Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations
Abstract
:1. Introduction
2. DNN Neural Network
3. Sample Construction
3.1. Code Introduction
3.2. Project Design
4. Results Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bethe, H.A. Nuclear physics B. Nuclear dynamics, theoretical. Rev. Mod. Phys. 1937, 9, 69. [Google Scholar] [CrossRef]
- Ren, C.; He, L.; Lei, J.; Liu, J.; Huang, G.; Gao, K.; Qu, H.; Zhang, Y.; Li, W.; Yang, X.; et al. Neutron transport calculation for the BEAVRS core based on the LSTM neural network. Sci. Rep. 2023, 13, 14670. [Google Scholar] [CrossRef]
- Lei, J.; Xie, J.; Chen, Z.; Yu, T.; Yang, C.; Zhang, B.; Zhao, C.; Li, X.; Wu, J.; Zhuang, H.; et al. Validation of Doppler Temperature Coefficients and Assembly Power Distribution for the Lattice Code KYLIN V2.0. Front. Energy Res. 2021, 9, 801481. [Google Scholar] [CrossRef]
- Capilla, M.; Talavera, C.; Ginestar, D.; Verdú, G. Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies. J. Comput. Appl. Math. 2020, 375, 112814. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z. Marvin: A parallel three-dimensional transport code based on the discrete ordinates method for reactor shielding calculations. Prog. Nucl. Energy 2021, 137, 103786. [Google Scholar] [CrossRef]
- Rahman, A.; Lee, D. Incorporation of anisotropic scattering into the method of characteristics. Nucl. Eng. Technol. 2022, 54, 3478–3487. [Google Scholar] [CrossRef]
- Dunn, W.L.; Shultis, J.K. Exploring Monte Carlo Methods; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Chu, T.-N.; Phan, G.T.; Tran, L.Q.L.; Bui, T.H.; Do, Q.B.; Dau, D.-T.; Nguyen, K.-C.; Nguyen, N.-D.; Nguyen, H.-T.; Hoang, V.-K.; et al. Sensitivity and uncertainty analysis of the first core of the DNRR using MCNP6 and new nuclear data libraries. Nucl. Eng. Des. 2024, 419, 112986. [Google Scholar] [CrossRef]
- Sandhu, H.K.; Bodda, S.S.; Gupta, A. A future with machine learning: Review of condition assessment of structures and mechanical systems in nuclear facilities. Energies 2023, 16, 2628. [Google Scholar] [CrossRef]
- Lei, J.; Zhou, J.; Zhao, Y.; Chen, Z.; Zhao, P.; Xie, C.; Ni, Z.; Yu, T.; Xie, J. Prediction of burn-up nucleus density based on machine learning. Int. J. Energy Res. 2021, 45, 14052–14061. [Google Scholar] [CrossRef]
- Qi, B.; Liang, J.; Tong, J. Fault diagnosis techniques for nuclear power plants: A review from the artificial intelligence perspective. Energies 2023, 16, 1850. [Google Scholar] [CrossRef]
- Lei, J.; Yang, C.; Ren, C.; Li, W.; Liu, C.; Sun, A.; Li, Y.; Chen, Z.; Yu, T. Development and validation of a deep learning-based model for predicting burnup nuclide density. Int. J. Energy Res. 2022, 46, 21257–21265. [Google Scholar] [CrossRef]
- Pikus, M.; Wąs, J. Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship. Energies 2023, 16, 6632. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Ma, Y. Boundary dependent physics-informed neural network for solving neutron transport equation. Ann. Nucl. Energy 2024, 195, 110181. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, H.; Ma, Y. Nodal expansion method based reduced-order model for control rod movement. Ann. Nucl. Energy 2024, 198, 110279. [Google Scholar] [CrossRef]
- Liu, B.; Lei, J.; Xie, J.; Zhou, J. Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning. Energies 2022, 15, 8629. [Google Scholar] [CrossRef]
- Tran, V.D.; Lam, D.K.; Tran, T.H. Hardware-based architecture for DNN wireless communication models. Sensors 2023, 23, 1302. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Yang, X.; Xu, L.; Chen, S.; Zhang, Y.; Zhang, J. Centroid Optimization of DNN Classification in DOA Estimation for UAV. Sensors 2023, 23, 2513. [Google Scholar] [CrossRef]
