Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The SOFC System
2.2. Dataset
2.3. Data Processing
- (1)
- General
- (2)
- Preliminary data processing
- (3)
- PCA method
2.4. Calculation of the System’s Performance
2.5. Predictive Models of Performance
- (1)
- MLR
- (2)
- ANN
2.6. Evaluation of Predictive Accuracy
3. Results
3.1. Statistical Results of Thermoelectric Performance Variables
3.2. Analysis of Related Variables Affecting the System’s Performance
- (1)
- According to the operating data of the SOFC system for five experiments, shown in Figure 4, we extracted the parameters of the fuel/air flow rate and fuel/air pressure of multiple components during each operation, as well as the load power, the stack’s temperature, the combustion chamber’s temperature, and the change in the cooling water’s temperature.
- (2)
- We drew a chart of the fluctuation trend of each parameter according to the time series (the trend chart has been omitted in this article) and preprocessed the data. The standard deviation method was used to eliminate outliers in during preprocessing, and the nearest neighbor interpolation method was used for missing values.
- (3)
- We carried out a correlation analysis of the data, sorted out the variables with large correlations and the variables with small correlations, and prepared for reducing the data’s dimensionality.
- (4)
- Data normalization was realized by minimum–maximum normalization to obtain data that could be used for reducing the data’s dimensionality.
- (5)
- Principal component analysis (PCA) was used to reduce the dimensions; the specific method is shown in Equations (5)–(7).
3.3. Quantitative Analysis of the Variables of Interest
3.4. Results of the Predictive Model of the SOFC System’s Performance
3.4.1. MLR
3.4.2. ANN
3.4.3. Comparison of the Predictive Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinchhi, P.; Khandla, M.; Chaudhary, K.; Pati, R. Recent advances on electrolyte materials for SOFC: A review. Inorg. Chem. Commun. 2023, 152, 110724. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Peng, J.; Xia, Z.; Kupecki, J.; Li, X. Novel Hybrid Modeling and Analysis Method for Steam Reforming Solid Oxide Fuel Cell System Multifault Degradation Fusion Assessment. ACS Omega 2023, 8, 36876–36892. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Hossain, M.M.; Wycisk, R.; Pintauro, P.N. Poly (phenylene sulfonic acid)-expanded polytetrafluoroethylene composite membrane for low relative humidity operation in hydrogen fuel cells. J. Power Sources 2022, 535, 231375. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.; Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T. Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production. Sustainability 2023, 15, 1878. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Song, H. Development of a new configuration and optimization of the 5-kW class energy conversion system combining a solid oxide fuel cell and internal combustion engine using a spark-assisted ignition. Energy Convers. Manag. 2023, 291, 117329. [Google Scholar] [CrossRef]
- Rao, M.M.; Wang, L.; Chen, C.T.; Xiong, K.; Li, M.F.; Chen, Z.P.; Dong, J.B.; Xu, J.L.; Li, X. Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method. Energies 2022, 15, 3099. [Google Scholar] [CrossRef]
