Recent Advancements in Petroleum and Gas Engineering
1. Introduction
2. Recent Content on Petroleum and Gas Engineering
3. Current Trends, Prospective Developments, and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Almara, L.M.; Wang, G.X.; Prasad, V. Conditions and thermophysical properties for transport of hydrocarbons and natural gas at high pressures: Dense phase and anomalous supercritical state. Gas Sci. Eng. 2023, 117, 205072. [Google Scholar] [CrossRef]
- Ma, T.; Liu, J.; Fu, J.; Wu, B. Drilling and completion technologies of coalbed methane exploitation: An overview. Int. J. Coal Sci. Technol. 2022, 9, 68. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, C.; Song, Y.; Li, X.; Hou, L.; Jiang, L. Dynamic mechanisms of tight gas accumulation and numerical simulation methods: Narrowing the gap between theory and field application. Adv. Geo-Energy Res. 2023, 8, 146–158. [Google Scholar] [CrossRef]
- Cai, L.; Xiao, G.; Lu, S.; Wang, J.; Wu, Z. Spatial-temporal coupling between high-quality source rocks and reservoirs for tight sandstone oil and gas accumulations in the Songliao Basin, China. Int. J. Min. Sci. Technol. 2019, 29, 387–397. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Ciesielczuk, J.; Szczerba, M.; Misz-Kennan, M.; Więcław, D.; Szram, E.; Nádudvari, Á.; Ciesielska, Z. Weathering alterations of coal mining wastes geochemistry, petrography, and mineralogy, a case study from the Janina and Marcel Coal Mines, Upper Silesian Coal Basin (Poland). Int. J. Coal Geol. 2024, 281, 104407. [Google Scholar] [CrossRef]
- Yan, H.; Li, G.C.; Li, Y.Q.; Zhang, Q.C.; Zhu, C.Q. Stress evolution characteristics of the intensively mining-induced surrounding roadways within an extra-thick coal seam: A case study from the Tashan coal mine, China. J. Cent. South Univ. 2023, 30, 3840–3854. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, Q.; Liu, X.; Liu, X.; Elsworth, D.; Qian, R.; Shang, J. Study on the disaster caused by the linkage failure of the residual coal pillar and rock stratum during multiple coal seam mining: Mechanism of progressive and dynamic failure. Int. J. Coal Sci. Technol. 2023, 10, 45. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Wang, Z.; Li, Z.; Zhang, H.; Song, S. The influence of inter-band rock on rib spalling in longwall panel with large mining height. Int. J. Min. Sci. Technol. 2024, 34, 427–442. [Google Scholar] [CrossRef]
- Almatrafi, E.; Siddiqui, M.A. Thermodynamic investigation of a hydrogen enriched natural gas fueled HCCI engine for the efficient production of power, heating, and cooling. Int. J. Hydrogen Energy 2024, 82, 111–122. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, F. Whole petroleum system theory and new directions for petroleum geology development. Adv. Geo-Energy Res. 2024, 11, 1–5. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhou, J.L.; Zhang, C.; Liu, B.; Ling, C.W.; Liu, W.C.; Han, C.J. Failure mechanism of gob-side roadway in deep coal mining in the Xinjie mining area: Theoretical analysis and numerical simulation. J. Cent. South Univ. 2023, 30, 1631–1648. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Chen, F.; Liu, Y.W.; Wang, X.C. The influence of temperature on mixed-mode (I+II) and mode-II fracture toughness of sandstone. Eng. Fract. Mech. 2018, 189, 51–63. [Google Scholar] [CrossRef]
- Hu, J.J.; Xie, H.P.; Li, C.B.; Liu, G.K. Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development. Renew. Sustain. Energy Rev. 2024, 89 Pt B, 114061. [Google Scholar] [CrossRef]
