Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe?
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Digital Adaptation, Energy Transition, and LCF
2.2. Export Diversification (EXD) and LCF
2.3. Income and LCF
2.4. Foreign Direct Investment (FDI) and LCF
3. Methods
3.1. Sample
3.2. Data Definition and Data Sources
3.3. Empirical Models and Estimation Strategy
3.3.1. Base Model
3.3.2. Moderating Effects
3.4. Descriptive Statistics of the Variable
4. Empirical Results and Discussion
4.1. The Natural Logarithm System GMM Base Model Outcomes
4.2. Moderation Affects Outcomes
5. Conclusions and Policy Implications
Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Mountford, H.; Waskow, D.; Gonzalez, L.; Gajjar, C.; Cogswell, N.; Holt, M.; Fransen, T.; Bergen, M.; Gerholdt, R. COP26: Key outcomes from the UN climate talks in Glasgow. 2021. Available online: https://www.wri.org/insights/cop26-key-outcomes-un-climate-talks-glasgow?utm_medium=social&utm_source=twitter&utm_campaign=socialmedia (accessed on 7 February 2024).
- Portner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Biesbroek, R. Climate Change: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 27 December 2023).
- Dogan, E.; Chishti, M.Z.; Karimi, A.N.; Tzeremes, P. The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries. Technol. Forecast. Soc. Change 2022, 181, 121756. [Google Scholar] [CrossRef]
- Xu, D.; Salem, S.; Awosusi, A.A.; Abdurakhmanova, G.; Altuntaş, M.; Oluwajana, D.; Kirikkaleli, D.; Ojekemi, O. Load Capacity Factor and Financial Globalization in Brazil: The Role of Renewable Energy and Urbanization. Front. Environ. Sci. 2022, 9, 823185. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Liu, L.; Zhou, D. Can renewable energy investment reduce carbon dioxide emissions? Evidence from scale and structure. Energy Econ. 2022, 112, 106181. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Elliot, B.D.; Collins, B.A. Do corruption, income inequality and redistribution hasten the transition towards a (non)renewable energy economy? Struct. Change Econ. Dyn. 2024, 68, 329–354. [Google Scholar] [CrossRef]
- Amuakwa-Mensah, F.; Klege, R.A.; Adom, P.K.; Amoah, A.; Hagan, E. Unveiling the energy saving role of banking performance in Sub-Sahara Africa. Energy Econ. 2018, 74, 828–842. [Google Scholar] [CrossRef]
- Bataille, C.; Melton, N. Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012. Energy Econ. 2017, 64, 118–130. [Google Scholar] [CrossRef]
- Doytch, N.; Narayan, S. Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption. Energy Econ. 2016, 54, 291–301. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, C.; Huang, J.; Hao, Y. The impact of financial development on energy demand: Evidence from China. Emerg. Mark. Financ. Trade 2018, 54, 269–287. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Nielsen, I. Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Econ. 2016, 56, 20–28. [Google Scholar] [CrossRef]
- Troster, V.; Shahbaz, M.; Uddin, G.S. Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Econ. 2018, 70, 440–452. [Google Scholar] [CrossRef]
- Aydin, M.; Koc, P.; Sahpaz, K.I. Investigating the EKC hypothesis with nanotechnology, renewable energy consumption, economic growth and ecological footprint in G7 countries: Panel data analyses with structural breaks. Energy Sources Part B Econ. Plan. Policy 2023, 18, 2163724. [Google Scholar] [CrossRef]
- Aydin, M.; Koc, P.; Tumay, M. Investigating the environmental Kuznets curve hypothesis with recovered paper consumption, human development index, urbanization, and forest footprint. Int. J. Environ. Sci. Technol. 2023, 20, 9053–9064. [Google Scholar] [CrossRef]
