Computational and Data-Driven Modeling of Combustion in Reciprocating Engines or Gas Turbines
1. Introduction
2. Modeling of Reciprocating Internal Combustion Engines
3. Modeling of Gas Turbines
Conflicts of Interest
List of Contributions
- Cameretti, M.C.; De Robbio, R.; Mancaruso, E.; Palomba, M. CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen. Energies 2022, 15, 5521. https://doi.org/10.3390/en15155521.
- Abdelhameed, E.; Tashima, H. EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines. Energies 2022, 16, 336. https://doi.org/10.3390/en16010336.
- Falai, A.; Misul, D.A. Data-Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine. Energies 2023, 16, 2125. https://doi.org/10.3390/en16052125.
- Doppalapudi, A.T.; Azad, A.K.; Khan, M.M.K. Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine. Energies 2023, 16, 2586. https://doi.org/10.3390/en16062586.
- Sforza, L.; Abdelwahid, S.; Lucchini, T.; Onorati, A. Ultra-Lean Premixed Turbulent Combustion: Challenges of RANS Modelling. Energies 2022, 15, 5947. https://doi.org/10.3390/en15165947.
- D’Antuono, G.; Lanni, D.; Galloni, E.; Fontana, G. Numerical Modeling and Simulation of a Spark-Ignition Engine Fueled with Ammonia-Hydrogen Blends. Energies 2023, 16, 2543. https://doi.org/10.3390/en16062543.
- Castiglione, T.; Perrone, D.; Strafella, L.; Ficarella, A.; Bova, S. Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications. Energies 2023, 16, 2634. https://doi.org/10.3390/en16062634.
- Lu, W.; Bartocci, P.; Abad, A.; Bischi, A.; Yang, H.; Cabello, A.; de Las Obras Loscertales, M.; Zampilli, M.; Fantozzi, F. Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor. Energies 2023, 16, 3850. https://doi.org/10.3390/en16093850.
- Giacomazzi, E.; Cecere, D.; Cimini, M.; Carpenella, S. Direct Numerical Simulation of a Reacting Turbulent Hydrogen/Ammonia/Nitrogen Jet in an Air Crossflow at 5 Bar. Energies 2023, 16, 7704. https://doi.org/10.3390/en16237704.
References
- Paris Agreement to the United Nations Framework Convention on Climate Change, December 12, 2015, T.I.A.S. No. 16-1104. Available online: https://www.state.gov/16-1104/ (accessed on 11 May 2024).
- Yildiz, A.F.; Sahinler, R.; Ozturk, C. Data-Driven Modelling of a Plug-In Hybrid Electric Vehicle. In Proceedings of the 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkiye, 30 November–2 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Camacho, M.d.l.N.; Jurburg, D.; Tanco, M. Hydrogen Fuel Cell Heavy-Duty Trucks: Review of Main Research Topics. Int. J. Hydrog. Energy 2022, 47, 29505–29525. [Google Scholar] [CrossRef]
- Li, X.; Zhou, R.; Yang, H.; Liang, Z.; Yao, Y.; Yu, Z.; Du, M.; Lou, D.; Li, K. Properties of Carbonic Anhydrase-Containing Active Coatings for CO2 Capture. Processes 2024, 12, 810. [Google Scholar] [CrossRef]
- Shervani, S.; Tansug, L.P.; Tezel, F.H. Microporous Adsorbent-Based Mixed Matrix Membranes for CO2/N2 Separation. Energies 2024, 17, 1927. [Google Scholar] [CrossRef]
- Godiño, J.A.V.; García, M.T.; Aguilar, F.J.J.-E. Experimental Investigation and Modelling of Biodiesel Combustion in Engines with Late Direct Injection Strategy. Energy Rep. 2022, 8, 7476–7487. [Google Scholar] [CrossRef]
- Napolitano, P.; Di Domenico, D.; Di Maio, D.; Guido, C.; Golini, S. Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine. Atmosphere 2022, 13, 1919. [Google Scholar] [CrossRef]
- Zucareli de Souza, T.A.; Frez, G.V.; Pinto, G.; Costa, R.; Roque, L.F.A.; Coronado, C.J.R.; Vidigal, L.P.V. CFD Analysis of Different Biogas Upgrading Levels for Dual-Fuel Operation in Diesel Engines; SAE Technical Paper 2023-24-0055; SAE International: Capri, Naples, Italy, 2023. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Del Papa, G.; Maka, R.; Palombo, A. How to Achieve Energy Efficiency and Sustainability of Large Ships: A New Tool to Optimize the Operation of on-Board Diesel Generators. Energy 2023, 282, 128288. [Google Scholar] [CrossRef]
- Breer, B.; Rajagopalan, H.; Godbold, C.; Johnson, H.; Emerson, B.; Acharya, V.; Sun, W.; Noble, D.; Lieuwen, T. Numerical Investigation of NOx Production from Premixed Hydrogen/Methane Fuel Blends. Combust. Flame 2023, 255, 112920. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Li, R.; Liu, S.; Hua, Y. Experimental Study and Prediction Model of Combustion Stability and Combustion Mode Variation of Burning Methanol/Biodiesel Blends for Diesel Engines. Fuel 2023, 335, 127038. [Google Scholar] [CrossRef]
