Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction
Abstract
1. Introduction
2. Methodology
2.1. Analytical Wake Models
2.1.1. HAWT
2.1.2. VAWT
2.2. Equivalent Diameter for Wake Scaling
2.2.1. Momentum Diameter
2.2.2. Hydraulic Diameter
3. Results
- Step 1—Calculate the normalized maximum wake velocity deficit for an actuator disk with the same thrust coefficient and diameter as the VAWT.
- Step 2—Calculate the VAWT equivalent diameter based on its shape features.
- Step 3—Re-scale the downwind distance from Step 1 with the to map the result from an actuator disk to the desired actuator surface domain.
4. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Model Inputs and LES Framework
References
- Ouro, P.; Lazennec, M. Theoretical modelling of the three-dimensional wake of vertical axis turbines. Flow 2021, 1, E3. [Google Scholar] [CrossRef]
- Rolin, V.F.; Porté-Agel, F. Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow. Renew. Energy 2018, 118, 1–13. [Google Scholar] [CrossRef]
- Shamsoddin, S.; Porté-Agel, F. A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies 2016, 9, 366. [Google Scholar] [CrossRef]
- Dabiri, J.O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 2011, 3, 043104. [Google Scholar] [CrossRef]
- Araya, D.B.; Craig, A.E.; Kinzel, M.; Dabiri, J.O. Low-order modeling of wind farm aerodynamics using leaky Rankine bodies. J. Renew. Sustain. Energy 2014, 6, 063118. [Google Scholar] [CrossRef]
- Hansen, M.; Enevoldsen, P.; Abkar, M. Energy harvesting via co-locating horizontal-and vertical-axis wind turbines. Proc. J. Phys. Conf. Ser. 2020, 1618, 032004. [Google Scholar] [CrossRef]
- Abkar, M.; Dabiri, J.O. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: An LES study. J. Turbul. 2017, 18, 373–389. [Google Scholar] [CrossRef]
- Meyers, J.; Bottasso, C.; Dykes, K.; Fleming, P.; Gebraad, P.; Giebel, G.; Göçmen, T.; van Wingerden, J.W. Wind farm flow control: Prospects and challenges. Wind Energy Sci. Discuss. 2022, 7, 2271–2306. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef]
- Abkar, M. Theoretical modeling of vertical-axis wind turbine wakes. Energies 2018, 12, 10. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bevilaqua, P.M.; Lykoudis, P.S. Turbulence memory in self-preserving wakes. J. Fluid Mech. 1978, 89, 589–606. [Google Scholar] [CrossRef]
- Meunier, P.; Spedding, G.R. A loss of memory in stratified momentum wakes. Phys. Fluids 2004, 16, 298–305. [Google Scholar] [CrossRef]
- Shamsoddin, S.; Porté-Agel, F. Effect of aspect ratio on vertical-axis wind turbine wakes. J. Fluid Mech. 2020, 889, R1. [Google Scholar] [CrossRef]
- Huang, M.; Ferreira, C.; Sciacchitano, A.; Scarano, F. Wake scaling of actuator discs in different aspect ratios. Renew. Energy 2022, 183, 866–876. [Google Scholar] [CrossRef]
- Duckworth, A.; Barthelmie, R. Investigation and validation of wind turbine wake models. Wind Eng. 2008, 32, 459–475. [Google Scholar] [CrossRef]
- Chamorro, L.P.; Porté-Agel, F. A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Bound.-Layer Meteorol. 2009, 132, 129–149. [Google Scholar] [CrossRef]
- Wu, Y.T.; Porté-Agel, F. Atmospheric turbulence effects on wind-turbine wakes: An LES study. Energies 2012, 5, 5340–5362. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Niayifar, A.; Porté-Agel, F. Analytical modeling of wind farms: A new approach for power prediction. Energies 2016, 9, 741. [Google Scholar] [CrossRef]
- Teng, J.; Markfort, C.D. A calibration procedure for an analytical wake model using wind farm operational data. Energies 2020, 13, 3537. [Google Scholar] [CrossRef]
- Vahidi, D.; Porté-Agel, F. A physics-based model for wind turbine wake expansion in the atmospheric boundary layer. J. Fluid Mech. 2022, 943, A49. [Google Scholar] [CrossRef]
- Neumann, J. Some observations on the simple exponential function as a Lagrangian velocity correlation function in turbulent diffusion. Atmos. Environ. (1967) 1978, 12, 1965–1968. [Google Scholar] [CrossRef]
- Vahidi, D.; Porté-Agel, F. A new streamwise scaling for wind turbine wake modeling in the atmospheric boundary layer. Energies 2022, 15, 9477. [Google Scholar] [CrossRef]
- Darcy, H. Recherches Expérimentales Relatives au Mouvement de L’eau dans les Tuyaux; Mallet-Bachelier: Paris, France, 1857; Volume 2. [Google Scholar]
- Stoll, R.; Porté-Agel, F. Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
Case | Aspect Ratio () | D (m) | |||||
---|---|---|---|---|---|---|---|
Shamsoddin and Porté-Agel (2020) [15] | 2 | 50 | 0.8 | 9.6 | 0.083 | 1.596 | 1.333 |
1 | 50 | 0.8 | 9.6 | 0.083 | 1.128 | 1.0 | |
0.25 | 50 | 0.8 | 9.6 | 0.083 | 0.564 | 0.4 | |
Abkar and Dabiri (2017) [7] | 0.92 | 26 | 0.64 | 7.0 | 0.1 | 1.084 | 0.96 |
0.92 | 26 | 0.34 | 7.0 | 0.1 | 1.084 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidi, D.; Porté-Agel, F. Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction. Energies 2024, 17, 4527. https://doi.org/10.3390/en17174527
Vahidi D, Porté-Agel F. Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction. Energies. 2024; 17(17):4527. https://doi.org/10.3390/en17174527
Chicago/Turabian StyleVahidi, Dara, and Fernando Porté-Agel. 2024. "Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction" Energies 17, no. 17: 4527. https://doi.org/10.3390/en17174527
APA StyleVahidi, D., & Porté-Agel, F. (2024). Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction. Energies, 17(17), 4527. https://doi.org/10.3390/en17174527