- Alhuyi-Nazari, M.; Ravinder, K.; Mukhtar, A.; Yasir, A.S.H.M.; Ahmadi, M.H.; Al-Bahrani, M. Geothermal energy for preheating applications: A comprehensive review. J. Cent. South Univ. 2023, 30, 3519–3537. [Google Scholar] [CrossRef]
- Han, D.; Xiong, W.; Jiang, T.; Gao, S.; Liu, H.; Ye, L.; Zhu, W.; An, W. Investigation of the Water-Invasion Gas Efficiency in the Kela-2 Gas Field Using Multiple Experiments. Energies 2023, 16, 7216. [Google Scholar] [CrossRef]
- Purnomo, E.W.; Abdul Latiff, A.H.; Elsaadany, M.M.A.A. Predicting Reservoir Petrophysical Geobodies from Seismic Data Using Enhanced Extended Elastic Impedance Inversion. Appl. Sci. 2023, 13, 4755. [Google Scholar] [CrossRef]
- Yang, L.; Niu, T.; He, F.; Song, Z. Study on the Compressive and Tensile Properties of Gneiss Outcrop of Bozhong 196 Gas Field in China. Energies 2023, 16, 3919. [Google Scholar] [CrossRef]
- Xie, W.; Yin, Q.; Zeng, J.; Wang, G.; Feng, C.; Zhang, P. Fractal-Based Approaches to Pore Structure Investigation and Water Saturation Prediction from NMR Measurements: A Case Study of the Gas-Bearing Tight Sandstone Reservoir in Nanpu Sag. Fractal Fract. 2023, 7, 273. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.; Sun, J. Hydraulic Expansion Techniques for Fracture-Cavity Carbonate Rock with Field Applications. Appl. Sci. 2024, 14, 5851. [Google Scholar] [CrossRef]
- Bai, T.; Hashemi, S.; Melkoumian, N.; Badalyan, A.; Zeinijahromi, A. Permeability Evolution of Shale during High-Ionic-Strength Water Sequential Imbibition. Energies 2024, 17, 3598. [Google Scholar] [CrossRef]
- Liu, J.; Tian, F.; Zhao, A.; Zheng, W.; Cao, W. Logging Lithology Discrimination with Enhanced Sampling Methods for Imbalance Sample Conditions. Appl. Sci. 2024, 14, 6534. [Google Scholar] [CrossRef]
- Silva, A.P.D.; Oliveira, E.C.D. Evaluation of the Influence of Water Content in Oil on the Metrological Performance of Oil Flow Measurement Systems. Energies 2024, 17, 2355. [Google Scholar] [CrossRef]
- Li, M.; Qu, Z.; Ji, S.; Bai, L.; Yang, S. A New Methodology for Determination of Layered Injection Allocation in Highly Deviated Wells Drilled in Low-Permeability Reservoirs. Energies 2023, 16, 7764. [Google Scholar] [CrossRef]
- Liu, J.; Peng, B. Preparation of Preformed Submicron Crosslinked Polymer Coils for Conformance Control in Low-Permeability Reservoirs. Polymers 2024, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lv, Y.; Liu, Y.; Liu, J. Quantitative Study of the Lateral Sealing Ability of Faults Considering the Diagenesis Degree of the Fault Rock: An Example from the Nantun Formation in the Wuerxun-Beier Sag in the Hailar Basin, China. Resources 2023, 12, 98. [Google Scholar] [CrossRef]
- Sun, S.; Huang, S.; Cheng, F.; Bai, W.; Shao, Z. Geological Characteristics and Challenges of Marine Shale Gas in the Southern Sichuan Basin. Energies 2023, 16, 5796. [Google Scholar] [CrossRef]
- Zhong, X.; Dai, Z.; Zhang, W.; Wang, Q.; He, G. Fast Detection of the Single Point Leakage in Branched Shale Gas Gathering and Transportation Pipeline Network with Condensate Water. Energies 2024, 17, 2464. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Q.; Yan, B.; Zheng, X.; Yang, Y.; Chen, J.; Zhang, H.; Liu, X. State of the Art of Oil and Gas Pipeline Vulnerability Assessments. Energies 2023, 16, 3439. [Google Scholar] [CrossRef]
- Hua, Z.; Zhang, J.; Zhu, Y.; Huang, B.; Chen, Q.; Pu, W. Viscosity Reduction Behavior of Carbon Nanotube Viscosity Reducers with Different Molecular Structures at the Oil–Water Interface: Experimental Study and Molecular Dynamics Simulation. Energies 2024, 17, 2564. [Google Scholar] [CrossRef]