- Xing, L.; Udemba, E.N.; Tosun, M.; Abdallah, I.; Boukhris, I. Sustainable development policies of renewable energy and technological innovation toward climate and sustainable development goals. Sustain. Dev. 2023, 31, 1178–1192. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Halkos, G.; Mishra, S. Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustain. Dev. 2022, 30, 227–240. [Google Scholar] [CrossRef]
- Murshed, M. Revisiting the deforestation-induced EKC hypothesis: The role of democracy in Bangladesh. GeoJournal 2022, 87, 53–74. [Google Scholar] [CrossRef]
- Tenaw, D.; Beyene, A.D. Environmental sustainability and economic development in sub-Saharan Africa: A modified EKC hypothesis. Renew. Sustain. Energy Rev. 2021, 143, 110897. [Google Scholar] [CrossRef]
- Aydin, M.; Turan, Y.E. The influence of financial openness, trade openness, and energy intensity on ecological footprint: Revisiting the environmental Kuznets curve hypothesis for BRICS countries. Environ. Sci. Pollut. Res. 2020, 27, 43233–43245. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.S.; Salvo, A.; Taylor, D. Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach. Sustain. Dev. 2020, 28, 1441–1456. [Google Scholar] [CrossRef]
- Gormus, S.; Aydin, M. Revisiting the environmental Kuznets curve hypothesis using innovation: New evidence from the top 10 innovative economies. Environ. Sci. Pollut. Res. 2020, 27, 27904–27913. [Google Scholar] [CrossRef]
- Koc, S.; Bulus, G.C. Testing validity of the EKC hypothesis in South Korea: Role of renewable energy and trade openness. Environ. Sci. Pollut. Res. 2020, 27, 29043–29054. [Google Scholar] [CrossRef]
- Pata, U.K.; Aydin, M. Testing the EKC hypothesis for the top six hydropower energy-consuming countries: Evidence from Fourier bootstrap ARDL procedure. J. Clean. Prod. 2020, 264, 121699. [Google Scholar] [CrossRef]
- Sarabdeen, M.; Elhaj, M.; Alofaysan, H. Exploring the Influence of Digital Transformation on Clean Energy Transition, Climate Change, and Economic Growth among Selected Oil-Export Countries through the Panel ARDL Approach. Energies 2024, 17, 298. [Google Scholar] [CrossRef]
- Pata, U.K. Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues. Eur. J. Health Econ. 2021, 22, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Siche, R.; Pereira, L.; Agostinho, F.; Ortega, E. Convergence of ecological footprint and emergy analysis as a sustainability indicator of countries: Peru as a case study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3182–3192. [Google Scholar] [CrossRef]
- Aydin, M.; Degirmenci, T.; Yavuz, H. The influence of multifactor productivity, Research and Development expenditure, and renewable energy consumption on the ecological footprint in G7 countries: Testing the environmental Kuznets curve hypothesis. Environ. Model. Assess. 2023, 28, 693–708. [Google Scholar] [CrossRef]
- Rout, S.K.; Gupta, M.; Sahoo, M. The role of technological innovation and diffusion, energy consumption and financial development in affecting ecological footprint in BRICS: An empirical analysis. Environ. Sci. Pollut. Res. 2022, 29, 25318–25335. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Kartal, M.T.; Bekun, F.V.; Pata, U.K.; Foon, C.L.; Depren, S.K. Role of green technology, environmental taxes, and green energy towards sustainable environment: Insights from sovereign Nordic countries by CS-ARDL approach. Gondwana Res. 2023, 117, 194–206. [Google Scholar] [CrossRef]
- Wiedmann, T.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2013, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Giljum, S.; Bruckner, M.; Martinez, A.; Munoz, P. Material footprint assessment in a global input-output framework. J. Ind. Ecol. 2015, 19, 792–804. [Google Scholar] [CrossRef]
- Jordan Stretegy Forum. Knowledge Is Power Readiness for Frontier Technologies Index. 2022. Available online: https://jsf.org/uploads/2022/12/readiness-for-frontier-technologies-index-1.pdf (accessed on 3 January 2024).
