Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. The Process of Developing FCEV Technology
2.2. The Advantages and Challenges for Developing FCEVs
2.3. PatentAnalysis Based on the FCEV Technology
3. Research Method and Data
3.1. Methodology
3.2. Research Framework
3.3. Data Collection
4. Research Results
4.1. The Evolution of Developing FCEV Technology
4.2. Identifying the Key Components of FCEV
4.3. The Matrix of Technology Characteristics and Functions
5. Discussion
5.1. The Key Components of Developing FCEVs
5.2. The Advance of Developing FCEV Technology
5.3. The Opportunities for Developing FCEV Technology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frenken, K.; Hekkert, M.; Godfroij, P. R&D portfolios in environmentally friendly automotive propulsion: Variety, competition and policy implications. Technol. Forecast. Soc. Change 2004, 71, 485–507. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Senior, B.T.F.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, X. The advances and opportunities of developing solid-state battery technology: Based on the patent Information Relation Matrix. Energy 2024, 296, 131178. [Google Scholar] [CrossRef]
- Kosai, S.; Nakanishi, M.; Yamasue, E. Vehicle energy efficiency evaluation from well-to-wheel lifecycle perspective. Transp. Res. Part D Transp. Environ. 2018, 65, 355–367. [Google Scholar] [CrossRef]
- Wesseling, J.H.; Faber, J.; Hekkert, M.P. How competitive forces sustain electric vehicle development. Technol. Forecast. Soc. Change 2014, 81, 154–164. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, X. Does the development of fuel cell electric vehicles be reviving or recessional? Based on the patent analysis. Energy 2023, 272, 127104. [Google Scholar] [CrossRef]
- Fang, T.K.; Vairin, C.; von Jouanne, A.; Agamloh, E.; Yokochi, A. Review of Fuel-Cell Electric Vehicles. Energies 2024, 17, 2160. [Google Scholar] [CrossRef]
- Xu, H.; Han, Y.; Zhu, J.; Ni, M.; Yao, Z. Status and progress of metal-supported solid oxide fuel cell: Towards large-scale manufactory and practical applications. Energy Rev. 2024, 3, 100051. [Google Scholar] [CrossRef]
- WIPO. Patent landscape report. In Hydrogen Fuel Cells in Transportation; WIPO: Geneva, Switzerland, 2022. [Google Scholar]
- Hosseini, S.E.; Butler, B. An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 2019, 17, 13–37. [Google Scholar] [CrossRef]
- Zhao, F.; Mu, Z.; Hao, H.; Liu, Z.; He, X.; Victor Przesmitzki, S.; Ahmad Amer, A. Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective. Energy Technol. 2020, 8, 2000179. [Google Scholar] [CrossRef]
- Samsun, R.C.; Rex, M.; Antoni, L.; Stolten, D. Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives. Energies 2022, 15, 4975. [Google Scholar] [CrossRef]
- Gao, F. Hydrogen fuel cell electric vehicles: State of Art and outlooks. In Proceedings of the IEEE 9th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 20–22 September 2022. [Google Scholar]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Kast, J.; Vijayagopal, R.; Gangloff, J.J.; Marcinkoski, J. Clean commercial transportation: Medium and heavy duty fuel cell electric trucks. Int. J. Hydrogen Energy 2017, 42, 4508–4517. [Google Scholar] [CrossRef]
- Ala, G.; Colak, I.; Di Filippo, G.; Miceli, R.; Romano, P.; Silva, C.; Valtchev, S.; Viola, F. Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles. Energies 2021, 14, 7945. [Google Scholar] [CrossRef]
- Bethoux, O. Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies 2020, 13, 5843. [Google Scholar] [CrossRef]
- DOE. How Do Fuel Cell Electric Vehicles Work Using Hydrogen? 2024. Available online: https://afdc.energy.gov/vehicles/how-do-fuel-cell-electric-cars-work (accessed on 1 June 2024).