- Zhang, D.H.; Hu, J.G.; Zhao, W.; Lai, M.L.; Gao, Z.L.; Wu, X.L. A Single-Stack Output Power Prediction Method for High-Power, Multi-Stack SOFC System Requirements. Inorganics 2023, 11, 474. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Xue, Z.Z.; Wu, X.; Wu, Y.F.; Peng, S.P. Modelling and flow rate control methods for anode tail gas circulation intake system at SOFC. Int. J. Hydrogen Energy 2022, 47, 16201–16213. [Google Scholar] [CrossRef]
- Williams, N.J.; Osborne, C.; Seymour, I.D.; Bazant, M.Z.; Skinner, S.J. Application of finite Gaussian process distribution of relaxation times on SOFC electrodes. Electrochem. Commun. 2023, 149, 107458. [Google Scholar] [CrossRef]
- Xiong, X.; Liang, K.; Ma, G.; Ba, L. Three-dimensional multi-physics modelling and structural optimization of SOFC large-scale stack and stack tower. Int. J. Hydrogen Energy 2023, 48, 2742–2761. [Google Scholar] [CrossRef]
- Liang, W.; Yu, Z.; Bian, F.; Wu, H.; Zhang, K.; Ji, S.; Cui, B. Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system. Energy 2023, 285, 129410. [Google Scholar] [CrossRef]
- Alsarraf, J.; Alnaqi, A.A.; Al-Rashed, A.A.A.A. Thermodynamic modeling and exergy investigation of a hydrogen-based integrated system consisting of SOFC and CO2 capture option. Int. J. Hydrogen Energy 2022, 47, 26654–26664. [Google Scholar] [CrossRef]
- Singh, U.R.; Bhogilla, S. Exergy analysis of reversible sofc coupled with organic Rankine cycle and hydrogen storage for renewable energy storage. Int. J. Hydrogen Energy 2023, 48, 39169–39181. [Google Scholar] [CrossRef]
- Cheng, J.; Lavery, R.; McCallum, C.S.; Morgan, K.; Doran, J.; Wu, C.; Sun, K.; Rooney, D.W. Crossflow flat solid oxide fuel cell (SOFC) semi-empirical modeling and the multi-fuel property based on a commercial 700 W stack. Fuel 2024, 358, 130172. [Google Scholar] [CrossRef]
- Omer, A.; Rahimipetroudi, I.; Rashid, K.; Yang, J.B.; Dong, S.K. Design and performance optimization of a direct ammonia planar solid oxide fuel cell for high electrical efficiency. J. Power Sources 2023, 573, 233135. [Google Scholar] [CrossRef]
- Wu, X.J.; Huang, Q.; Zhu, X.J. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM. Int. J. Hydrogen Energy 2011, 36, 885–892. [Google Scholar] [CrossRef]
- Kang, Y.W.; Li, J.; Cao, G.Y.; Tu, H.Y.; Li, J.; Yang, J. Dynamic temperature modeling of an SOFC using least squares support vector machines. J. Power Sources 2008, 179, 683–692. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Huang, J.D.; Zhang, Y. A Predictive Model of SOFC Thermal Management Based on LS-SVM. Appl. Mech. Mater. 2014, 538, 274–277. [Google Scholar] [CrossRef]
- Ding, C.; Xia, Y.; Yuan, Z.; Yang, H.; Fu, J.; Chen, Z. Performance prediction for a fuel cell air compressor based on the combination of backpropagation neural network optimized by genetic algorithm (GA-BP) and support vector machine (SVM) algorithms. Therm. Sci. Eng. Prog. 2023, 44, 102070. [Google Scholar] [CrossRef]
- Sani, M.; Piffard, M.; Heiries, V. A Hybrid Diagnosis for Gas Starvation Faults in Proton Exchange Membrane Fuel Cells. In Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 13–15 December 2023; pp. 5837–5844. [Google Scholar]