- Lyu, K.; Jiang, N.; Yin, D.W.; Meng, S.Y.; Gao, Z.Y.; Lyu, T. Deterioration of compressive properties of coal rocks under water and gas coupling. J. Cent. South Univ. 2024, 31, 477–495. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.C.; Kang, Y.; Zhang, Z.T. Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. Int. J. Rock Mech. Min. Sci. 2020, 134, 104476. [Google Scholar] [CrossRef]
- Liang, X.; Feng, G.; Meng, T.; Zhao, G.; Wang, Z.; Liu, P.; Taherdangkoo, R. Non-constant evolution of mixed mode fracture process zone in heat-treated salt rock during the whole loading. Theor. Appl. Fract. Mech. 2024, 130, 104337. [Google Scholar] [CrossRef]
- Tan, P.; Chen, Z.; Huang, L.; Zhao, Q.; Shao, S. Evaluation of the combined influence of geological layer property and in-situ stresses on fracture height growth for layered formations. Petrol. Sci. 2024. [Google Scholar] [CrossRef]
- Fu, H.; Huang, L.; Hou, B.; Weng, D.; Guan, B.; Zhong, T.; Zhao, Y. Experimental and Numerical Investigation on Interaction Mechanism Between Hydraulic Fracture and Natural Fracture. J. Rock Mech. Rock Eng. 2024. [Google Scholar] [CrossRef]
- Huang, L.; He, R.; Yang, Z.; Tan, P.; Chen, W.; Li, X.; Cao, A. Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation. Eng. Fract. Mech. 2023, 278, 109020. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, L.; Yang, L.; Dontsov, E.; Weng, D.; Liang, H.; Yin, Z.; Tang, J. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation. Petrol. Sci. 2022, 19, 296–308. [Google Scholar] [CrossRef]
- Huang, L.; Dontsov, E.; Fu, H.; Lei, Y.; Weng, D.; Zhang, F. Hydraulic fracture height growth in layered rocks: Perspective from DEM simulation of different propagation regimes. Int. J. Solids Struct. 2022, 238, 111395. [Google Scholar] [CrossRef]
- Tan, P.; Fu, S.; Huang, L.; Chen, Z.; Cao, J. Effects of orthogonal cleat structures on hydraulic fracture evolution behavior. Geoenergy Sci. Eng. 2024, 241, 213119. [Google Scholar] [CrossRef]
- Xiao, M.L.; Xie, H.Q.; Feng, G.; He, Q.; Liu, H.Z.; Zhuo, L. Investigation on the fracture mechanics characteristics and crack initiation of deep dense shale. Eng. Fract. Mech. 2024, 301, 110039. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, C.; Wang, X.C.; Tang, S.B. Thermal effects on prediction accuracy of dense granite mechanical behaviors using modified maximum tangential stress criterion. J. Rock Mech. Geotech. Eng. 2023, 15, 1734–1748. [Google Scholar] [CrossRef]
- Zheng, Y.; He, R.; Huang, L.; Bai, Y.; Wang, C.; Chen, W.; Wang, W. Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes. Comput. Geotech. 2022, 146, 104736. [Google Scholar] [CrossRef]
- Luo, H.; Xie, J.; Huang, L.; Wu, J.; Shi, X.; Bai, Y.; Fu, H.; Pan, B. Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method. J. Lithosphere 2022, 2022, 9708300. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Zhang, F.; Fu, H.; Zhu, H.; Damjanac, B. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models. J. Petrol. Sci. Eng. 2020, 191, 107169. [Google Scholar] [CrossRef]
- Liang, S.S.; Zhang, D.S.; Fan, G.W.; Kovalsky, E.; Fan, Z.L.; Zhang, L.; Han, X.S. Mechanical structure and seepage stability of confined floor response to longwall mining of inclined coal seam. J. Cent. South Univ. 2023, 30, 2948–2965. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Zhang, F.; Dontsov, E.; Damjanac, B. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int. J. Solids Struct. 2019, 176, 207–220. [Google Scholar] [CrossRef]
