Control System for the Performance Analysis of Turbines at Laboratory Scale
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raihan, A. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J. Environ. Sci. Econ. 2023, 2, 36–58. [Google Scholar] [CrossRef]
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 10, 172370. [Google Scholar]
- Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310. [Google Scholar] [CrossRef]
- Aneja, R.; Yadav, M.; Gupta, S. The dynamic impact assessment of clean energy and green innovation in realizing environmental sustainability of G-20. Sustain. Dev. 2024, 32, 2454–2473. [Google Scholar] [CrossRef]
- Mayor, B.; Rodríguez-Muñoz, I.; Villarroya, F.; Montero, E.; López-Gunn, E. The role of large and small scale hydropower for energy and water security in the Spanish Duero basin. Sustainability 2017, 9, 1807. [Google Scholar] [CrossRef]
- Amjith, L.R.; Bavanish, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere 2022, 293, 133579. [Google Scholar] [CrossRef]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and interannual complementarities of renewable energy sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Guzmán, A.; Eras, J.J.C.; Silva-Casarín, R.; Bastidas-Arteaga, E.; Horrillo-Caraballo, J. Renewables energies in Colombia and the opportunity for the offshore wind technology. J. Clean. Prod. 2019, 220, 529–543. [Google Scholar] [CrossRef]
- Acaroğlu, H.; Güllü, M. Climate change caused by renewable and non-renewable energy consumption and economic growth: A time series ARDL analysis for Turkey. Renew. Energy 2022, 193, 434–447. [Google Scholar] [CrossRef]
- Barbarić, M.; Guzović, Z. Investigation of the possibilities to improve hydrodynamic performances of micro-hydrokinetic turbines. Energies 2020, 13, 4560. [Google Scholar] [CrossRef]
- Mat Yazik, M.H.; Wei Shyang, C.; Ishak, M.H.H.; Ismail, F. An overview of blade materials and technologies for hydrokinetic turbine application. Int. J. Green Energy 2024, 21, 476–499. [Google Scholar] [CrossRef]
- Ibrahim, W.I.; Mohamed, M.R.; Ismail, R.M.; Leung, P.K.; Xing, W.W.; Shah, A.A. Hydrokinetic energy harnessing technologies: A review. Energy Rep. 2021, 7, 2021–2042. [Google Scholar] [CrossRef]
- He, R.; Sun, H.; Gao, X.; Yang, H. Wind tunnel tests for wind turbines: A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 166, 112675. [Google Scholar] [CrossRef]
- Niebuhr, C.M.; van Dijk, M.; Neary, V.S.; Bhagwan, J.N. A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renew. Sustain. Energy Rev. 2019, 113, 109240. [Google Scholar] [CrossRef]
- Maldar, N.R.; Ng, C.Y.; Patel, M.S.; Oguz, E. Potential and prospects of hydrokinetic energy in Malaysia: A review. Sustain. Energy Technol. Assessments 2022, 52, 102265. [Google Scholar] [CrossRef]
- Mosbahi, M.; Lajnef, M.; Derbel, M.; Mosbahi, B.; Aricò, C.; Sinagra, M.; Driss, Z. Performance improvement of a drag hydrokinetic turbine. Water 2021, 13, 273. [Google Scholar] [CrossRef]
- Mendes, R.C.; Macias, M.M.; Oliveira, T.F.; Brasil, A.C., Jr. A computational fluid dynamics investigation on the axial induction factor of a small horizontal axis wind turbine. J. Energy Resour. Technol. 2021, 143, 041301. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A new miniature wind turbine for wind tunnel experiments. Part I: Design and performance. Energies 2017, 10, 908. [Google Scholar] [CrossRef]
- Yavuz, T.; Koç, E.; Kilkiş, B.; Erol, T.; Balas, C.; Aydemir, T. Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renew. Energy 2015, 74, 414–421. [Google Scholar] [CrossRef]
- Tian, W.; Mao, Z.; Ding, H. Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 782–793. [Google Scholar] [CrossRef]
- Cavagnaro, R.J.; Polagye, B. Field performance assessment of a hydrokinetic turbine. Int. J. Mar. Energy 2016, 14, 125–142. [Google Scholar] [CrossRef]
- Patel, V.; Bhat, G.; Eldho, T.I.; Prabhu, S.V. Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine. Int. J. Energy Res. 2017, 41, 829–844. [Google Scholar] [CrossRef]
- Yuwono, T.; Sakti, G.; Aulia, F.N.; Wijaya, A.C. Improving the performance of Savonius wind turbine by installation of a circular cylinder upstream of returning turbine blade: Improving the Performance of Savonius Wind Turbine. Alex. Eng. J. 2020, 59, 4923–4932. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl. Energy 2015, 137, 117–125. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Sardar, A.; Kulkarni, V.; Saha, U.K. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers. Manag. 2018, 158, 36–49. [Google Scholar] [CrossRef]
- Hughes, A. Electric Motors and Drives, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Asyraf, S.M.; Heerwan, P.; Zulhilmi, I.M.; Izhar, I.M. Plugging Brake System as a Hill Descend Control for Electric Powered Wheelchair: Experimental Analysis. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 319–324. [Google Scholar]
- Beauregard, B. Improving the Beginner’s PID—Introduction, 2011. Available online: http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/ (accessed on 15 September 2024).