- Saleem, R.; Nasreen, S.; Azam, S. Role of financial inclusion and export diversification in determining green growth: Evidence from SAARC economies. Environ. Sci. Pollut. Res. 2022, 29, 60327–60340. [Google Scholar] [CrossRef]
- Sharma, R.; Shahbaz, M.; Kautish, P.; Vo, X.V. Analyzing the impact of export diversification and technological innovation on renewable energy consumption: Evidences from BRICS nations. Renew. Energy 2021, 178, 1034–1045. [Google Scholar] [CrossRef]
- Shahzad, U.; Doğan, B.; Sinha, A.; Fareed, Z. Does Export product diversification help to reduce energy demand: Exploring the contextual evidence from the newly industrialized countries. Energy 2021, 214, 118881. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saleem, M.M.; Destek, M.A.; Caglar, A.E. The dynamic linkage between remittances, export diversification, education, renewable energy consumption, economic growth, and CO2 emissions in top remittance-receiving countries. Sustain. Dev. 2022, 30, 165–175. [Google Scholar] [CrossRef]
- Mania, E. Export diversification and CO2 emissions: An augmented environmental Kuznets curve. J. Int. Dev. 2020, 32, 168–185. [Google Scholar] [CrossRef]
- Apergis, N.; Can, M.; Gozgor, G.; Lau, C.K.M. Effects of export concentration on CO2 emissions in developed countries: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 14106–14116. [Google Scholar] [CrossRef] [PubMed]
- Apergis, N.; Jebli, M.B.; Youssef, S.B. Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan African countries. Renew. Energy 2018, 127, 1011–1016. [Google Scholar] [CrossRef]
- Liu, H.; Kim, H.; Liang, S.; Kwon, O.S. Export diversification and ecological footprint: A comparative study on EKC theory among Korea, Japan, and China. Sustainability 2018, 10, 3657. [Google Scholar] [CrossRef]
- Churchill, S.A.; Ivanovski, K.; Munvanvi, M.E. Income inequality and renewable energy consumption: Time varying non-parametric evidence. J. Clean. Prod. 2021, 296, 126306. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. Inequality, finance and renewable energy consumption in Sub-Saharan Africa. Renew. Energy 2021, 165, 678–688. [Google Scholar]
- Vo, D.H.; Pham, A.T.; Tran, T.; Vu, N.T. Does income inequality moderate the effect of fintech development on renewable energy consumption? PLoS ONE 2023, 18, e0293033. [Google Scholar] [CrossRef]
- Padhan, L.; Bhat, S. Nexus between foreign direct investment and ecological footprint in BRICS and Next-11: The moderating role of green innovation. Manag. Environ. Qual. 2023, 35, 799–817. [Google Scholar] [CrossRef]
- Khan, U.; Khan, A.M.; Khan, M.S.; Ahmed, P.; Haque, A.; Parvin, R.A. Are the Impacts of Renewable Energy Use on Load Capacity Factors Homogeneous for Developed and Developing Nations? Evidence from the G7 and E7 Nations. Environ. Sci. Pollut. Res. 2023, 30, 24629–24640. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, T.S.; Kirikkaleli, D. Impact of Renewable Energy Consumption, Globalisation, and Technological Innovation on Environmental Degradation in Japan: Application of Wavelet Tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Iorember, P.T.; Jelilov, G.; Usman, O.; Işık, A.; Celik, B. The Influence of Renewable Energy Use, Human Capital, and Trade on Environmental Quality in South Africa: Multiple Structural Breaks Cointegration Approach. Environ. Sci. Pollut. Res. 2021, 28, 13162–13174. [Google Scholar] [CrossRef] [PubMed]
- Dogan, A.; Pata, U.K. The Role of ICT, R&D Spending and Renewable Energy Consumption on Environmental Quality: Testing the LCC Hypothesis for G7 Countries. J. Clean. Prod. 2022, 380, 135038. [Google Scholar]
- Obiakor, R.T.; Uche, E.; Das, N. Is Structural Innovativeness a Panacea for Healthier Environments? Evidence from Developing Countries. Technol. Soc. 2022, 70, 102033. [Google Scholar] [CrossRef]
- Liu, X.; Olanrewaju, V.O.; Agyekum, E.B.; El-Naggar, M.F.; Alrashed, M.M.; Kamel, S. Determinants of Load Capacity Factor in an Emerging Economy: The Role of Green Energy Consumption and Technological Innovation. Front. Environ. Sci. 2022, 10, 1028161. [Google Scholar] [CrossRef]
- Uche, E.; Das, N.; Nwaeze, N.C.; Bera, P. Navigating the Paths to Sustainable Environments via Energy Security, Renewable Energy and Economic Complexity: Evidence from Array of Pollution Metrics. Energy Environ. 2022, 35, 1434–1455. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Samour, A. Renewable Energy, Fiscal Policy and Load Capacity Factor in BRICS Countries: Novel Findings from Panel Nonlinear ARDL Model. Environ. Dev. Sustain. 2023, 26, 4365–4389. [Google Scholar] [CrossRef]
