Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramos, R.T.; Beleño-Cabarcas, M.T.; Mendoza-Gómez, A.; Núnez-Ramírez, F.; Samaniego-Gámez, B.Y.; Samaniego-Gámez, S.; Gough, R.E.V.; Escobosa-García, I.; Vázquez-Angulo, J.C.; Bazante-González, I. Análisis Fisicoquímicos Para El Estudio de Las Propiedades Energéticas de La Biomasa Agrícola Residual; OmniaScience: Barcelona, Spain, 2023. [Google Scholar]
- Nowak, A.; Jarosz-Angowska, A.; Klikocka, H.; Krukowski, A.; Kubik, R.; Kasztelan, A. Potencjał Polskiego Rolnictwa Na Tle Krajów UE w Zakresie Zapewnienia Bezpieczeństwa Żywnościowego i Energetycznego; Instytut Naukowo-Wydawniczy “Spatium”: Radom, Poland, 2023. [Google Scholar]
- Ollani, S.; Peano, C.; Sottile, F. Recent Innovations on the Reuse of Almond and Hazelnut By-Products: A Review. Sustainability 2024, 16, 2577. [Google Scholar] [CrossRef]
- Borowski, P.F. Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants. Energies 2022, 15, 1928. [Google Scholar] [CrossRef]
- Obi, O.F.; Pecenka, R.; Clifford, M.J. A Review of Biomass Briquette Binders and Quality Parameters. Energies 2022, 15, 2426. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, X.P. Integrating Renewable Sources into Energy System for Smart City as a Sagacious Strategy towards Clean and Sustainable Process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ong, H.C.; Fattah, I.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Ok, Y.S. Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Sivashanmugam, P.; Kavitha, S.; Kannah, Y.; Varjani, S.; AdishKumar, S.; Kumar, G. Lignocellulosic Biomass-Based Pyrolysis: A Comprehensive Review. Chemosphere 2022, 286, 131824. [Google Scholar]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Maj, G.; Buczyński, K.; Klimek, K.E.; Kapłan, M. Evaluation of Growth and Energy Parameters of One-Year-Old Raspberry Shoots, Depending on the Variety. Energies 2024, 17, 3153. [Google Scholar] [CrossRef]
- DIRECTIVE (EU) 2018/2001 of the European Parliament and of the Council—Of 11 December 2018—On the Promotion of the Use of Energy from Renewable Sources; European Union: Brussels, Belgium, 2018.
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to Bioenergy: A Review on the Recent Conversion Technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Noszczyk, T.; Dyjakon, A.; Koziel, J.A. Kinetic Parameters of Nut Shells Pyrolysis. Energies 2021, 14, 682. [Google Scholar] [CrossRef]
- George, O.S.; Dennison, M.S.; Yusuf, A.A. Characterization and Energy Recovery from Biomass Wastes. Sustain. Energy Technol. Assess. 2023, 58, 103346. [Google Scholar] [CrossRef]
- Wang, K.; Tester, J.W. Sustainable Management of Unavoidable Biomass Wastes. Green Energy Resour. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Suman, S.; Yadav, A.M.; Tomar, N.; Bhushan, A. Combustion Characteristics and Behaviour of Agricultural Biomass: A Short Review. In Renewable Energy-Technologies and Applications; IntechOpen: London, UK, 2020; p. 155. [Google Scholar]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Bobak, Ł. Nuts as Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their in Vitro Bioactive Properties. Food Chem. X 2022, 15, 100418. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Salvadó, J.-S.; Ros, E. Bioactives and Health Benefits of Nuts and Dried Fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Kasztelan, A.; Jarosz-Angowska, A.; Nowak, A.; Krukowski, A. Konkurencyjna Biogospodarka Szansą Dla Zrównoważonego Rozwoju Krajów Unii Europejskiej; Instytut Naukowo-Wydawniczy “Spatium”: Radom, Poland, 2021. [Google Scholar]
- Królikowski, K.; Matłok, N. Wielkość Biomasy Odpadowej z Produkcji Szkółkarskiej i Możliwości Jej Zagospodarowania. Pol. J. Sustain. Dev. 2021, 25, 63–68. [Google Scholar] [CrossRef]
- EN-ISO 1928:2009; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value. ISO: Geneva, Switzerland, 2010.