- Martins, F.G. Tuning PID Controllers using the ITAE Criterion. Int. J. Eng. Educ. 2005, 21, 867–873. [Google Scholar]
- Gallo, L.A.; Chica, E.L.; Flórez, E.G.; Obando, F.A. Numerical and experimental study of the blade profile of a Savonius type rotor implementing a multi-blade geometry. Appl. Sci. 2021, 11, 10580. [Google Scholar] [CrossRef]
- Romero-Menco, F.; Betancour, J.; Velásquez, L.; Rubio-Clemente, A.; Chica, E. Horizontal-axis propeller hydrokinetic turbine optimization by using the response surface methodology: Performance effect of rake and skew angles. Ain Shams Eng. J. 2023, 15, 102596. [Google Scholar] [CrossRef]
- Wu, K.T.; Lo, K.H.; Kao, R.C.; Hwang, S.J. Numerical and experimental investigation of the effect of design parameters on Savonius-type hydrokinetic turbine performance. Energies 2022, 15, 1856. [Google Scholar] [CrossRef]
- Aguilar, J.; Velásquez, L.; Romero, F.; Betancour, J.; Rubio-Clemente, A.; Chica, E. Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications. J. King Saud-Univ.-Eng. Sci. 2021, 35, 577–588. [Google Scholar] [CrossRef]
- Zhu, L.; Hou, E.; Zhou, Q.; Wu, H. Numerical Experiments on Hydrodynamic Performance and the Wake of a Self-Starting Vertical Axis Tidal Turbine Array. J. Mar. Sci. Eng. 2022, 10, 1361. [Google Scholar] [CrossRef]
Controller | Controller | ||||||
---|---|---|---|---|---|---|---|
1 | 0.8 | 1.2 | 0.0005 | 7 | 0.8 | 1.0 | 0.0010 |
2 | 0.8 | 1.2 | 0.0001 | 8 | 1.0 | 1.0 | 0.0010 |
3 | 0.8 | 1.2 | 0.0010 | 9 | 0.8 | 2.0 | 0.0005 |
4 | 0.8 | 1.5 | 0.0050 | 10 | 0.8 | 2.5 | 0.0001 |
5 | 0.8 | 1.2 | 0.0050 | 11 | 1.0 | 2.5 | 0.0010 |
6 | 0.8 | 1.5 | 0.0010 | 12 | 0.8 | 3.0 | 0.0010 |
Controller | ITAE | Controller | ITAE | Controller | ITAE |
---|---|---|---|---|---|
1 | 2391 | 5 | 2668 | 9 | 1463 |
2 | 2394 | 6 | 1951 | 10 | 1235 |
3 | 2350 | 7 | 3146 | 11 | 1218 |
4 | 2458 | 8 | 3158 | 12 | 1123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obando Vega, F.; Rubio-Clemente, A.; Chica, E. Control System for the Performance Analysis of Turbines at Laboratory Scale. Energies 2024, 17, 4950. https://doi.org/10.3390/en17194950
Obando Vega F, Rubio-Clemente A, Chica E. Control System for the Performance Analysis of Turbines at Laboratory Scale. Energies. 2024; 17(19):4950. https://doi.org/10.3390/en17194950
Chicago/Turabian StyleObando Vega, Felipe, Ainhoa Rubio-Clemente, and Edwin Chica. 2024. "Control System for the Performance Analysis of Turbines at Laboratory Scale" Energies 17, no. 19: 4950. https://doi.org/10.3390/en17194950
APA StyleObando Vega, F., Rubio-Clemente, A., & Chica, E. (2024). Control System for the Performance Analysis of Turbines at Laboratory Scale. Energies, 17(19), 4950. https://doi.org/10.3390/en17194950