- Wang, L.J.; Zhang, H.S.; Weng, S.L. Modeling and simulation of solid oxide fuel cell based on the volume-resistance characteristic modeling technique. J. Power Sources 2008, 177, 579–589. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhu, X.J.; Cao, G.Y.; Tu, H.Y. Dynamic modeling of SOFC based on a T-S fuzzy model. Simul. Model. Pract. Theory 2008, 16, 494–504. [Google Scholar] [CrossRef]
- Quan, R.; Liang, W.; Wang, J.; Li, X.R.; Chang, Y. An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm. Int. J. Hydrogen Energy 2024, 50, 1184–1196. [Google Scholar] [CrossRef]
- Liu, X.; Jia, X.; Wei, Y.; Wei, L.; Zhou, Y. Comparison of Degradation Prediction Methods for Proton Exchange Membrane Fuel Cell. In Proceedings of the 2023 Prognostics and Health Management Conference (PHM), Big Sky, MT, USA, 4–11 March 2023; pp. 152–158. [Google Scholar]
- Yu, Y.; Chen, S. Numerical study and prediction of water transfer in gas diffusion layer of proton exchange membrane fuel cells under vibrating conditions. Int. J. Energy Res. 2022, 46, 18781–18795. [Google Scholar] [CrossRef]
- Milewski, J.; Świrski, K. Modelling the SOFC behaviours by artificial neural network. Int. J. Hydrogen Energy 2009, 34, 5546–5553. [Google Scholar] [CrossRef]
- Xu, G.P.; Yu, Z.T.; Xia, L.; Wang, C.; Ji, S. Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm. Energy Convers. Manag. 2022, 268, 116026. [Google Scholar] [CrossRef]
- Senem, S.; Furkan, K.; Uğur, Ö. Artificial Intelligence Approach in Gasification Integrated Solid Oxide Fuel Cell Cycle. Fuel 2022, 311, 122591. [Google Scholar]
- Yasin, Ö.; Selcuk, S.; Ruya, S. A study on the hydrogen consumption calculation of proton exchange membrane fuel cells for linearly increasing loads: Artificial Neural Networks vs. Multiple Linear Regression. Renew. Energy 2020, 156, 570–578. [Google Scholar]
- Kannan, V.; Xue, H.S.; Raman, K.A.; Chen, J.S.; Fisher, A.; Birgersson, E. Quantifying operating uncertainties of a PEMFC-Monte Carlo-machine learning based approach. Renew. Energy 2020, 158, 343–359. [Google Scholar] [CrossRef]
- Sayed, H.A.; Wiliam, A.; Said, A.M. Smart Electricity Meter Load Prediction in Dubai Using MLR, ANN, RF, and ARIMA. Electronics 2023, 12, 389. [Google Scholar] [CrossRef]
- Karin, K. Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach. Energies 2011, 4, 1246–1257. [Google Scholar] [CrossRef]
- Keskin, T.E.; Özler, E.; Sander, E.; Dügenci, M.; Ahmed, M.Y. Prediction of electrical conductivity using ANN and MLR: A case study from Turkey. Acta Geophys. 2020, 68, 811–820. [Google Scholar] [CrossRef]
- Lee, K.Y.; Hsu, Y.Y. Design of battery energy storage system torsional damper for a microgrid with wind generators using artificial neural network. Energies 2024, 17, 3208. [Google Scholar] [CrossRef]
- Sarifzadeh, M.; Meghdari, M.; Rashtachian, D. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety. Appl. Energy 2017, 185, 345–361. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Cai, S.; Xu, L.; Chi, B.; Peng, J.; Li, X. Data-driven approaches for predicting performance degradation of solid oxide fuel cells system considering prolonged operation and shutdown accumulation effect. J. Power Sources 2024, 598, 234186. [Google Scholar] [CrossRef]