- EN-ISO 18122:2016-01; Solid Biofuels. Determination of Ash Content; ISO: Geneva, Switzerland, 2016.
- EN-ISO 18123:2016-01; Solid Fuels—Determination of Volatile Content by Gravimetric Method. ISO: Geneva, Switzerland, 2016.
- EN-ISO 18134-1:2015; Solid Biofuels—Determination of Moisture Content—Oven Dry Method Part 1: Total Moisture—Reference Method. ISO: Geneva, Switzerland, 2015.
- Choudhury, N.D.; Saha, N.; Phukan, B.R.; Kataki, R. Characterization and Evaluation of Energy Properties of Pellets Produced from Coir Pith, Saw Dust and Ipomoea Carnea and Their Blends. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- EN-ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Alves, J.L.F.; da Silva, J.C.G.; Mumbach, G.D.; Domenico, M.D.; da Silva Filho, V.F.; de Sena, R.F.; Machado, R.A.F.; Marangoni, C. Insights into the Bioenergy Potential of Jackfruit Wastes Considering Their Physicochemical Properties, Bioenergy Indicators, Combustion Behaviors, and Emission Characteristics. Renew. Energy 2020, 155, 1328–1338. [Google Scholar] [CrossRef]
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K.; Koós, T. Theoretical and Experimental Metals Flow Calculations during Biomass Combustion. Fuel 2016, 185, 524–531. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Serban, A.; Paraschiv, S. Calculation of Combustion Air Required for Burning Solid Fuels (Coal/Biomass/Solid Waste) and Analysis of Flue Gas Composition. Energy Rep. 2020, 6, 36–45. [Google Scholar] [CrossRef]
- Król, K. Quality Assessment of the Selected Hazelnut Cultivars (Corylus avellana L.) Produced in Poland. Ph.D. Thesis, Department of Functional and Organic Food, Warsaw, Poland, 2022. [Google Scholar]
- Ciemniewska, H.; Ratusz, K. Charakterystyka Orzechów Laskowych Trzech Odmian Leszczyny Uprawianej w Polsce. Rośliny Oleiste-Oilseed Crops 2012, 33, 273–284. [Google Scholar] [CrossRef]
- Ferrão, A.C.; Guiné, R.P.; Ramalhosa, E.; Lopes, A.; Rodrigues, C.; Martins, H.; Gonçalves, R.; Correia, P.M. Chemical and Physical Properties of Some Hazelnut Varieties Grown in Portugal. Agronomy 2021, 11, 1476. [Google Scholar] [CrossRef]
- Lopes, A.; Matos, A.; Guiné, R. Evaluation of Morphological and Physical Characteristics of Hazelnut Varieties. Millenium-J. Educ. Technol. Health 2016, 2, 13–24. [Google Scholar] [CrossRef]
- An, N.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Mid-Term Impact of Climate Change on Hazelnut Yield. Agriculture 2020, 10, 159. [Google Scholar] [CrossRef]
- Zscheischler, J.; Orth, R.; Seneviratne, S.I. Bivariate Return Periods of Temperature and Precipitation Explain a Large Fraction of European Crop Yields. Biogeosciences 2017, 14, 3309–3320. [Google Scholar] [CrossRef]
