Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of CuO
2.2. Preparation of Cu/Cu2O
2.3. Characterization
2.4. Electrocatalytic Experiments
3. Results
3.1. Characterizing Structure
3.2. Performance of Electrocatalytic Nitrate Reduction to Ammonia
3.3. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nishina, K. New Ammonia Demand: Ammonia Fuel as a Decarbonization Tool and a New Source of Reactive Nitrogen. Environ. Res. Lett. 2022, 17, 021003. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainy, A.; Wang, M. Life Cycle Energy Use and Greenhouse Gas Emissions of Ammonia Production from Renewable Resources and Industrial By-Products. Green Chem. 2020, 22, 5751–5761. [Google Scholar] [CrossRef]
- Ye, S.; Chen, Z.; Zhang, G.; Chen, W.; Peng, C.; Yang, X.; Zheng, L.; Li, Y.; Ren, X.; Cao, H. Elucidating the Activity, Mechanism and Application of Selective Electrosynthesis of Ammonia from Nitrate on Cobalt Phosphide. Energy Environ. Sci. 2022, 15, 760–770. [Google Scholar] [CrossRef]
- Yang, M.; Jin, Z.; Cao, Z.; Wang, X.; Ma, H.; Pang, H.; Yang, G. Polyoxometalates-derived Ternary Metal Oxides Electrocatalyst for N2 Reduction under Ambient Conditions. Tungsten 2024, 6, 428–437. [Google Scholar] [CrossRef]
- Tran, N.N.; Escribà-Gelonch, M.; Sarafraz, M.M.; Pho, Q.H.; Sagadevan, S.; Hessel, V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind. Eng. Chem. Res. 2023, 62, 1195–1214. [Google Scholar] [CrossRef]
- Su, J.F.; Kuan, W.-F.; Liu, H.; Huang, C.P. Mode of Electrochemical Deposition on the Structure and Morphology of Bimetallic Electrodes and Its Effect on Nitrate Reduction toward Nitrogen Selectivity. Appl. Catal. B Environ. 2019, 257, 117909. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A.C.; Lielpetere, A.; Seisel, S.; Junqueira, J.R.; Schuhmann, W. Splicing the Active Phases of Copper/Cobalt-Based Catalysts Achieves High-Rate Tandem Electroreduction of Nitrate to Ammonia. Nat. Commun. 2022, 13, 1129. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Direct Electrosynthesis of Methylamine from Carbon Dioxide and Nitrate. Nat. Sustain. 2021, 4, 725–730. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate Electroreduction: Mechanism Insight, in Situ Characterization, Performance Evaluation, and Challenges. Chem. Soc. Rev. 2021, 50, 6720–6733. [Google Scholar] [CrossRef]
- Jing, H.; Long, J.; Li, H.; Fu, X.; Xiao, J. Computational Insights on Potential Dependence of Electrocatalytic Synthesis of Ammonia from Nitrate. Chin. J. Catal. 2023, 48, 205–213. [Google Scholar] [CrossRef]
- Fang, L.; Wang, S.; Lu, S.; Yin, F.; Dai, Y.; Chang, L.; Liu, H. Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chin. Chem. Lett. 2024, 35, 108864. [Google Scholar] [CrossRef]
- Dortsiou, M.; Kyriacou, G. Electrochemical Reduction of Nitrate on Bismuth Cathodes. J. Electroanal. Chem. 2009, 630, 69–74. [Google Scholar] [CrossRef]
- Lim, J.; Liu, C.-Y.; Park, J.; Liu, Y.-H.; Senftle, T.P.; Lee, S.W.; Hatzell, M.C. Structure Sensitivity of Pd Facets for Enhanced Electrochemical Nitrate Reduction to Ammonia. ACS Catal. 2021, 11, 7568–7577. [Google Scholar] [CrossRef]
- Deng, X.; Yang, Y.; Wang, L.; Fu, X.-Z.; Luo, J.-L. Metallic Co Nanoarray Catalyzes Selective NH3 Production from Electrochemical Nitrate Reduction at Current Densities Exceeding 2 A cm−2. Adv. Sci. 2021, 8, 2004523. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xie, L.; Liang, J.; Ren, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; Tang, B. In Situ Grown Fe3O4 Particle on Stainless Steel: A Highly Efficient Electrocatalyst for Nitrate Reduction to Ammonia. Nano Res. 2022, 15, 1–6. [Google Scholar] [CrossRef]