- Parente, A.; Sutherland, J.C. Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity. Combust. Flame 2013, 160, 340–350. [Google Scholar] [CrossRef]
- Song, S.H.; Xiong, X.Y.; Wu, X.; Xue, Z.Z. Modeling the SOFC by BP neural network algorithm. Int. J. Hydrogen Energy 2021, 46, 20065–20077. [Google Scholar] [CrossRef]
- PraveenKumar, S.; Agyekum, E.B.; Kumar, A.; Velkin, V.I. Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation. Energy 2023, 266, 126415. [Google Scholar] [CrossRef]
Parameter | Value or Type |
---|---|
Number of cells | 27 |
Coverage (m3) | 20 |
CH4 flow rate (NL/min) | 0–10.0 |
water-carbon ratio | 1–2 |
Operating temperature of the stack (°C) | 650–850 |
Air flow (NL/min) | 0–400 |
Stack’s nominal power (kW) | 1 |
Catalyst | Pt |
Catalytic processor | Allothermic |
Electrolyte | Precious metals |
Type of cell | Flat-paneled |
Fuel | CH4 |
variable voltage range (V) | 0–27 |
Name | Interpretation | Name | Interpretation |
---|---|---|---|
I | The stack’s current | Premix air pressure | Value of air pressure in the straight-through exhaust gas combustion chamber |
Taferburner | The temperature of the exhaust gas combustion chamber | TC17 | Temperature of the exhaust gas combustion chamber’s front end |
Burner CH4 PV | The methane flow rate of the reforming combustion chamber | TC19 | Middle temperature of the exhaust gas combustion chamber |
Stack air PV | Air velocity of the reactor cathode | AnIn Pressure | Reactor cathode’s inlet pressure |
Feed water pump SV | Set flow rate of the water | TC9 | Exhaust gas temperature at the inlet of the exhaust gas heat exchanger |
Premix air PV | Air flow rate directly through the exhaust gas combustion chamber | TC4 | Temperature of the reformer outlet’s fuel |
Burner air PV | Air flow rate of the reforming combustion chamber | Heater PV | The electric heater’s pressure value and feedback value |
Feed CH4 PV | Feedback value for the flow rate of methane supply | TC1 | Temperature of the reformer’s inlet |
TC22 | Temperature of the reformer’s exhaust gas | TC24 | Temperature of the stack’s anode inlet |
TC3 | Temperature of the reformer’s combustion chamber | TC14 | Temperature of the cold gas premixing chamber of the exhaust gas combustion chamber |
TC2 | Temperature of the reformer’s reforming chamber | TC6 | Temperature of the exhaust gas outlet of the tail gas heat exchanger |
TC10 | Temperature of the combustion heat exchanger’s inlet | TC0 | Reformer’s ignition temperature |
Stack air pressure | The stack’s air pressure | TC5 | Temperature of the exhaust gas combustion chamber’s outlet |
TC21 | Temperature of the exhaust gas combustion chamber’s end | TC23 | Final temperature of exhaust gases |
Forming gas pressure | Pressure of hydrogen and nitrogen (95% nitrogen, 5% hydrogen) | TC13 | Temperature of the combustion heat exchanger’s air outlet |
CH4 pressure | Pressure of methane | TC11 | Temperature of the fuel outlet of the combustion heat exchanger |
TC15 | Exit temperature of the cold gas premixing chamber of the exhaust gas combustion chamber | Tstack | The stack’s temperature |
TC20 | Temperature in the middle and back of the exhaust gas combustion chamber | U | The stack’s voltage |
CaOut pressure | Pressure of the stack’s cathode outlet | P | Power |