- Marleau, G.; Hébert, A.; Roy, R. A User Guide for DRAGON Version 4; Institute of Genius Nuclear, Department of Genius Mechanical, School Polytechnic of Montreal: Montreal, QC, Canada, 2011. [Google Scholar]
- Xiaohui, W. Analysis and Research on Diagnosis Methods of AFA 3G Fuel Assembly Leakage. In Proceedings of the 2017 25th International Conference on Nuclear Engineering, Shanghai, China, 2–6 July 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 57793, p. V001T01A001. [Google Scholar]
- Li, J.; Qiao, S.; Ren, J.; Yu, X.; Tian, R.; Tan, S. Detailed comparison of the characteristics of mixing and subchannel vortex induced by different spacer grids. Prog. Nucl. Energy 2023, 166, 104962. [Google Scholar] [CrossRef]
- Lei, J.; Ren, C.; Li, W.; Fu, L.; Li, Z.; Ni, Z.; Li, Y.; Liu, C.; Zhang, H.; Chen, Z.; et al. Prediction of crucial nuclear power plant parameters using long short-term memory neural networks. Int. J. Energy Res. 2022, 46, 21467–21479. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Z.; Zhou, J.; Yang, C.; Ren, C.; Li, W.; Xie, C.; Ni, Z.; Huang, G.; Li, L.; et al. Research on the preliminary prediction of nuclear core design based on machine learning. Nucl. Technol. 2022, 208, 1223–1232. [Google Scholar] [CrossRef]
- Ren, C.; Li, H.; Lei, J.; Liu, J.; Li, W.; Gao, K.; Huang, G.; Yang, X.; Yu, T. CNN-lstm-based model to fault diagnosis for CPR1000. Nucl. Technol. 2023, 209, 1365–1372. [Google Scholar] [CrossRef]
Assembly Independent Variables | Value | Feature Name |
---|---|---|
Burnup (Gw·d/tU) | 0–60/Step 0.5 | BURNUP |
Enrichment (%) | 2–4/Step 0.5 | ENS |
Power (W/cm) | 20–50/Step 10 | power |
Temperature (°C) | 280–320/Step 10 | tem |
Boron concentration (ppm) | 100–900/Step 200 | nb |
Burnable poison arrangement form (rod) | 0–16/Step 4 | ngd |
Burnable poison enrichment (%) | 6–12/Step 2 | ngdd |
Assembly Geometry Parameter | Value |
---|---|
Outer surface diameter of cladding/cm | 0.95 |
Cladding material | M5 |
UO2 pellet diameter/cm | 0.8192 |
Gap gas | Helium |
Core active section height/cm | 365.8 |
Burnable poison arrangement form (rod) | 0–16/Step 4 |
Fuel rod center distance/cm | 1.26 |
Number of assembly grids | 17 × 17 |
Fuel assembly center distance/cm | 21.504 |
Number of tubes per assembly | 25 |
Number of UO2 fuel pins per assembly | 264 |
UO2 pellet density/g/cm3 | 10.412 |
Water density/g/cm3 | 0.9983 |
M5 density/g/cm3 | 6.5 |
Item | Value | Item | Value |
---|---|---|---|
Hidden Layers | 6 | Input Scaling | Max-Min |
Nodes per layer | 512, 256, 128, 64, 4, 1 | Activation | ReLU |
Dropout (after 1st layer) | 0.3 | Optimizer | Adam |
Loss Function | MSE | Epochs | 5000 |
Batch Size | 1024 | Training/Validation/Testing Samples | 6:2:2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Lei, J.; Ni, Z.; Yu, T.; Xie, J.; Hong, J.; Hu, H. Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations. Energies 2024, 17, 4153. https://doi.org/10.3390/en17164153
Peng Z, Lei J, Ni Z, Yu T, Xie J, Hong J, Hu H. Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations. Energies. 2024; 17(16):4153. https://doi.org/10.3390/en17164153
Chicago/Turabian StylePeng, Zhiqiang, Jichong Lei, Zining Ni, Tao Yu, Jinsen Xie, Jun Hong, and Hong Hu. 2024. "Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations" Energies 17, no. 16: 4153. https://doi.org/10.3390/en17164153
APA StylePeng, Z., Lei, J., Ni, Z., Yu, T., Xie, J., Hong, J., & Hu, H. (2024). Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations. Energies, 17(16), 4153. https://doi.org/10.3390/en17164153