A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Hybrid Power System
2.2. Battery Model
2.3. Supercapacitor Model
2.4. DC/DC Converter Model
2.5. Solar Cell Model
2.6. Power Management Algorithm
2.7. Demand Power Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. J. Energy Storage 2023, 72, 108404. [Google Scholar] [CrossRef]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2023, 54, 791–816. [Google Scholar] [CrossRef]
- Sharma, R.; Almasi, M.; Punia, R.C.; Chaudhary, R.; Nehra, S.P.; Dhaka, M.S.; Sharma, A. Solar-driven polymer electrolyte membrane fuel cell for photovoltaic hydrogen production. Int. J. Hydrogen Energy 2023, 48, 37999–38014. [Google Scholar] [CrossRef]
- Ates, E.B.; Calik, E. Public awareness of hydrogen energy: A comprehensive evaluation based on statistical approach. Int. J. Hydrogen Energy 2023, 48, 8756–8767. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.R.; Hossain, M.A.; Hossain, M.J. Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 2023, 72, 108170. [Google Scholar] [CrossRef]
- Milidonis, K.; Eliades, A.; Grigoriev, V.; Blanco, M.J. Unmanned Aerial Vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: A review. Sol. Energy 2023, 254, 182–194. [Google Scholar] [CrossRef]
- Luca, R.; Whiteley, M.; Neville, T.; Shearing, P.R.; Brett, D.J.L. Comparative study of energy management systems for a hybrid fuel cell electric vehicle—A novel mutative fuzzy logic controller to prolong fuel cell lifetime. Int. J. Hydrogen Energy 2022, 47, 24042–24058. [Google Scholar] [CrossRef]
- Gao, X.Z.; Hou, Z.X.; Guo, Z.; Liu, J.X.; Chen, X.Q. Energy management strategy for solar-powered high-altitude long-endurance aircraft. Energy Convers. Manag. 2013, 70, 20–30. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Z.; Hou, Z. Solar-powered airplanes: A historical perspective and future challenges. Prog. Aerosp. Sci. 2014, 71, 36–53. [Google Scholar] [CrossRef]
- Shiau, J.K.; Ma, D.M.; Yang, P.Y.; Wang, G.F.; Gong, J.H. Design of a solar power management system for an experimental UAV. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1350. [Google Scholar] [CrossRef]
- Morton, S.; D’Sa, R.; Papanikolopoulos, N. Solar powered UAV: Design and experiments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Harvey, J.R.; Jarvis, R.A.; Verstraete, D.; Bagg, R.L.; Honnery, D.; Palmer, J.L. Development of a hybrid-electric power-system model for a small surveillance aircraft. In Proceedings of the 28th International Congress of the Aeronautical Sciences, ICAS 2012, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Zhang, F.; Wang, L.; Coskun, S.; Pang, H.; Cui, Y.; Xi, J. Energy management strategies for hybrid electric vehicles: Review, classification, comparison, and outlook. Energies 2020, 13, 3352. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, M.; Sun, X. An Overview of Modelling and Energy Management Strategies for Hybrid Electric Vehicles. Appl. Sci. 2023, 13, 5947. [Google Scholar] [CrossRef]
- Tran, D.D.; Vafaeipour, M.; El Baghdadi, M.; Barrero, R.; Van Mierlo, J.; Hegazy, O. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renew. Sustain. Energy Rev. 2020, 119, 109596. [Google Scholar] [CrossRef]
- Yang, Z.; Lei, T.; Lin, Z.; Fu, H.; Zhang, X. The Testing Platform of Hybrid Electric Power System for a Fuel Cell Unmanned Aerial Vehicle. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2018, Nottingham, UK, 7–9 November 2018. [Google Scholar]
- Savvaris, A.; Xie, Y.; Malandrakis, K.; Lopez, M.; Tsourdos, A. Development of a fuel cell hybrid-powered unmanned aerial vehicle. In Proceedings of the 24th Mediterranean Conference on Control and Automation, MED 2016, Athens, Greece, 21–24 June 2016. [Google Scholar]