- Galloni, E.; Lanni, D.; Fontana, G.; D’Antuono, G.; Stabile, S. Performance Estimation of a Downsized SI Engine Running with Hydrogen. Energies 2022, 15, 4744. [Google Scholar] [CrossRef]
- Shetty, S.; Shetty, R.P.; Shrinivasa Rao, B.R. Experimental Investigation and Artificial Neural Network Modelling of Combustion Pressure Parameters of Dual Spark Plug SI Engine. Mater. Today Proc. 2023, 92, 189–201. [Google Scholar] [CrossRef]
- Füzesi, D.; Wang, S.; Józsa, V.; Chong, C.T. Ammonia-Methane Combustion in a Swirl Burner: Experimental Analysis and Numerical Modeling with Flamelet Generated Manifold Model. Fuel 2023, 341, 127403. [Google Scholar] [CrossRef]
- Perrone, D.; Castiglione, T.; Falbo, L.; Bova, S.; D’Epiro, C. 1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations; SAE Technical Paper 2023-24-0098; SAE International: Capri, Naples, Italy, 2023. [Google Scholar] [CrossRef]
- Ramognino, F.; Sforza, L.; D’Errico, G.; Gomez-Soriano, J.; Onorati, A.; Novella, R. CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications; SAE Technical Paper 2023-24-0017; SAE International: Capri, Naples, Italy, 2023. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Niki, Y.; Takasaki, K.; Kobayashi, H.; Miyanagi, A. Experimental Study of Combustion Process of NH3 Stratified Spray Using Imaging Methods for NH3 Fueled Large Two-Stroke Marine Engine. Appl. Energy Combust. Sci. 2023, 13, 100119. [Google Scholar] [CrossRef]
- Nyongesa, A.J.; Kim, J.K.; Lee, W.-J. Investigation on the Combustion of Ammonia Using Direct High/Medium-Pressure-Otto Injection Approach in a Diesel Two-Stroke Marine Slow Speed Engine. J. Energy Inst. 2024, 114, 101641. [Google Scholar] [CrossRef]
- Sehili, Y.; Loubar, K.; Tarabet, L.; Cerdoun, M.; Lacroix, C. Development of Predictive Model for Hydrogen-Natural Gas/Diesel Dual Fuel Engine. Energies 2023, 16, 6943. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode; SAE Technical Paper 2022-01-1056; SAE International: Krakow, Poland, 2022. [Google Scholar] [CrossRef]
- Inoue, C.; Higaki, S.; Fujii, H.; Ishikawa, N.; Ueda, Y. On-Site Direct Imaging of Carbon Dioxide Emissions from Aircraft during Landing and Take-off Cycle. Environ. Adv. 2023, 13, 100432. [Google Scholar] [CrossRef]
- Carusotto, S.; Goel, P.; Baratta, M.; Misul, D.A.; Salvadori, S.; Cardile, F.; Forno, L.; Toppino, M.; Valsania, M. Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications. Energies 2022, 15, 4117. [Google Scholar] [CrossRef]
- Bartocci, P.; Abad, A.; Bischi, A.; Wang, L.; Cabello, A.; de Las Obras Loscertales, M.; Zampilli, M.; Yang, H.; Fantozzi, F. Dimensioning Air Reactor and Fuel Reactor of a Pressurized Chemical Looping Combustor to Be Coupled to a Gas Turbine: Part 1, the Air Reactor. Energies 2023, 16, 2102. [Google Scholar] [CrossRef]
- De Robbio, R. Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources. Energies 2023, 16, 704. [Google Scholar] [CrossRef]
- Di Nardo, A.; Bo, A.; Calchetti, G.; Giacomazzi, E.; Messina, G. Study on the Fuel Flexibility of a Microgas Turbine Combustor Burning Different Mixtures of H2, CH4, and CO2. J. Eng. Gas Turbine Power 2020, 142, 061001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameretti, M.C.; De Robbio, R. Computational and Data-Driven Modeling of Combustion in Reciprocating Engines or Gas Turbines. Energies 2024, 17, 3863. https://doi.org/10.3390/en17163863
Cameretti MC, De Robbio R. Computational and Data-Driven Modeling of Combustion in Reciprocating Engines or Gas Turbines. Energies. 2024; 17(16):3863. https://doi.org/10.3390/en17163863
Chicago/Turabian StyleCameretti, Maria Cristina, and Roberta De Robbio. 2024. "Computational and Data-Driven Modeling of Combustion in Reciprocating Engines or Gas Turbines" Energies 17, no. 16: 3863. https://doi.org/10.3390/en17163863
APA StyleCameretti, M. C., & De Robbio, R. (2024). Computational and Data-Driven Modeling of Combustion in Reciprocating Engines or Gas Turbines. Energies, 17(16), 3863. https://doi.org/10.3390/en17163863