- Alola, A.A.; Özkan, O.; Usman, O. Role of Non-Renewable Energy Efficiency and Renewable Energy in Driving Environmental Sustainability in India: Evidence from the Load Capacity Factor Hypothesis. Energies 2023, 16, 2847. [Google Scholar] [CrossRef]
- Guloglu, B.; Caglar, E.A.; Pata, U.K. Analysing the Determinants of the Load Capacity Factor in OECD Countries: Evidence from Advanced Quantile Panel Data Methods. Gondwana Res. 2023, 118, 92–104. [Google Scholar] [CrossRef]
- Pata, U.K.; Kartal, M.T.; Dam, M.M.; Kaya, F. Navigating the Impact of Renewable Energy, Trade Openness, Income, and Globalization on Load Capacity Factor: The Case of Latin American and Caribbean (LAC) Countries. Int. J. Energy Res. 2023, 2023, 6828781. [Google Scholar] [CrossRef]
- Samour, A.; Adebayo, T.S.; Agyekum, E.B.; Khan, B.; Kamel, S. Insights from BRICS-T Economies on the Impact of Human Capital and Renewable Electricity Consumption on Environmental Quality. Sci. Rep. 2023, 13, 5245. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Luo, R.; Adebayo, T.S.; Kartal, M.T. Paving the Ways Toward Sustainable Development: The Asymmetric Effect of Economic Complexity, Renewable Electricity, and Foreign Direct Investment on the Environmental Sustainability in BRICS-T. Environ. Dev. Sustain. 2023, 26, 9115–9139. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Öztürk, İ.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Pata, U.K.; Samour, A. Do Renewable and Nuclear Energy Enhance Environmental Quality in France? A new EKC Approach with the Load Capacity Factor. Prog. Nucl. Energy 2022, 149, 104249. [Google Scholar] [CrossRef]
- Dai, J.; Ahmed, Z.; Alvarado, R.; Ahmad, M. Assessing the nexus between human capital, green energy, and load capacity factor: Policymaking for achieving sustainable development goals. Gondwana Res. 2024, 129, 452–464. [Google Scholar] [CrossRef]
- Jin, X.; Ahmed, Z.; Pata, U.K.; Kartal, M.T.; Erdogan, S. Do investments in green energy, energy efficiency, and nuclear energy R&D improve the load capacity factor? An augmented ARDL approach. Geosci. Front. 2023, 15, 101646. [Google Scholar]
- Pata, U.K.; Isik, C. Determinants of the Load Capacity Factor in China: A Novel Dynamic ARDL Approach for Ecological Footprint Accounting. Resour. Policy 2021, 74, 102313. [Google Scholar] [CrossRef]
- Huilan, W.; Akadiri, S.S.; Haouas, I.; Awosusi, A.A.; Odu, A.T. Impact of Trade Liberalization and Renewable Energy on Load Capacity Factor: Evidence from Novel Dual Adjustment Approach. Energy Environ. 2022, 35, 795–814. [Google Scholar] [CrossRef]
- Pata, U.K.; Kartal, M.T. Impact of Nuclear and Renewable Energy Sources on Environment Quality: Testing the EKC and LCC Hypotheses for South Korea. Nucl. Eng. Technol. 2023, 55, 587–594. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, J. Digital finance and greener emissions: An empirical analysis of cities in China. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Xing, Z. Do international trade diversification, intellectual capital, and renewable energy transition ensure effective natural resources management in BRICST region. Resour. Policy 2023, 81, 103429. [Google Scholar] [CrossRef]
- Islam, M.M.; Ahmad, P.; Shabir, M.; Usman, M.; Kamal, M. Analyzing asymmetric ecological performance under structural change, technological innovation, and trade diversification: Fresh insights from the USA. Environ. Sci. Pollut. Res. 2023, 30, 115164–115184. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, U.; Ferraz, D.; Doğan, B.; do Nascimento Rebelatto, D.A. Export product diversification and CO2 emissions: Contextual evidence from developing and developed economies. J. Clean. Prod. 2020, 276, 124146. [Google Scholar] [CrossRef]
- Bashir, M.A.; Sheng, B.; Doğan, B.; Sarwar, S.; Shahzad, U. Export product diversification and energy efficiency: Empirical evidence from OECD countries. Struct. Change Econ. Dyn. 2020, 55, 232–243. [Google Scholar] [CrossRef]
- Wang, L.; Chang, H.L.; Rizvi SK, A.; Sari, A. Are eco-innovation and export diversification mutually exclusive to control carbon emissions in G-7 countries? J. Environ. Manag. 2020, 270, 110829. [Google Scholar] [CrossRef] [PubMed]
- Berthe, A.; Elie, L. Mechanisms explaining the impact of economic inequality on environmental deterioration. Ecol. Econ. 2015, 116, 191–200. [Google Scholar] [CrossRef]
- Boyce, J.K. Inequality as a cause of environmental degradation. Ecol. Econ. 1994, 11, 169–178. [Google Scholar] [CrossRef]
- Uzar, U. Is income inequality a driver for renewable energy consumption? J. Clean. Prod. 2020, 255, 120287. [Google Scholar] [CrossRef]
- Laurent, E. Social-Ecology: Exploring the Missing Link in Sustainable Development. 2015. Available online: https://hal-sciencespo.archives-ouvertes.fr/hal-01136326 (accessed on 5 January 2024).