- Farinelli, D.; Tombesi, A.; Boco, M.; Trappoloni, C.S. Hazelnut (Corylus avellana L.) Kernel Quality during Maturity in Central Italy. Acta Hortic. 2001, 556, 553–558. [Google Scholar] [CrossRef]
- Nazarenko, M.; Simchenko, O. Diversity of Hazelnut Varieties and Changes in Plant Development during Introduction in the Semi-Arid Zone. Biosyst. Divers. 2023, 31, 313–318. [Google Scholar] [CrossRef]
- Bak, T.; Karadeniz, T. Effects of Branch Number on Quality Traits and Yield Properties of European Hazelnut (Corylus avellana L.). Agriculture 2021, 11, 437. [Google Scholar] [CrossRef]
- Solar, A.; Stampar, F. Characterisation of Selected Hazelnut Cultivars: Phenology, Growing and Yielding Capacity, Market Quality and Nutraceutical Value. J. Sci. Food Agric. 2011, 91, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Mehlenbacher, S.A. Hazelnuts (Corylus). Genet. Resour. Temp. Fruit Nut Crops 1991, 290, 791–838. [Google Scholar] [CrossRef]
- Ozdemir, F.; Akinci, I. Physical and Nutritional Properties of Four Major Commercial Turkish Hazelnut Varieties. J. Food Eng. 2004, 63, 341–347. [Google Scholar] [CrossRef]
- Demirbaş, A. Fuel Characteristics of Olive Husk and Walnut, Hazelnut, Sunflower, and Almond Shells. Energy Sources 2002, 24, 215–221. [Google Scholar] [CrossRef]
- Hebda, T.; Brzychczyk, B.; Francik, S.; Pedryc, N. Evaluation of Suitability of Hazelnut Shell Energy for Production of Biofuels. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23 May 2018. [Google Scholar]
- Matin, A.; Brandić, I.; Voća, N.; Bilandžija, N.; Matin, B.; Jurišić, V.; Antonović, A.; Krička, T. Changes in the Properties of Hazelnut Shells Due to Conduction Drying. Agriculture 2023, 13, 589. [Google Scholar] [CrossRef]
- Antmen, Z.F. Exploitation of Peanut and Hazelnut Shells as Agricultural Industrial Wastes for Solid Biofuel Production. Fresenius Environ. Bull. 2019, 28, 2340–2347. [Google Scholar]
- Maj, G.; Piekut, J. Comparing Emission Factors and Physicochemical Properties of Waste-Biomass Leaves of Selected Species of Trees. Pol. J. Environ. Stud. 2018, 27, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Maj, G.; Krzaczek, P.; Kuranc, A.; Piekarski, W. Energy Properties of Sunflower Seed Husk as Industrial Extrusion Residue. Agric. Eng. 2017, 21, 77–84. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Toledo, M.; Vidal, V.; Guerrero, F.; Diaz-Robles, L.A.; Petit-Breuilh, X.; Lapuerta, M. Emission Factors for PM2.5, CO, CO2, NOx, SO2 and Particle Size Distributions from the Combustion of Wood Species Using a New Controlled Combustion Chamber 3CE. Sci. Total Environ. 2017, 584, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Mateos, E.; Ormaetxea, L. Sustainable Renewable Energy by Means of Using Residual Forest Biomass. Energies 2019, 12, 13. [Google Scholar] [CrossRef]