- Murphy, E.; Liu, Y.; Matanovic, I.; Rüscher, M.; Huang, Y.; Ly, A.; Guo, S.; Zang, W.; Yan, X.; Martini, A. Elucidating Electrochemical Nitrate and Nitrite Reduction over Atomically-Dispersed Transition Metal Sites. Nat. Commun. 2023, 14, 4554. [Google Scholar] [CrossRef]
- Murphy, E.; Liu, Y.; Sun, B.; Chen, Y.-H.; Guo, S.; Atanassov, P. Atomically Dispersed Metal–Nitrogen–Carbon Catalysts for Electrochemical Nitrogen Transformations to Ammonia and Beyond. ACS Catal. 2024, 14, 9797–9811. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Zhou, J.; Liu, F.; Hao, F.; Fan, Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. Adv. Mater. 2024, 36, 2304021. [Google Scholar] [CrossRef]
- Sagar, P.; Arun Kumar, N.S.; Shreenivasa, L.; Srinivasa, N.; De, D.; Yogeeshwari, R.T.; Siddaramanna, A. Citric Acid Assisted One-Pot Approach to Synthesize CuO, CuO/Cu2O, Cu/Cu2O, and Metallic Cu: Potential Electrocatalyst for Enhanced OER. Ionics 2023, 29, 711–719. [Google Scholar] [CrossRef]
- Teng, M.; Ye, J.; Wan, C.; He, G.; Chen, H. Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Ind. Eng. Chem. Res. 2022, 61, 14731–14746. [Google Scholar] [CrossRef]
- Zhou, B.; Zhan, G.; Yao, Y.; Zhang, W.; Zhao, S.; Quan, F.; Fang, C.; Shi, Y.; Huang, Y.; Jia, F. Renewable Energy Driven Electroreduction Nitrate to Ammonia and In-Situ Ammonia Recovery via a Flow-through Coupled Device. Water Res. 2023, 242, 120256. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-Art and Perspectives of the Catalytic and Electrocatalytic Reduction of Aqueous Nitrates. Appl. Catal. B Environ. 2017, 207, 42–59. [Google Scholar] [CrossRef]
- Peel, J.W.; Reddy, K.J.; Sullivan, B.P.; Bowen, J.M. Electrocatalytic Reduction of Nitrate in Water. Water Res. 2003, 37, 2512–2519. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Flower-like Open-Structured Polycrystalline Copper with Synergistic Multi-Crystal Plane for Efficient Electrocatalytic Reduction of Nitrate to Ammonia. Nano Energy 2022, 97, 107124. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, Z.; Yu, J.; Guo, Y.; Mushtaq, M.A.; Ding, Y.; Song, Z.; Zhang, W.; Huang, X.; Li, Y.; et al. Constructing Cu-CuO Heterostructured Skin on Cu Cubes to Promote Electrocatalytic Ammonia Production from Nitrate Wastewater. J. Hazard. Mater. 2022, 439, 129653. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect Engineering in Earth-Abundant Electrocatalysts for CO2 and N2 Reduction. Energy Environ. Sci. 2019, 12, 1730–1750. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Liu, C.; Zeng, J.; Qi, X. Co3O4/stainless Steel Catalyst with Synergistic Effect of Oxygen Vacancies and Phosphorus for Overall Water Splitting. Tungsten 2023, 5, 100–108. [Google Scholar] [CrossRef]
- Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z.; Leverett, J.; Khan, M.H.A.; Esmailpour, A.A.; Jalili, A.; Lim, M. Nitrate Reduction to Ammonium: From CuO Defect Engineering to Waste NOx-to-NH3 Economic Feasibility. Energy Environ. Sci. 2021, 14, 3588–3598. [Google Scholar] [CrossRef]
- Wang, Z.; Richards, D.; Singh, N. Recent Discoveries in the Reaction Mechanism of Heterogeneous Electrocatalytic Nitrate Reduction. Catal. Sci. Technol. 2021, 11, 705–725. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Li, C.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Xu, Y.; Wang, L. Cu/CuOx In-Plane Heterostructured Nanosheet Arrays with Rich Oxygen Vacancies Enhance Nitrate Electroreduction to Ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761–34769. [Google Scholar] [CrossRef]