- Fredriksson, P.G.; Vollebergh, H.R.J.; Dijkgraaf, E. Corruption and energy efficiency in OECD countries: Theory and evidence. J. Environ. Econ. Manag. 2004, 47, 207–231. [Google Scholar] [CrossRef]
- Cadoret, I.; Padovano, F. The political drivers of renewable energies policies. Energy Econ. 2016, 56, 261–269. [Google Scholar] [CrossRef]
- Scruggs, L.A. Political and economic inequality and the environment. Ecol. Econ. 1998, 26, 259–275. [Google Scholar] [CrossRef]
- Ulucak, Z.S.; İlkay, S.C.; Özcan, B.; Gedikli, A. Financial globalization and environmental degradation nexus: Evidence from emerging economies. Resour. Policy 2020, 67, 101698. [Google Scholar] [CrossRef]
- Kihombo, S.; Vaseer, A.I.; Ahmed, Z.; Chen, S.; Kirikkaleli, D.; Adebayo, T.S. Is there a tradeoff between financial globalization, economic growth, and environmental sustainability? An advanced panel analysis. Environ. Sci. Pollut. Res. 2022, 29, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, U.; Ferraz, D.; Nguyen, H.H.; Cui, L. Investigating the spillovers and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in the context of China. Technol. Forecast. Soc. Change 2022, 174, 121205. [Google Scholar] [CrossRef]
- Melnykovych, M.; Nijnik, M.; Soloviy, I. Social-ecological innovation in remote mountain areas: Adaptive responses of forest-dependent communities to the challenges of a changing world. Sci. Total Environ. 2018, 613, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.; Raza, S.A.; Usman, M.; Sharma, G.D.; Iqbal, H.A. Environmental cost of non-renewable energy and economic progress: Do ICT and financial development mitigate some burden? J. Clean. Prod. 2022, 333, 130066. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Agozie, Q.D.; Bekun, V.F. Can technological innovation, foreign direct investment and natural resources ease some burden for the BRICS economies within current industrial era? Technol. Soc. 2022, 70, 102037. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Zhang, X.; Yang, Y. The impact of technological innovation on the green digital economy and development strategies. PLoS ONE 2024, 19, e0301051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saqib, N.; Usman, M.; Ozturk, I.; Sharif, A. Harnessing the synergistic impacts of environmental innovations, financial development, green growth, and ecological footprint through the lens of SDG policies for countries exhibiting high ecological footprints. Energy Policy 2024, 184, 113863. [Google Scholar] [CrossRef]
Afghanistan | Cambodia | Germany | Libya | Nigeria | Singapore |
Albania | Cameroon | Ghana | Latvia | New Zealand | Slovakia |
Argentina | Chile | Greece | Lebanon | Nicaragua | Slovenia |
Armenia | China | Guatemala | Lithuania | North Macedonia | Sri Lanka |
Austria | Colombia | Guinea | Luxembourg | Norway | Sudan |
Bahrain | Costa Rica | Haiti | Madagascar | Pakistan | Switzerland |
Bangladesh | Cote d’Ivoire | Honduras | Malawi | Panama | Tanzania |
Azerbaijan | Croatia | Hungary | Malaysia | Paraguay | Thailand |
Belarus | Cyprus | India | Mali | Peru | Togo |
Belgium | Denmark | Indonesia Iran Iraq Ireland | Malta | Philippines | Turkey |