- Li, Z.; Ren, T.; Black, D.; Qiao, M.; Abedin, I.; Juric, J.; Wang, M. In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management. Int. J. Coal Sci. Technol. 2023, 10, 62. [Google Scholar] [CrossRef]
- He, R.; Yang, J.; Li, L.; Yang, Z.; Chen, W.; Zeng, J.; Liao, X.; Huang, L. Investigating the simultaneous fracture propagation from multiple perforation clusters in horizontal wells using 3D block discrete element method. Front. Earth Sci. 2023, 11, 1115054. [Google Scholar] [CrossRef]
- Zhu, D.F.; Yu, B.B.; Wang, D.Y.; Zhang, Y.J. Fusion of finite element and machine learning methods to predict rock shear strength parameters. J. Geophys. Eng. 2024, 1, gxae064. [Google Scholar] [CrossRef]
- Huang, L.; Liao, X.; Fan, M.; Wu, S.; Tan, P.; Yang, L. 2024 Experimental and numerical simulation technique for hydraulic fracturing of shale formations. Adv. Geo-Energy Res. 2024, 13, 83–88. [Google Scholar] [CrossRef]
- Fan, C.; Xu, L.; Elsworth, D.; Luo, M.; Liu, T.; Li, S.; Zhou, L.; Su, W. Spatial-Temporal Evolution and Countermeasures for Coal and Gas Outbursts Represented as a Dynamic System. Rock Mech. Rock Eng. 2023, 56, 6855–6877. [Google Scholar] [CrossRef]
- Guo, P.; Li, X.; Li, S.D.; He, J.M.; Mao, T.Q.; Zheng, B. Combined effect of rock fabric, in-situ stress, and fluid viscosity on hydraulic fracture propagation in Chang 73 lacustrine shale from the Ordos Basin. J. Cent. South Univ. 2024, 31, 1646–1658. [Google Scholar] [CrossRef]
- Men, Y.; Song, Z.; Sun, Y.; Li, K.; Qing, X.; Sun, H.; Zhou, M. Novel concepts of mechanical technology for gas recovery from marine hydrate reservoir. Int. J. Coal Sci. Technol. 2023, 10, 38. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Feng, G.; Chi, M. Modelling method of heterogeneous rock mass and DEM investigation of seepage characteristics. Geomech. Geophys. Geo-Energ. Geo-Resour. 2024, 10, 46. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, J.; Huang, L. Analysis on inflowing of the injecting water in faulted formation. Adv. Mech. Eng. 2015, 7, 1687814015590294. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Wen, Z.J.; Xu, L.; He, F.L. Key technology of gob-side entry retained by roof cutting without coal pillar for hard main roof: A typical case study. J. Cent. South Univ. 2023, 30, 4097–4121. [Google Scholar] [CrossRef]
- Huang, L.; Tan, J.; Fu, H.; Liu, J.; Chen, X.; Liao, X.; Wang, X.; Wang, C. The non-plane initiation and propagation mechanism of multiple hydraulic fractures in tight reservoirs considering stress shadow effects. Eng. Fract. Mech. 2023, 292, 109570. [Google Scholar] [CrossRef]
- Yaghoubi, A.; Samaroo, M.; Dusseault, M. Anisotropic behavior and mechanical characteristics of the Montney Formation. Int. J. Rock Mech. Min. 2024, 180, 105831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Feng, G.; Hu, Y.; Huang, L.; Xie, H.; Zhao, Y.; Jin, P.; Liang, C. Recent Advancements in Petroleum and Gas Engineering. Energies 2024, 17, 4664. https://doi.org/10.3390/en17184664
Wang X, Feng G, Hu Y, Huang L, Xie H, Zhao Y, Jin P, Liang C. Recent Advancements in Petroleum and Gas Engineering. Energies. 2024; 17(18):4664. https://doi.org/10.3390/en17184664
Chicago/Turabian StyleWang, Xiaochuan, Gan Feng, Yaoqing Hu, Liuke Huang, Hongqiang Xie, Yu Zhao, Peihua Jin, and Chao Liang. 2024. "Recent Advancements in Petroleum and Gas Engineering" Energies 17, no. 18: 4664. https://doi.org/10.3390/en17184664
APA StyleWang, X., Feng, G., Hu, Y., Huang, L., Xie, H., Zhao, Y., Jin, P., & Liang, C. (2024). Recent Advancements in Petroleum and Gas Engineering. Energies, 17(18), 4664. https://doi.org/10.3390/en17184664