TC12 | Temperature of the combustion heat exchanger’s air inlet |
Name | Units and Measuring Instruments | Typology |
---|---|---|
I | A, electronic load | Input variable |
TAFERBURNER | °C, PT 100 thermometer | Input variable |
BURNER CH4 PV | NL/min, flow meter | Input variable |
STACK AIR PV | NL/min, flow meter | Input variable |
FEED WATER PUMP SV | NL/min, flow meter | Input variable |
PREMIX AIR PV | NL/min, flow meter | Input variable |
BURNER AIR PV | NL/min, flow meter | Input variable |
FEED CH4 PV | NL/min, flow meter | Input variable |
TC22 | °C, PT 100 thermometer | Input variable |
TC3 | °C, PT 100 thermometer | Input variable |
TC2 | °C, PT 100 thermometer | Input variable |
TC10 | °C, PT 100 thermometer | Input variable |
TSTACK | °C, PT 100 thermometer | Output variable |
U | V, electronic load | Output variable |
P | J, P = UI | Output variable |
Time | Median Power Generation (W) | Quantity of Heating Water (L) | Peak Water Temperature (°C) | Running Time (h) |
---|---|---|---|---|
1 | 720 | 3000 | 65 | 298 |
2 | 755 | 2900 | 70 | 382 |
3 | 910 | 3800 | 68 | 503 |
4 | 810 | 3100 | 65 | 438 |
5 | 730 | 2900 | 65 | 357 |
PCC | I | Tafterburner | Burner CH4 PV | Stack Air PV | Feed Water Pump SV | Premix Air PV | Burner Air PV | Feed CH4 PV | TC22 | TC3 | TC2 | TC10 | TC25 | TC18 | Premix Air Pressure | TC17 | TC19 | AnIn Pressure | TC9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tstack | 0.974 | 0.969 | 0.901 | 0.883 | 0.842 | 0.81 | 0.808 | 0.806 | 0.78 | 0.768 | 0.765 | 0.749 | 0.708 | 0.651 | 0.636 | 0.631 | 0.588 | 0.537 | 0.536 |
U | 0.919 | 0.841 | 0.87 | 0.843 | 0.892 | 0.805 | 0.845 | 0.909 | 0.587 | 0.598 | 0.581 | 0.519 | 0.491 | 0.5 | 0.635 | 0.691 | 0.579 | 0.427 | 0.564 |
P | 0.999 | 0.972 | 0.903 | 0.921 | 0.908 | 0.824 | 0.825 | 0.875 | 0.701 | 0.683 | 0.677 | 0.658 | 0.703 | 0.614 | 0.58 | 0.696 | 0.585 | 0.653 | 0.571 |
PCC | TC4 | Heater PV | TC1 | TC24 | TC14 | TC6 | TC0 | Stack Air Pressure | TC21 | Forming Gas Pressure | CH4 Pressure | TC15 | TC20 | CaOut Pressure | TC12 | TC5 | TC23 | TC13 | TC11 |
Tstack | 0.533 | 0.528 | 0.514 | 0.496 | 0.495 | 0.414 | 0.389 | 0.377 | 0.364 | 0.301 | 0.225 | 0.224 | 0.221 | 0.182 | 0.169 | 0.147 | 0.141 | 0.118 | 0.116 |
U | 0.303 | 0.555 | 0.292 | 0.531 | 0.555 | 0.268 | 0.334 | 0.314 | 0.461 | 0.156 | 0.349 | 0.388 | 0.279 | 0.272 | 0.342 | 0.296 | 0.091 | 0.188 | 0.03 |
P | 0.431 | 0.562 | 0.401 | 0.367 | 0.578 | 0.419 | 0.377 | 0.37 | 0.416 | 0.223 | 0.243 | 0.193 | 0.237 | 0.295 | 0.264 | 0.261 | 0.062 | 0.072 | 0.147 |
Times | Value | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
---|---|---|---|---|---|---|---|---|---|---|
Time 1 | Stack temperature | 259.3013 | −25.2129 | −9.7954 | 0.0393 | −1.5448 | 2.0382 | −3.6983 | 2.5273 | 1.0347 |
Voltage | 17.5669 | 0.1855 | 1.9084 | −0.0103 | −0.1083 | 0.0656 | −0.1474 | −0.2017 | 0.0116 | |
Power | 136.0201 | −25.7975 | −105.1033 | 1.2978 | −3.3728 | 1.4678 | −1.3815 | 17.0507 | 0.5091 | |
Time 2 | Stack temperature | 525.5366 | −29.2521 | 14.3873 | 0.2598 | −0.1497 | 0.7433 | 0.9772 | 1.7931 | 0.0621 |
Voltage | 22.6174 | −1.596 | 1.3378 | 0.0164 | −0.0582 | −0.0146 | 0.2514 | −0.0276 | −0.0008 | |
Power | 197.8473 | −3.0413 | 30.2764 | 0.03 | −3.1234 | −0.3156 | 1.0768 | 13.6352 | −0.057 | |