- Fang, L.; Wang, S.; Song, C.; Lu, S.; Yang, X.; Qi, X.; Liu, H. Boosting Nitrate Electroreduction to Ammonia via in Situ Generated Stacking Faults in Oxide-Derived Copper. Chem. Eng. J. 2022, 446, 137341. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Li, R.; Zhao, X.; Yu, Y.; Yang, M. In-Situ Reconstructed Cu/Cu2O Heterogeneous Nanorods with Oxygen Vacancies for Enhanced Electrocatalytic Nitrate Reduction to Ammonia. Chem. Eng. J. 2024, 479, 147574. [Google Scholar] [CrossRef]
- Liang, S.; Teng, X.; Xu, H.; Chen, L.; Shi, J. H* Species Regulation by Mn-Co(OH)2 for Efficient Nitrate Electro-Reduction in Neutral Solution. Angew. Chem. 2024, 136, e202400206. [Google Scholar] [CrossRef]
- Fan, K.; Xie, W.; Li, J.; Sun, Y.; Xu, P.; Tang, Y.; Li, Z.; Shao, M. Active Hydrogen Boosts Electrochemical Nitrate Reduction to Ammonia. Nat. Commun. 2022, 13, 7958. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xu, G.; Huang, B.; Yan, J.; Wang, M.; Chen, L.; Shi, J. Zn-Organic Batteries for the Semi-Hydrogenation of Biomass Aldehyde Derivatives and Concurrently Enhanced Power Output. Angew. Chem. 2023, 135, e202218603. [Google Scholar] [CrossRef]
- Ma, M.; Yu, H.; Deng, L. Interfacial Engineering of Heterostructured Carbon-supported Molybdenum Cobalt Sulfides for Efficient Overall Water Splitting. Tungsten 2023, 5, 589–597. [Google Scholar] [CrossRef]
- Fang, L.; Lu, S.; Wang, S.; Yang, X.; Song, C.; Yin, F.; Liu, H. Defect Engineering on Electrocatalysts for Sustainable Nitrate Reduction to Ammonia: Fundamentals and Regulations. Chem.–Eur. J. 2024, 30, e202303249. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Ultralow-Content Pd in-Situ Incorporation Mediated Hierarchical Defects in Corner-Etched Cu2O Octahedra for Enhanced Electrocatalytic Nitrate Reduction to Ammonia. Appl. Catal. B Environ. 2022, 306, 121094. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, S.; Wang, Y.; Wei, P.; Shao, J.; Liu, T.; Wang, G.; Bao, X. Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis. Angew. Chem. Int. Ed. 2023, 62, e202303327. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, Q.; Song, X.; Gu, Y.; Zhang, P.; Li, C.; Cui, J.; Ma, J.; Tie, Z.; Jin, Z. Batch-Scale Synthesis of Nanoparticle-Agminated Three-Dimensional Porous Cu@Cu2O Microspheres for Highly Selective Electrocatalysis of Nitrate to Ammonia. Environ. Sci. Technol. 2022, 56, 10299–10307. [Google Scholar] [CrossRef]
- Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical Reduction of Nitrate to Ammonia via Direct Eight-Electron Transfer Using a Copper–Molecular Solid Catalyst. Nat. Energy 2020, 5, 605–613. [Google Scholar] [CrossRef]
- Cheng, X.; He, J.; Ji, H.; Zhang, H.; Cao, Q.; Sun, W.; Yan, C.; Lu, J. Coordination Symmetry Breaking of Single-Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia. Adv. Mater. 2022, 34, 2205767. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Fang, L.; Bai, Y. Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Energies 2024, 17, 4467. https://doi.org/10.3390/en17174467
Li Y, Fang L, Bai Y. Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Energies. 2024; 17(17):4467. https://doi.org/10.3390/en17174467
Chicago/Turabian StyleLi, Yaxuan, Ling Fang, and Yuanjuan Bai. 2024. "Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia" Energies 17, no. 17: 4467. https://doi.org/10.3390/en17174467
APA StyleLi, Y., Fang, L., & Bai, Y. (2024). Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Energies, 17(17), 4467. https://doi.org/10.3390/en17174467