the Relations between Lithium-Ion Battery Reaction Entropy, Surface Temperatures and Degradation. Batteries 2023, 9, 249. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Du, Z.; Daniel, C.; Wood, D.L., III. Fast Formation Cycling for Lithium Ion Batteries. J. Power Sources 2017, 342, 846–852. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Weng, C.; Cui, Y.; Sun, J.; Peng, H. On-Board State of Health Monitoring of Lithium-Ion Batteries Using Incremental Capacity Analysis with Support Vector Regression. J. Power Sources 2013, 235, 36–44. [Google Scholar] [CrossRef]
- Thelen, A.; Lui, Y.H.; Shen, S.; Laflamme, S.; Hu, S.; Ye, H.; Hu, C. Integrating Physics-Based Modeling and Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries. Energy Storage Mater. 2022, 50, 668–695. [Google Scholar] [CrossRef]
- Schmitt, J.; Rehm, M.; Karger, A.; Jossen, A. Capacity and Degradation Mode Estimation for Lithium-Ion Batteries Based on Partial Charging Curves at Different Current Rates. J. Energy Storage 2023, 59, 106517. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
Hyperparameter | Lower Value | Upper Value |
---|---|---|
Number of hidden layers | 1 | 3 |
Number of nodes per layer | 32 | 516 |
Learning rate, | 10−4 | 10−2 |
Activation functions | Leaky ReLu, tanh |
50 Outputs, = 2.25 × 10−3 | ||
---|---|---|
Layer Type | Nodes | Activation Function |
Input layer | 101 | None |
Dense | 64 | tanh |
Dense | 288 | tanh |
Dense | 416 | Leaky ReLu |
Output layer | 50 | Linear |
50 Outputs, = 3.70 × 10−3 | ||
---|---|---|
Layer Type | Output Shape | Activation Function |
SimpleRNN | (none, 1, 64) | tanh |
SimpleRNN | (none, 240) | Leaky ReLu |
Dense | (none, 112) | Leaky ReLu |
Output layer | 50 | Linear |
50 Outputs, = 1.37 × 10−3 | ||
---|---|---|
Layer Type | Output Shape | Activation Function |
LSTM | (none, 1, 144) | tanh |
LSTM | (none, 416) | Leaky ReLu |
Dense | (none, 192) | tanh |
Output layer | 50 | Linear |
FNN | RNN | LSTM | ||||
---|---|---|---|---|---|---|
Evaluation Set | MSE | MAE | MSE | MAE | MSE | MAE |
25 °C | 2.04 | 9.83 | 0.72 | 5.69 | 0.49 | 4.43 |
35 °C | 1.08 | 6.36 | 1.03 | 6.31 | 0.58 | 4.66 |
45 °C | 0.62 | 5.93 | 0.90 | 6.15 | 0.40 | 4.04 |
Evaluation score | 1.25 | 7.37 | 0.89 | 6.05 | 0.49 | 4.38 |
Time, range [ms] | 55–266 | 49–133 | 51–299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odinsen, E.; Amiri, M.N.; Burheim, O.S.; Lamb, J.J. Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches. Energies 2024, 17, 4954. https://doi.org/10.3390/en17194954
Odinsen E, Amiri MN, Burheim OS, Lamb JJ. Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches. Energies. 2024; 17(19):4954. https://doi.org/10.3390/en17194954
Chicago/Turabian StyleOdinsen, Eirik, Mahshid N. Amiri, Odne S. Burheim, and Jacob J. Lamb. 2024. "Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches" Energies 17, no. 19: 4954. https://doi.org/10.3390/en17194954
APA StyleOdinsen, E., Amiri, M. N., Burheim, O. S., & Lamb, J. J. (2024). Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches. Energies, 17(19), 4954. https://doi.org/10.3390/en17194954