- Malaťák, J.; Bradna, J.; Velebil, J. The Dependence of COx and NOx Emission Concentrations on the Excess Air Coefficient during Combustion of Selected Agricultural Briquetted By-Products. Agron. Res. 2017, 15, 1084–1093. [Google Scholar]
Parameter | Method | Equipment | |
---|---|---|---|
Energetic properties | Higher Heating Value (HHV; MJ·kg−1) | EN-ISO 1928:2009 [22] | isoperibolic calorimeter LECO AC 600 |
Lower Heating Value (LHV; MJ·kg−1) | |||
Proximate Analysis | Ash (A; %) | EN-ISO 18122-01 [23] | thermogravimetric analyser LECO TGA 701 |
Volatile matter (V; %) | EN-ISO 18123-01 [24] | ||
Moisture (M; %) | EN-ISO 18134-3 [25] | ||
Fixed carbon (FC; %) | FC = 100 − V − A − M [26] | ||
Ultimate Analysis | Carbon (C; %) | EN-ISO 16948:2015-07 [27] | elemental analyser LECO CHNS 628 |
Hydrogen (H;%) | |||
Nitrogen (N; %) | |||
Sulfur (S; %) | EN-ISO 16994:2016-10 [28] | ||
Oxygen (O; %) | O = 100 – A – H − C − S − N [29] | ||
Emission factors calculated according studies [30]: | |||
Emission Factors | Carbon monoxide Emission factor (Ec) of chemically pure coal (CO; kg·Mg−1) | CO—carbon monoxide emission factor (kg·kg−1), —molar mass ratio of carbon monoxide and carbon, EC—emission factor of chemically pure coal (kg∙kg−1), C/CO—part of the carbon emitted as CO (for biomass 0.06). | |
Carbon dioxide emission factor (CO2; kg·Mg−1) | CO2—carbon dioxide emission factor (kg∙kg−1)—molar mass ratio of carbon dioxide and pure coal—molar mass ratio of carbon dioxide and carbon monoxide—molar mass ratio of carbon and methane, ECH4—methane emission factor, ENMVOC—emission index of non-methane VOCs (for biomass 0.009). | ||
Sulphur dioxide emission factor (SO2; kg·Mg−1) | SO2 —sulphur dioxide emission factor (kg∙kg−1), 2—molar mass ratio of SO2 and sulphur, S—sulphur content in fuel (%), r—coefficient determining the part of total sulphur retained in the ash. | ||
Emission factor was calculated from (NOX; kg·Mg−1) | , NOx—NOx emission factor (kg∙kg−1)—molar mass ratio of nitrogen dioxide to nitrogen. The molar mass of nitrogen dioxide is considered due to the fact that nitrogen oxide in the air oxidizes very soon to nitrogen dioxide, N/C—nitrogen to carbon ratio in biomass, NOx/N—part of nitrogen emitted as NOx (for biomass 0.122). | ||
Exhaust gas composition was calculated according to [31,32]: | |||
Exhaust gas composition | Theoretical oxygen demand (VO2; Nm3·kg−1) | , C-biomass carbon content (%), H-biomass hydrogen content (%), S-biomass sulfur content (%), O-biomass oxygen content). | |