Benin | Dominican Republic | Israel | Mauritania | Poland | Uganda |
Bolivia | Ecuador | Italy | Mexico | Portugal | Ukraine United Arab Emirates |
Bosnia and Herzegovina | Egypt | Moldova | Qatar | United Kingdom | |
Botswana | El Salvador | Jamaica | Mongolia | Russian Federation | United States of America |
Brazil | Estonia | Japan | Morocco | Rwanda | Vietnam |
Bulgaria | Finland | Jordan | Mozambique | Saudi Arabia | Zambia |
Burkina Faso | France Gabon | Kazakhstan | Myanmar | Serbia | Zimbabwe |
Burundi | Georgia | Kenya Kuwait | Nepal | Sierra Leone |
Variables | Explanation | Indicator | Source |
---|---|---|---|
Material Footprint is Proxy for LCF | The total amount of raw materials extracted to meet final consumption demands. “It is one indication of the pressures placed on the environment to support economic growth and to satisfy the material needs of people” | Indicator of environmental quality | UNEP Global Material Flows Database |
Energy Transition (REN) | Traditional fossil fuel to renewable energy transition | Indicator of green innovation. | UNCTAD |
Frontier Technology Readiness Index (FTRI) | FTRI indicates how prepared countries are to adopt and adapt frontier technologies. It combines data on information and communications technology (ICT) deployment, labor skills, research and development (R&D), industrial capacity, and availability of finance | Digital Adaptation, Indicator of green innovation. | UNCTAD |
Trade Diversification (EXD) | International Trade Diversification Index (weighted average of exports and imports) | Indicator of green innovation | UNCTAD |
Foreign Direct Investment (FDI) | Foreign direct investment, net inflows (% of GDP) | Indicator of green innovation | WB-WDI |
Income Group | The groups are: “low income”, USD 1135 or less; “middle income”, USD 1136 to USD 13,845; and “high income”, USD 13,846 or more | Income inequality | WB-WDI |
Domestic Credit to Private Sector by Banks (DCPS) | Domestic credit to private sector by banks (% of the GDP) | Financial development Indicator | WB-WDI |
Employment (EMP) | Employment to population ratio, 15+, total (%) (modeled ILO estimate) | Human development indicator | WB-WDI |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnLCF | 1390 | 16.648 | 1.789 | 12.266 | 22.278 |
lnREN | 1375 | 2.839 | 1.602 | −4.605 | 4.535 |
lnFTRI | 1373 | −0.917 | 0.671 | −2.526 | 0 |
lnEXD | 1392 | −0.475 | 0.286 | −1.474 | −0.0640 |
lnDCPS | 1392 | 3.632 | 1.179 | −5.357 | 6.262 |
lnEMP | 1392 | 4.021 | 0.203 | 3.434 | 4.472 |
FDI | 1392 | 5.062 | 17.653 | −117.375 | 280.146 |
INCO high | 1392 | 0.311 | 0.463 | 0 | 1 |
INCO med | 1392 | 0.540 | 0.499 | 0 | 1 |
INCO low | 1392 | 0.149 | 0.356 | 0 | 1 |
Variable | lnREN | lnFTRI | lnEXD | lnDCPS | lnEMP | FDI | INCO High | INCO Med | INCO Low |
---|---|---|---|---|---|---|---|---|---|
lnREN | 1.0000 | ||||||||
lnFTRI | −0.3819 | 1.0000 | |||||||
lnEXD | 0.1109 | −0.7041 | 1.0000 | ||||||
lnDCPS | −0.2272 | 0.6518 | −0.4592 | 1.0000 | |||||
lnEMP | 0.1020 | −0.0721 | 0.0504 | 0.0077 | 1.0000 | ||||
FDI | −0.0388 | 0.0627 | −0.0125 | 0.0833 | 0.0325 | 1.0000 | |||