- Zhang, X.; Liu, L.; Dai, Y. Fuzzy state machine energy management strategy for hybrid electric UAVs with PV/Fuel cell/battery power system. Int. J. Aerosp. Eng. 2018, 2018, 16. [Google Scholar] [CrossRef]
- Zakaria, M.; Abdallah, M.; Elshafie, M. Design and Production of Small Tailless Unmanned Aerial Vehicle. In Proceedings of the International Conference on Applied Mechanics and Mechanical Engineering, Macau, 14–15 November 2012. [Google Scholar]
- Cai, G.; Dias, J.; Seneviratne, L. Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends. Unmanned Syst. 2023, 2, 101–125. [Google Scholar] [CrossRef]
- Peciak, M.; Skarka, W.; Mateja, K.; Gude, M. Impact Analysis of Solar Cells on Vertical Take-Off and Landing (VTOL) Fixed-Wing UAV. Aerospace 2023, 10, 247. [Google Scholar] [CrossRef]
- Abd Rahman, Y.A.; Hajibeigy, M.T.; Al-Obaidi, A.S.M.; Cheah, K.H. Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle. In Proceedings of the 9th Eureca 2017 International Engineering Research Conference, Selangor, Malaysia, 6 December 2017. [Google Scholar]
- Zhang, C.; Zhang, C.; Li, L.; Guo, Q. Parameter analysis of power system for solar-powered unmanned aerial vehicle. Appl. Energy 2021, 295, 117031. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Available online: https://www.mathworks.com/help/sps/powersys/ref/battery.html (accessed on 14 May 2024).
- The MathWorks, Inc. MATLAB.(2023). 23.2.0.2409890 (R2023b) Update 3; The MathWorks Inc.: Natick, MA, USA, 2023. [Google Scholar]
- Çınar, H.; Kandemir, I. Active energy management based on meta-heuristic algorithms of fuel cell/battery/supercapacitor energy storage system for aircraft. Aerospace 2021, 8, 85. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Available online: https://www.mathworks.com/help/sps/powersys/ref/supercapacitor.html?searchHighlight=supercapacitor&s_tid=srchtitle_support_results_2_supercapacitor (accessed on 15 May 2024).
- Alazrag, A.; Sbita, L. PV System with Battery Storage Using Bidirectional DC-DC Converter. Int. J. Electr. Eng. Comput. Sci. 2023, 5, 11–21. [Google Scholar] [CrossRef]
- The MathWorks, Inc. MATLAB Central File Exchange. Hoo L. DC-DC Converters Using Circuitry Method. Available online: https://www.mathworks.com/matlabcentral/fileexchange/54360-dc-dc-converters-using-circuitry-method (accessed on 16 May 2024).
- GitHub-Malopolo/EMS-Aircraft: Energy Management System of an Aircraft Powered by FC/PV/BATT/SC. Available online: https://github.com/malopolo/EMS-aircraft (accessed on 16 May 2024).
- The MathWorks, Inc. Available online: https://www.mathworks.com/help/sps/ref/bidirectionaldcdcconverter.html (accessed on 16 May 2024).
- Nguyen, X.H.; Nguyen, M.P. Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environ. Syst. Res. 2015, 4, 13. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Available online: https://www.mathworks.com/help/sps/powersys/ref/pvarray.html?s_tid=srchtitle_site_search_17_photovoltaic%20in%20simulink%20library (accessed on 20 May 2024).
- Suryoatmojo, H.; Mardiyanto, R.; Riawan, D.C.; Setijadi, E.; Anam, S.; Azmi, F.A.; Putra, Y.D. Design of MPPT based fuzzy logic for solar-powered unmanned aerial vehicle application. In Proceedings of the 4th International Conference on Engineering, Applied Sciences and Technology: Exploring Innovative Solutions for Smart Society, ICEAST 2018, Phuket, Thailand, 4–7 July 2018. [Google Scholar]
- Dhillon, J.; Unni, A.; Singh, N. Design and Simulation of a PV System with Battery Storage Using Bidirectional DC-DC Converter Using Matlab Simulink. Int. J. Sci. Technol. Res. 2023, 6, 1–5. [Google Scholar]
- SunPower Corporation Product Brochure. SunPower C60 Solar Cell. Available online: https://eshop.terms.eu/_data/s_3386/files/1379942540-sunpower_c60_bin_ghi.pdf (accessed on 20 May 2024).