The stoichiometric volume of dry air required to burn 1 kg of biomass (Voa; Nm3·kg−1) | Since the oxygen content in the air is 21%, which participates in the combustion process in the boiler, the stoichiometric volume of dry air required to burn 1 kg of biomass | ||
Carbon dioxide content of the combustion products (VCO2; Nm3·kg−1) | |||
Content of sulfur dioxide (VSO2; Nm3·kg−1) | , | ||
Water vapor content of the exhaust gas (VH2O; Nm3·kg−1) | , is the component of water vapor volume from the hydrogen combustion process ( ; M-fuel moisture content (%), -air absolute humidity (kg H2O·kg−1 dry air). | ||
(VN2; Nm3 ·kg−1) | , Considering that the nitrogen in the exhaust comes from the fuel composition and the combustion air, and the nitrogen content in the air is 79%. | ||
(Vgu; Nm3 ·kg−1) | |||
(Vga; Nm3 ·kg−1) | Assuming that biomass combustion is carried out under stoichiometric conditions, i.e., using the minimum amount of air required for combustion (λ = 1), a minimum exhaust gas volume will be obtained. |
Parameter | Hazelnut Varieties | p-Value | ||||
---|---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | |||
100 pcs. (g) | yield | 481.00 ± 12.29 c | 599.33 ± 56.01 a | 598.00 ± 7.21 a | 502.33 ± 24.58 b | 0.0026 |
pericarp | 76.00 ± 8.00 c | 144.33 ± 26.08 ab | 156.00 ± 4.36 ab | 101.67 ± 20.82 bc | 0.0015 | |
1 bush (kg) | yield | 5.70± 0.08 a | 5.20 ± 0.35 ab | 5.5 ± 0.1 a | 4.80 ± 0.20 a | 0.0039 |
pericarp | 1.07 ± 0.11 c | 1.65 ± 0.3 ab | 1.94 ± 0.05 a | 1.22 ± 0.25 bc | 0.0029 | |
1 ha (t·ha−1) | yield | 3.80 ± 0.05 a | 3.46 ± 0.23 ab | 3.66 ± 0.07 a | 3.19 ± 0.13 b | 0.0032 |
pericarp | 0.71 ± 0.07 c | 1.10 ± 0.20 ab | 1.29 ± 0.04 a | 0.81 ± 0.17 bc | 0.0017 |
Parameter | Hazelnut Varieties | p-Value | |||
---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | ||
LHV (MJ·kg−1) | 14.60 ± 0.02 b | 14.85 ± 0.07 a | 14.86 ± 0.02 a | 14.75 ± 0.08 a | 0.0014 |
HHV (MJ·kg−1) | 15.77 ± 0.02 b | 16.02 ± 0.07 a | 16.03 ± 0.02 a | 15.94 ± 0.08 a | 0.0014 |
M (%) | 7.44 ± 0.02 c | 7.59 ± 0.06 b | 7.12 ± 0.02 d | 8.23 ± 0.08 a | 0.0001 |
V (%) | 66.67 ± 0.29 b | 66.33 ± 0.17 b | 68.01 ± 0.7 a | 65.1 ± 0.33 c | 0.0002 |
A (%) | 8.67 ± 0.16 a | 8.55 ± 0.24 a | 8.54 ± 0.04 a | 8.31 ± 0.15 a | 0.1175 |
FC (%) | 17.66 ± 0.17 ab | 17.54 ± 0.19 ab | 16.34 ± 0.72 b | 18.37 ± 0.35 a | 0.0113 |
C (%) | 40.76 ± 0.22 b | 41.26 ± 0.06 a | 40.82 ± 0.14 ab | 40.99 ± 0.22 ab | 0.0322 |
H (%) | 6.72 ± 0.29 a | 6.88 ± 0.32 a | 6.83 ± 0.26 a | 6.71 ± 0.30 a | 0.8587 |
N (%) | 0.67 ± 0.01 b | 0.85 ± 0.06 a | 0.72 ± 0.06 b | 0.65 ± 0.02 b | 0.0014 |
S (%) | 0.03 ± 0.00 d | 0.04 ± 0.00 a | 0.04 ± 0.00 b | 0.03 ± 0.00 c | 0.0001 |
O (%) | 43.14 ± 0.27 a | 42.41 ± 0.05 a | 43.05 ± 0.47 a | 43.32 ± 0.66 a | 0.1308 |
H/C | 1.65 ± 0.07 a | 1.67 ± 0.08 a | 1.67 ± 0.06 a | 1.64 ± 0.06 a | 0.9068 |
