Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste
Abstract
:1. Introduction
The Role of Energy Communities in the Energy Transition
2. Materials and Methods
Bibliometric Analysis
3. Results
4. Discussion and Conclusions
5. Research Agenda
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koirala, B.P.; van Oost, E.; van der Windt, H. Community energy storage: A responsible innovation towards a sustainable energy system? Appl. Energy 2018, 231, 570–585. [Google Scholar] [CrossRef]
- Mutani, G.; Santantonio, S.; Brunetta, G.; Caldarice, O.; Demichela, M. An energy community for territorial resilience: Measurement of the risk of an energy supply blackout. Energy Build. 2021, 240, 110906. [Google Scholar] [CrossRef]
- Heldeweg, M.A.; Saintier, S. Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy decentralisation? Renew. Sustain. Energy Rev. 2020, 119, 109518. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- European Commission. Clean Energy for all Europeans; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- International Energy Agency. World Energy Outlook 2021; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Nolden, C. Governing community energy-Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany. Energy Policy 2013, 63, 543–552. [Google Scholar] [CrossRef]
- Maswabi, M.G.; Chun, J.; Chung, S.Y. Barriers to energy transition: A case of Botswana. Energy Policy 2021, 158, 112514. [Google Scholar] [CrossRef]
- World Bank. World Development Report 2019: The Changing Nature of Work; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Afridi ZU, R.; Qammar, N.W. Technical challenges and optimization of biogas plants. ChemBioEng Rev. 2020, 7, 119–129. [Google Scholar] [CrossRef]
- Neri, E.; Passarini, F.; Cespi, D.; Zoffoli, F.; Vassura, I. Sustainability of a bio-waste treatment plant: Impact evolution resulting from technological improvements. J. Clean. Prod. 2018, 171, 1006–1019. [Google Scholar] [CrossRef]
- Al Husaeni, D.F.; Nandiyanto, A.B.D. Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post COVID-19 pandemic. ASEAN J. Sci. Eng. 2022, 2, 19–46. [Google Scholar] [CrossRef]
- Orduña-Malea, E.; Costas, R. Link-based approach to study scientific software usage: The case of VOSviewer. Scientometrics 2021, 126, 8153–8186. [Google Scholar] [CrossRef]
- Salgado-Cruz, M.d.l.P.; Salgado-Cruz, J.; García-Hernández, A.B.; Calderón- Domínguez, G.; Gómez-Viquez, H.; Oliver-Espinoza, R.; Fernández-Martínez, M.C.; Yáñez-Fernández, J. Chitosan as a coating for biocontrol in postharvest products: A bibliometric review. Membranes 2021, 11, 421. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Škare, M. A bibliometric analysis of economic research-ekonomska istrazivanja (2007–2019). Econ. Res.-Ekon. Istraživanja 2020, 33, 865–886. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Biddinika, M.K.; Triawan, F. How bibliographic dataset portrays decreasing number of scientific publications from Indonesia. Indones. J. Sci. Technol. 2020, 5, 154–175. [Google Scholar] [CrossRef]
- Eck, N.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Dekker, R.; Van Den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- Khalil, G.M.; Crawford, C.A.G. A bibliometric analysis of US-based research on the behavioral risk factor surveillance system. Am. J. Prev. Med. 2015, 48, 50–57. [Google Scholar] [CrossRef]
- Long, C.; Wu, J.; Zhou, Y.; Jenkins, N. Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid. Appl. Energy 2018, 226, 261–276. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Ciais, P.; Peñuelas, J.; Wang, X.; Keenan, T.F.; Peng, S.; Berry, J.A.; Wang, K.; Mao, J.; et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 2019, 3, 772–779. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package-Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Inês, C.; Guilherme, P.L.; Esther, M.G.; Swantje, G.; Stephen, H.; Lars, H. Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Lüth, A.; Zepter, J.M.; Del Granado, P.C.; Egging, R. Local electricity market designs for peer-to-peer trading: The role of battery flexibility. Appl. Energy 2018, 229, 1233–1243. [Google Scholar] [CrossRef]
- Arora, V.K.; Katavouta, A.; Williams, R.G.; Jones, C.D.; Brovkin, V.; Friedlingstein, P.; Schwinger, J.; Bopp, L.; Boucher, O.; Cadule, P.; et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 2020, 17, 4173–4222. [Google Scholar] [CrossRef]
- Dornelas, M.; Antão, L.H.; Moyes, F.; Bates, A.E.; Magurran, A.E.; Adam, D.; Akhmetzhanova, A.A.; Appeltans, W.; Arcos, J.M.; Arnold, H.; et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 2018, 27, 760–786. [Google Scholar] [CrossRef]
- Lezama, F.; Soares, J.; Hernandez-Leal, P.; Kaisers, M.; Pinto, T.; Vale, Z. Local energy markets: Paving the path towards fully transactive energy systems. IEEE Trans. Power Syst. 2018, 34, 4081–4088. [Google Scholar] [CrossRef]