- Xiao, C.; Wang, B.; Wang, C.; Yan, Y. Design of a novel fully-active PEMFC-Lithium battery hybrid power system based on two automatic ON/OFF switches for unmanned aerial vehicle applications. Energy Convers. Manag. 2023, 292, 117417. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Lin, Z.; Zhang, X. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle. Chin. J. Aeronaut. 2019, 32, 1488–1503. [Google Scholar] [CrossRef]
- Anderson, J. Aircraft Performance & Design; The McGraw-Hill Companies, Inc.: Chicago, IL, USA, 1999; p. 302. [Google Scholar]
- Liu, S.; Bai, J.; Wang, C. Energy acquisition of a small solar UAV using dynamic soaring. Aeronaut. J. 2021, 125, 60–86. [Google Scholar] [CrossRef]
- Morton, S.; Papanikolopoulos, N. Two meter solar UAV: Design approach and performance prediction for autonomous sensing applications. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar]
- Lee, B.; Kwon, S.; Park, P.; Kim, K. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3167–3177. [Google Scholar] [CrossRef]
- Lee, B.; Park, P.; Kim, C.; Yang, S.; Ahn, S. Power managements of a hybrid electric propulsion system for UAVs. J. Mech. Sci. Technol. 2012, 26, 2291–2299. [Google Scholar] [CrossRef]
- Shah, S.A.; Hamid, S.A.; Kamal, N.L.M.; Norhashim, N.; Sahwee, Z.; Azaldin, A.R.R.; Zolkifli, M.I. Experimental Evaluation of Solar Charge Controller Installed in a Solar-Powered Unmanned Aerial Vehicle (Uav). Def. S T Tech. Bull. 2021, 14, 198–210. [Google Scholar]
- Yilmaz, U.; Kircay, A.; Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 2018, 81, 994–1001. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Zhu, J.; Gao, T.; Chen, F.; Zhang, W. Integrated batteries layout and structural topology optimization for a solar-powered drone. Chin. J. Aeronaut. 2021, 34, 114–123. [Google Scholar] [CrossRef]
- Bakar, A.; Ke, L.; Liu, H.; Xu, Z.; Wen, D. Design of low altitude long endurance solar-powered UAV using genetic algorithm. Aerospace 2021, 8, 228. [Google Scholar] [CrossRef]
- D’sa, R.R. Design of a Transformable Unmanned Aerial Vehicle. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2020. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
Type | Lithium-polymer | - |
Weight | 1300 | g |
Nominal voltage | 14.8 | V |
Rated capacity | 8 | Ah |
Initial state of charge | 80 | % |
Parameters | Value | Unit |
---|---|---|
Weight | 279 | g |
Max. nominal voltage | 25 | V |
Rated capacity | 7 | F |
Max. current | 10 (continuous) | A |
Specific energy | 2.2 | Wh/kg |
Specific power | 2.7 | kW/kg |
Parameters | Value | Unit |
---|---|---|
Material | Monocrystalline semi-flexible | - |
Dimensions | 125 × 125+/−0.5 | mm |
Area | 0.015 | m2 |
Mass | 8 | g |
Efficiency | 21.8 | % |
Max. Power | 3.34 | W |
Voltage at max. power point, Vmp | 0.574 | V |
Current at max. power point, Imp | 5.83 | A |
Open circuit voltage, Voc | 0.682 | V |
Short circuit current, Isc | 6.24 | A |
Parameters | Value | Unit |
---|---|---|
Solar cell | 256 | g |
Motor | 56 | g |
Battery | 1300 | g |
Weight of coated UAV (empty) | 1580 | g |
Total weight for UAV (loaded) | 3300 | g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engin, S.; Çınar, H.; Kandemir, İ. A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell. Energies 2024, 17, 4056. https://doi.org/10.3390/en17164056
Engin S, Çınar H, Kandemir İ. A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell. Energies. 2024; 17(16):4056. https://doi.org/10.3390/en17164056
Chicago/Turabian StyleEngin, Selin, Hasan Çınar, and İlyas Kandemir. 2024. "A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell" Energies 17, no. 16: 4056. https://doi.org/10.3390/en17164056
APA StyleEngin, S., Çınar, H., & Kandemir, İ. (2024). A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell. Energies, 17(16), 4056. https://doi.org/10.3390/en17164056