N/C | 0.02 ± 0.0002 b | 0.02 ± 0.0014 a | 0.02 ± 0.0013 b | 0.02 ± 0.0005 b | 0.0016 |
O/C | 0.79 ± 0.0062 a | 0.77 ± 0.0008 a | 0.79 ± 0.0112 a | 0.79 ± 0.0165 a | 0.0847 |
Parameter | Hazelnut Varieties | p-Value | |||
---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | ||
CO (kg·Mg−1) | 50.22 ± 0.27 b | 50.83 ± 0.08 a | 50.29 ± 0.17 ab | 50.5 ± 0.275 ab | 0.0322 |
CO2 (kg·Mg−1) | 1229.80 ± 6.58 b | 1244.72 ± 1.86 a | 1231.61 ± 4.12 ab | 1236.57 ± 6.74 ab | 0.0322 |
NOx (kg·Mg−1) | 2.38 ± 0.04 b | 3.02 ± 0.21 a | 2.56 ± 0.20 b | 2.28 ± 0.07 b | 0.0014 |
SO2 (kg·Mg−1) | 0.06 ± 0.00 d | 0.09 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 c | 0.0001 |
Dust (kg·Mg−1) | 10.95 ± 0.19 a | 10.8 ± 0.30 a | 10.78 ± 0.04 a | 10.49 ± 0.19 a | 0.0175 |
Parameter | Hazelnut Varieties | p-Value | |||
---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | ||
VoO2 (Nm3·kg−1) | 0.84 ± 0.02 a | 0.86 ± 0.02 a | 0.84 ± 0.02 a | 0.84 ± 0.03 a | 0.5264 |
Voa (Nm3·kg−1) | 3.98 ± 0.08 a | 4.09 ± 0.08 a | 4.02 ± 0.10 a | 3.99 ± 0.12 a | 0.5264 |
VCO2 (Nm3·kg−1) | 0.76 ± 0.004 b | 0.77 ± 0.001 a | 0.76 ± 0.003 ab | 0.77 ± 0.004 ab | 0.0322 |
VSO2 (Nm3·kg−1) | 0.00020 ± 0 d | 0.00029 ± 0 a | 0.00026 ± 0 b | 0.00023 ± 0 c | 0.0001 |
VH2O (Nm3·kg−1) | 0.84 ± 0.03 a | 0.86 ± 0.04 a | 0.85 ± 0.03 a | 0.85 ± 0.03 a | 0.9017 |
VN2 (Nm3·kg−1) | 3.68 ± 0.06 b | 3.92 ± 0.06 a | 3.75 ± 0.11 ab | 3.67 ± 0.09 b | 0.0234 |
Vgu (Nm3·kg−1) | 4.44 ± 0.06 b | 4.69 ± 0.06 a | 4.51 ± 0.11 ab | 4.43 ± 0.10 b | 0.0225 |
Vga (Nm3·kg−1) | 5.93 ± 0.10 d | 6.21 ± 0.10 a | 6.02 ± 0.16 b | 5.93 ± 0.15 c | 0.0082 |
HHV | LHV | C | H | N | S | M | O | A | V | FC | CO | NOx | CO2 | SO2 | Dust | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HHV | 1 | 0.98 * | 0.4 | 0.03 | 0.54 * | 0.79 * | −0.11 | −0.19 | −0.33 | 0.19 | −0.29 | 0.4 | 0.54 | 0.4 | 0.79 * | −0.33 |
LHV | 0.97 * | 1 | 0.39 | 0.04 | 0.55 * | 0.79 * | −0.16 | −0.20 | −0.30 | 0.24 | −0.34 | 0.39 | 0.55 * | 0.39 | 0.79 * | −0.3 |
C | 0.40 | 0.39 | 1 | 0.32 | 0.61 * | 0.68 * | 0.27 | −0.72 * | −0.12 | −0.23 | 0.19 | 0.96 * | 0.61 * | 0.90 * | 0.68 * | −0.12 |
H | 0.03 | 0.04 | 0.32 | 1 | 0.21 | 0.27 | −0.17 | −0.73 * | 0.04 | 0.25 | −0.44 | 0.32 | 0.21 | 0.32 | 0.27 | 0.04 |
N | 0.54 * | 0.55 * | 0.61 * | 0.21 | 1 | 0.82 * | −0.31 | −0.67 * | 0.21 | 0.26 | −0.28 | 0.61 * | 0.88 * | 0.61 * | 0.82 * | 0.21 |
S | 0.79 * | 0.79 * | 0.68 * | 0.27 | 0.82 * | 1 | −0.11 | −0.59 * | −0.08 | 0.1 | −0.23 | 0.68 * | 0.82 * | 0.68 * | 0.94 * | −0.08 |
M | −0.11 | −0.16 | 0.27 | −0.17 | −0.31 | −0.11 | 1 | 0.21 | −0.53 * | −0.93 * | * 0.78 | 0.27 | −0.31 | 0.27 | −0.11 | −0.53 * |
O | −0.19 | −0.20 | −0.72 * | −0.73 * | −0.67 * | −0.59 * | 0.21 | 1 | −0.38 | −0.21 | 0.36 | −0.72 * | −0.67 * | −0.72 * | −0.59 * | −0.38 |