INCO high | −0.3086 | 0.6480 | −0.5833 | 0.4534 | 0.0703 | 0.1288 | 1.0000 | ||
INCO med | 0.0350 | −0.1509 | 0.3009 | −0.0876 | −0.2388 | −0.1128 | −0.7390 | 1.0000 | |
INCO low | 0.3592 | −0.6434 | 0.3432 | −0.4759 | 0.2482 | −0.0095 | −0.2694 | −0.4498 | 1.0000 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
lnLCF (−1) | 0.5890 *** (0.000) | 0.5782 *** (0.000) | 0.6166 *** (0.000) | 0.6083 *** (0.000) |
lnREN | −0.1118 *** (0.000) | −0.0740 ** (0.021) | −0.1001 ** (0.012) | −0.0806 ** (0.042) |
lnFTRI | 0.2017 *** (0.004) | |||
lnEXD | −1.4086 *** (0.000) | −1.5048 *** (0.000) | −1.5178 *** (0.000) | −1.2273 *** (0.000) |
FDI | −0.0020 *** (0.000) | −0.0020 *** (0.000) | −0.0017 *** (0.000) | −0.0019 *** (0.000) |
lnDCPS | 0.0230 (0.488) | 0.0297 (0.356) | 0.02666 (0.383) | 0.0342 (0.265) |
lnEMP | 0.1211 (0.465) | 0.1783 (0.288) | 0.1246 (0.425) | 0.0822 (0.619) |
INCO high | −0.0726 (0.668) | −0.0377 (0.827) | −0.0630 (0.705) | |
INCO med | 0.2546 ** (0.020) | 0.2682 **(0.015) | 0.2783 ** (0.012) | |
lnREN ∗ lnFTRI | 0.0469 *** (0.009) | 0.0081(0.743) | 0.0530 ** (0.046) | |
lnEXD ∗ lnFTRI | −0.4802 * (0.075) | −0.0189 (0.937) | ||
INCO ∗ lnFTRI | 0.6677 ** (0.017) | |||
Constant | 6.0212 *** (0.000) | 5.7353 *** (0.000) | 5.4078 *** (0.000) | 5.9715 *** (0.000) |
AR (1) | −4.60 (0.000) | −4.61 (0.000) | −4.55 (0.000) | −4.65 (0.000) |
AR (2) | 1.58 (0.115) | 1.63 (0.102) | 1.55 (0.121) | 1.41 (0.160) |
Sargan test | 6.26 (0.282) | 8.29 (0141) | 8.38 (0.136) | 6.58 (0.254) |
Hansen test | 5.86 (0.320) | 6.58 (0.254) | 7.73 (0.172) | 6.49 (0.261) |
Number of Obs | 1246 | 1246 | 1246 | 1246 |
Variable | All | OPEC |
---|---|---|
lnLCF (−1) | 0.6078557 *** (0.000) | 0.5801601 ** (0.010) |
lnREN | −0.1259337 *** (0.000) | −0.2832684 (0.309) |
lnFTRI | 0.2026261 *** (0.004) | |
lnEXD | −1.171722 *** (0.000) | −2.92524 * (0.096) |
lnDCPS | 0.0345931 (0.286) | −0.1720048 (0.547) |
lnEMP | 0.0167152 (0.921) | −1.09357 (0.743) |
FDI | −0.0020049 *** (0.000) | −0.0050481 (0.939) |
inco ∗ lnFTRI | 0.648754(0.017) | 2.133377(0.492) |
Constant | 6.413833 *** (0.000) | 11.54148 (0.278) |
AR (1) | −4.65 (0.000) | −1.77 (0.076) |
AR (2) | 1.42 (0.155) | 0.14 (0.887) |
Sargan test | 6.15 (0.292) | 0.887 (0.367) |
Hansen test | 6.19 (0.288) | 1.09 (0.955) |
Number of Obs | 1246 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarabdeen, M.; Elhaj, M.; Alofaysan, H. Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe? Energies 2024, 17, 3981. https://doi.org/10.3390/en17163981
Sarabdeen M, Elhaj M, Alofaysan H. Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe? Energies. 2024; 17(16):3981. https://doi.org/10.3390/en17163981
Chicago/Turabian StyleSarabdeen, Masahina, Manal Elhaj, and Hind Alofaysan. 2024. "Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe?" Energies 17, no. 16: 3981. https://doi.org/10.3390/en17163981
APA StyleSarabdeen, M., Elhaj, M., & Alofaysan, H. (2024). Do Digital Adaptation, Energy Transition, Export Diversification, and Income Inequality Accelerate towards Load Capacity Factors across the Globe? Energies, 17(16), 3981. https://doi.org/10.3390/en17163981