Time 3 | Stack temperature | 1798.0234 | 13.1742 | −78.1279 | −1.3623 | 0.0566 | −1.1655 | −18.1553 | 0.9617 | −0.2705 |
Voltage | 33.7386 | −0.0398 | −0.2589 | −0.0128 | 0.001 | −0.0306 | −0.511 | −0.0357 | −0.0021 | |
Power | 978.5543 | 1.5459 | −15.9767 | −0.8382 | 0.1815 | −1.0462 | −33.1387 | 12.5398 | −0.0507 | |
Time 4 | Stack temperature | 277.1368 | −5.7635 | 14.5393 | −1.3032 | 0.0498 | 3.3466 | −1.205 | 1.473 | 0.624 |
Voltage | 32.7131 | 1.2716 | −2.0299 | −0.0676 | −0.0384 | 0.0829 | 0.4116 | 0.095 | −0.022 | |
Power | 596.7318 | 47.0304 | −66.1091 | −2.7356 | −1.5946 | 3.7635 | 14.7878 | 19.7956 | −0.8187 | |
Time 5 | Stack temperature | 269.2489 | −21.5247 | 20.8656 | −0.0221 | 0.3768 | 1.0195 | 5.187 | 0.7194 | 0.4849 |
Voltage | 2.5948 | −0.3633 | −0.3121 | −0.0158 | −0.044 | 0.009 | 0.0676 | −0.07 | 0.0407 | |
Power | −411.928 | 10.4022 | −12.8524 | −0.1902 | −1.153 | 0.4861 | −10.7301 | 13.44 | 1.1031 |
Model: MLR | Statistics | Stack Temperature | Voltage | Power |
---|---|---|---|---|
1 | MAE | 2.28 | 0.19 | 2.93 |
NME | 0.33 | 0.95 | 0.63 | |
NRMSE | 0.44 | 1.45 | 0.86 | |
2 | MAE | 2.03 | 0.18 | 5.64 |
NME | 0.33 | 1.22 | 1.18 | |
NRMSE | 0.42 | 1.59 | 1.49 | |
3 | MAE | 4.3 | 0.13 | 6.46 |
NME | 0.65 | 0.91 | 0.98 | |
NRMSE | 0.98 | 1.28 | 1.44 | |
4 | MAE | 2.04 | 0.56 | 20.99 |
NME | 0.31 | 3.51 | 3.64 | |
NRMSE | 0.52 | 5.20 | 5.46 | |
5 | MAE | 2.62 | 0.37 | 11.21 |
NME | 0.41 | 2.45 | 2.61 | |
NRMSE | 0.60 | 3.23 | 3.38 |
Model: ANN | Statistics | Stack Temperature | Voltage | Power |
---|---|---|---|---|
1 | MAE | 0.70 | 0.07 | 1.45 |
NME | 0.10 | 0.34 | 0.31 | |
NRMSE | 0.14 | 0.48 | 0.44 | |
2 | MAE | 0.98 | 0.07 | 2.82 |
NME | 0.16 | 0.51 | 0.59 | |
NRMSE | 0.22 | 0.73 | 0.88 | |
3 | MAE | 0.91 | 0.03 | 2.10 |
NME | 0.14 | 0.22 | 0.32 | |
NRMSE | 0.24 | 0.34 | 0.52 | |
4 | MAE | 0.94 | 0.16 | 5.98 |
NME | 0.14 | 0.97 | 1.04 | |
NRMSE | 0.22 | 1.50 | 1.67 | |
5 | MAE | 1.14 | 0.10 | 3.06 |
NME | 0.18 | 0.69 | 0.71 | |
NRMSE | 0.27 | 1.14 | 1.18 |
CH4 Flow Rates (NL/min) | Combustion Chamber’s Temperature (°C) | Stack’s Temperature (°C) | P (J) |
---|---|---|---|
6.1 | 688 | 550 | 18.974 |
6.3 | 683 | 549 | 68.284 |
6.6 | 691 | 555 | 100.643 |
6.9 | 685 | 567 | 134.159 |
7 | 684 | 564 | 133.735 |
7.3 | 765 | 679 | 806.654 |
7.4 | 690 | 564 | 159.621 |
7.7 | 751 | 702 | 788.277 |
7.8 | 767 | 639 | 765.666 |
8 | 756 | 580 | 265.082 |
8.2 | 801 | 640 | 654.654 |
8.9 | 800 | 604 | 478.241 |
9 | 798 | 607 | 493.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, M.; Zhang, D.; Li, Y.; Wu, X.; Li, X. Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems. Energies 2024, 17, 4084. https://doi.org/10.3390/en17164084
Lai M, Zhang D, Li Y, Wu X, Li X. Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems. Energies. 2024; 17(16):4084. https://doi.org/10.3390/en17164084
Chicago/Turabian StyleLai, Meilin, Daihui Zhang, Yu Li, Xiaolong Wu, and Xi Li. 2024. "Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems" Energies 17, no. 16: 4084. https://doi.org/10.3390/en17164084
APA StyleLai, M., Zhang, D., Li, Y., Wu, X., & Li, X. (2024). Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems. Energies, 17(16), 4084. https://doi.org/10.3390/en17164084