- Bahrami, M.; Martin, J.-P.; Maranzana, G.; Pierfederici, S.; Weber, M.; Didierjean, S. Fuel cell management system: An approach to increase its durability. Appl. Energy 2022, 306, 118070. [Google Scholar] [CrossRef]
- Madheswaran, D.K.; Thangamuthu, M.; Gnanasekaran, S.; Gopi, S.; Ayyasamy, T.; Pardeshi, S.S. Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review. Sustainability 2023, 15, 15923. [Google Scholar] [CrossRef]
- Tang, X.; Yang, M.; Shi, L.; Hou, Z.; Xu, S.; Sun, C. Adaptive state-of-health temperature sensitivity characteristics for durability improvement of PEM fuel cells. Chem. Eng. J. 2024, 491, 151951. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef]
- Bethoux, O. Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition. Energies 2020, 13, 6132. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, L.; Khan, S.U. A literature review on the state-of-the-art in patent analysis. World Pat. Inf. 2014, 37, 3–13. [Google Scholar] [CrossRef]
- Yang, D.; Lee, J.; Song, N.C.; Lee, S.; Kim, S.; Lee, S.; Choi, S. Patent analysis on green hydrogen technology for future promising technologies. Int. J. Hydrogen Energy 2023, 48, 32241–32260. [Google Scholar] [CrossRef]
- Moura, L.; González, M.; Silva, J.; Silva, L.; Braga, I.; Ferreira, P.; Sampaio, P. Evaluation of technological development of hydrogen fuel cells based on patent analysis. AIMS Energy 2024, 12, 190–213. [Google Scholar] [CrossRef]
- Tsang, S.-S.; Chang, F.-C.; Wang, W.-C. A Survival Analysis on Fuel Cell Technology Patent Maintenance and Values Exploration between 1976 and 2001. Adv. Mater. Sci. Eng. 2015, 2015, 387491. [Google Scholar] [CrossRef]
- Jiang, Z. Patent competition and value for wireless technologies: In case of intelligent media. Wirel. Netw. 2023, online. [Google Scholar] [CrossRef]
- Ki, W.; Kim, K. Generating Information Relation Matrix Using Semantic Patent Mining for Technology Planning: A Case of Nano-Sensor. IEEE Access 2017, 5, 26783–26797. [Google Scholar] [CrossRef]
- Borgstedt, P.; Neyer, B.; Schewe, G. Paving the road to electric vehicles—A patent analysis of the automotive supply industry. J. Clean. Prod. 2017, 167, 75–87. [Google Scholar] [CrossRef]
- Khan, U.; Yamamoto, T.; Sato, H. An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan. Int. J. Hydrogen Energy 2021, 46, 10589–10607. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Aging prognosis model of proton exchange membrane fuel cell in different operating conditions. Int. J. Hydrogen Energy 2020, 45, 11761–11772. [Google Scholar] [CrossRef]
- Meng, X.; Mei, J.; Tang, X.; Jiang, J.; Sun, C.; Song, K. The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model. Energies 2024, 17, 3050. [Google Scholar] [CrossRef]
Label | Key Components | Indegree | Outdegree | Weighted Indegree | Weighted Outdegree | Pagerank | Clustering | Eigencentrality |
---|---|---|---|---|---|---|---|---|
H01M | fuel cell | 206 | 188 | 19,624 | 3165 | 0.128225 | 0.021278 | 1 |
B60L | electric motors | 73 | 156 | 3416 | 11,830 | 0.029669 | 0.038828 | 0.54635 |
B60K | electric motors | 39 | 99 | 577 | 3547 | 0.013384 | 0.073295 | 0.360956 |
B01D | fuel cell | 22 | 83 | 147 | 1116 | 0.006599 | 0.085004 | 0.231471 |
C01B | - | 28 | 61 | 268 | 794 | 0.010284 | 0.081511 | 0.257132 |
F17C | hydrogen storage | 41 | 55 | 432 | 786 | 0.017295 | 0.113458 | 0.382421 |
B60H | the control system | 10 | 54 | 80 | 1431 | 0.003683 | 0.132792 | 0.148564 |