A | −0.33 | −0.30 | −0.12 | 0.04 | 0.21 | −0.08 | −0.53 * | −0.38 | 1 | 0.39 | −0.45 | −0.12 | 0.21 | −0.12 | −0.08 | 0.87 * |
V | 0.19 | 0.24 | −0.23 | 0.25 | 0.26 | 0.1 | −0.93 * | −0.21 | 0.39 | 1 | −0.87* | −0.23 | 0.26 | −0.23 | 0.1 | 0.39 |
FC | −0.29 | −0.34 | 0.19 | −0.44 | −0.28 | −0.23 | 0.78* | 0.36 | −0.45 | −0.87 | 1 | 0.19 | −0.28 | 0.19 | −0.23 | −0.45 |
CO | 0.41 | 0.39 | 0.94 * | 0.32 | 0.61 * | 0.68 * | 0.27 | −0.72 * | −0.12 | −0.23 | 0.19 | 1 | 0.61 * | 0.83 * | 0.68 * | −0.12 |
NOx | 0.54 * | 0.55 * | 0.61 * | 0.21 | 0.89 * | 0.82 * | −0.31 | −0.67 * | 0.21 | 0.26 | −0.28 | 0.61 * | 1 | 0.61 * | 0.82 * | 0.21 |
CO2 | 0.40 | 0.39 | 0.89 * | 0.32 | 0.61 * | 0.68 * | 0.27 | −0.72 * | −0.12 | −0.23 | 0.19 | 0.88 * | 0.61 * | 1 | 0.68 * | −0.12 |
SO2 | 0.79 * | 0.79 * | 0.68 * | 0.27 | 0.82 * | 0.89 * | −0.11 | −0.59 * | −0.08 | 0.1 | −0.23 | 0.68 * | 0.82 * | 0.68 * | 1 | −0.08 |
Dust | −0.33 | −0.3 | −0.12 | 0.04 | 0.21 | −0.08 | −0.53 * | −0.38 | 0.91 * | 0.39 | −0.45 | −0.12 | 0.21 | −0.12 | −0.08 | 1 |
Parameter | Hazelnut Varieties | |||
---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | |
HHV | −0.94722 | 0.40572 | 0.27486 | 0.83419 |
LHV | −0.94722 | 0.40572 | 0.27486 | 0.83419 |
C | −0.85314 | −0.40643 | −0.36927 | −0.86005 |
H | −0,25539 | 0.63546 | −0.70506 | −0.93126 |
N | 0.00049 | 0.30914 | −0.99828 | −0.12313 |
S | 0.4123 | 0.3987 | 0.3552 | 0.4112 |
M | 0.86603 | −0.94111 | 0.30038 | −0.30944 |
O | 0.46946 | 0.39998 | 0.74641 | 0.91531 |
A | 0.86603 | −0.9165 | −0.88189 | −0.90154 |
V | −0.86603 | 0.54972 | −0.99688 | 0.02934 |
FC | −0.14803 | 0.91473 | 0.99733 | 0.43725 |
WEco | −0.85314 | −0.40643 | −0.56927 | −0.86005 |
WEco2 | −0.800208 | 0.536112 | 0.10914 | −0.78739 |
WENOx | 0.00049 | 0.30914 | −0.99828 | −0.12313 |
WECO2 | −0.85314 | −0.40643 | −0.56927 | −0.86005 |
WESO2 | 0.2998 | 0.4012 | 0.3552 | 0.3112 |
WEDust | 0.86603 | −0.9165 | −0.88189 | −0.90154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowska, A.; Klimek, K.E.; Maj, G.; Kapłan, M. Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties. Energies 2024, 17, 3899. https://doi.org/10.3390/en17163899
Borkowska A, Klimek KE, Maj G, Kapłan M. Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties. Energies. 2024; 17(16):3899. https://doi.org/10.3390/en17163899
Chicago/Turabian StyleBorkowska, Anna, Kamila E. Klimek, Grzegorz Maj, and Magdalena Kapłan. 2024. "Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties" Energies 17, no. 16: 3899. https://doi.org/10.3390/en17163899
APA StyleBorkowska, A., Klimek, K. E., Maj, G., & Kapłan, M. (2024). Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties. Energies, 17(16), 3899. https://doi.org/10.3390/en17163899