B01J | fuel cell | 12 | 39 | 194 | 981 | 0.003533 | 0.150407 | 0.136687 |
B60R | - | 21 | 31 | 216 | 192 | 0.00791 | 0.203453 | 0.247281 |
C08G | - | 11 | 31 | 42 | 315 | 0.004588 | 0.150624 | 0.127599 |
C25B | fuel cell | 34 | 29 | 346 | 413 | 0.01187 | 0.169218 | 0.317172 |
B60S | - | 11 | 24 | 63 | 133 | 0.003444 | 0.23399 | 0.152524 |
G01R | the control system | 16 | 22 | 315 | 445 | 0.008233 | 0.243386 | 0.225025 |
H02J | the control system | 40 | 14 | 850 | 121 | 0.016436 | 0.176263 | 0.359873 |
(a). The matrix of technology characteristics and functions in fuel cells. | ||||||||
---|---|---|---|---|---|---|---|---|
Fuel Cell | Manufacture | Power | Drive | Control | Cooling | Diagnose | ||
anode | 51 | 13 | 15 | 13 | 21 | 3 | 3 | |
assembly | 31 | 25 | 11 | 6 | 0 | 2 | 1 | |
catalyst | 103 | 48 | 59 | 6 | 6 | 1 | 0 | |
cathode | 259 | 60 | 60 | 40 | 38 | 8 | 10 | |
device | 519 | 212 | 187 | 60 | 72 | 55 | 40 | |
electrode | 66 | 82 | 42 | 9 | 3 | 7 | 1 | |
electrolyte | 120 | 55 | 107 | 15 | 4 | 3 | 1 | |
method | 41 | 24 | 9 | 11 | 42 | 8 | 13 | |
system | 138 | 16 | 53 | 13 | 4 | 20 | 2 | |
(b). The matrix of technology characteristics and functions in electric motors. | ||||||||
Charging | Controlling | Cooling | Diagnose | for Vehicle | Supplying Power | |||
cooling system | 1 | 19 | 92 | 3 | 92 | 44 | ||
control apparatus | 26 | 84 | 11 | 21 | 389 | 186 | ||
control method | 5 | 25 | 0 | 9 | 31 | 12 | ||
fuel cell stack | 5 | 19 | 3 | 9 | 175 | 39 | ||
fuel cell system | 4 | 13 | 4 | 8 | 58 | 30 | ||
power control | 51 | 116 | 40 | 20 | 495 | 375 | ||
(c). The matrix of technology characteristics and functions in the control system. | ||||||||
Controlling | Diagnosing | Driving | Performing | Vehicle | ||||
assembly | 6 | 17 | 8 | 8 | 14 | |||
control method | 0 | 1 | 1 | 2 | 0 | |||
device | 1 | 0 | 1 | 2 | 1 | |||
fuel cell | 6 | 8 | 8 | 2 | 11 | |||
test | 0 | 8 | 4 | 3 | 2 | |||
(d). The matrix of technology characteristics and functions in hydrogen storage. | ||||||||
Filling | Generating Power | Managing | Storing | Supplying | ||||
charging | 2 | 1 | 3 | 9 | 3 | |||
control | 3 | 0 | 3 | 12 | 1 | |||
storage | 6 | 3 | 10 | 37 | 4 | |||
supply | 4 | 1 | 5 | 15 | 14 | |||
tank | 1 | 2 | 8 | 26 | 5 |
Key Components | Technological Advances | Technological Opportunities |
---|---|---|
Fuel cell | fuel cell composition, manufacturing fuel cells, providing energy | controlling, cooling, and diagnosing fuel cells |
Electric motors | supplying power for vehicles | cooling and diagnosing fuel cell stack |
The control system | - | controlling, diagnosing, driving, performing methods, and devices |
Hydrogen storage | managing and storing hydrogen | filling hydrogen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Duan, X.; Yuan, X. Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis. Energies 2024, 17, 4208. https://doi.org/10.3390/en17174208
Yuan Y, Duan X, Yuan X. Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis. Energies. 2024; 17(17):4208. https://doi.org/10.3390/en17174208
Chicago/Turabian StyleYuan, Yuxin, Xuliang Duan, and Xiaodong Yuan. 2024. "Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis" Energies 17, no. 17: 4208. https://doi.org/10.3390/en17174208
APA StyleYuan, Y., Duan, X., & Yuan, X. (2024). Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis. Energies, 17(17), 4208. https://doi.org/10.3390/en17174208