- Soong, J.L.; Fuchslueger, L.; Marañon-Jimenez, S.; Torn, M.S.; Janssens, I.A.; Penuelas, J.; Richter, A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Chang. Biol. 2020, 26, 1953–1961. [Google Scholar] [CrossRef]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.M.; et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Chang. 2020, 20, 51. [Google Scholar] [CrossRef]
- Olivella-Rosell, P.; Lloret-Gallego, P.; Munné-Collado, Í.; Villafafila-Robles, R.; Sumper, A.; Ottessen, S.Ø.; Rajasekharan, J.; Bremdal, B.A. Local flexibility market design for aggregators providing multiple flexibility services at distribution network level. Energies 2018, 11, 822. [Google Scholar] [CrossRef]
- Zepter, J.M.; Lüth, A.; del Granado, P.C.; Egging, R. Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage. Energy Build. 2019, 184, 163–176. [Google Scholar] [CrossRef]
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Lowitzsch, J.; Brisbois, M.C.; Kumar, A.; Camargo, L.R. Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities. Energy Policy 2021, 156, 112435. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Angrisano, M.; Fusco Girard, L. Circular economy strategies in eight historic port cities: Criteria and indicators towards a circular city assessment framework. Sustainability 2019, 11, 3512. [Google Scholar] [CrossRef]
- Lilla, S.; Orozco, C.; Borghetti, A.; Napolitano, F.; Tossani, F. Day-ahead scheduling of a local energy community: An alternating direction method of multipliers approach. IEEE Trans. Power Syst. 2019, 35, 1132–1142. [Google Scholar] [CrossRef]
- Hanke, F.; Lowitzsch, J. Empowering vulnerable consumers to join renewable energy communities-towards an inclusive design of the clean energy package. Energies 2020, 13, 1615. [Google Scholar] [CrossRef]
- Perger, T.; Wachter, L.; Fleischhacker, A.; Auer, H. PV sharing in local communities: Peer-to-peer trading under consideration of the prosumers’ willingness-to-pay. Sustain. Cities Soc. 2021, 66, 102634. [Google Scholar] [CrossRef]
- Gregg, J.S.; Nyborg, S.; Hansen, M.; Schwanitz, V.J.; Wierling, A.; Zeiss, J.P.; Delvaux, S.; Saenz, V.; Polo-Alvarez, L.; Candelise, C.; et al. Collective action and social innovation in the energy sector: A mobilisation model perspective. Energies 2020, 13, 651. [Google Scholar] [CrossRef]
- Frieden, D.; Tuerk, A.; Roberts, J.; D’Herbemont, S.; Gubina, A.F.; Komel, B. Overview of emerging regulatory frameworks on collective self-consumption and energy communities in Europe. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 18–20 September 2019; pp. 1–6. [Google Scholar]
- Barnes, J.; Hansen, P.; Kamin, T.; Golob, U.; Darby, S.; van der Grijp, N.M.; Petrovics, D. Creating valuable outcomes: An exploration of value creation pathways in the business models of energy communities. Energy Res. Soc. Sci. 2024, 108, 103398. [Google Scholar] [CrossRef]
- Igliński, B.; Kiełkowska, U.; Piechota, G.; Skrzatek, M.; Cichosz, M.; Iwański, P. Can energy self-sufficiency be achieved? Case study of Warmińsko-Mazurskie Voivodeship (Poland). Clean Technol. Environ. Policy 2021, 23, 2061–2081. [Google Scholar] [CrossRef]
- Blanco, E.C.; Martín, M.; Vega, P. Achieving energy self-sufficiency in wastewater treatment plants by integrating municipal solid waste treatment: A process design study in Spain. J. Environ. Chem. Eng. 2023, 11, 110673. [Google Scholar] [CrossRef]
- Busch, H.; Ruggiero, S.; Isakovic, A.; Hansen, T. Policy challenges to community energy in the EU: A systematic review of the scientific literature. Renew. Sustain. Energy Rev. 2021, 151, 111535. [Google Scholar] [CrossRef]
- Qadir, S.A.; Al-Motairi, H.; Tahir, F.; Al-Fagih, L. Incentives and strategies for financing the renewable energy transition: A review. Energy Rep. 2021, 7, 3590–3606. [Google Scholar] [CrossRef]
- Hille, E.; Althammer, W.; Diederich, H. Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter? Technol. Forecast. Soc. Chang. 2020, 153, 119921. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A review. Renew. Energy 2021, 169, 1138–1156. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Krajačić, G.; Duić, N.; Rosen, M.A. Effective mitigation of climate change with sustainable development of energy, water and environment systems. Energy Convers. Manag. 2022, 269, 116146. [Google Scholar] [CrossRef]
- Pena-Bello, A.; Parra, D.; Herberz, M.; Tiefenbeck, V.; Patel, M.K.; Hahnel, U.J. Integration of prosumer peer-to-peer trading decisions into energy community modelling. Nat. Energy 2022, 7, 74–82. [Google Scholar] [CrossRef]
Factor | Description | Data or Statistics |
---|---|---|
Initial investment | Start-up cost for biogas plants | USD 1–3 million per medium-sized plant |
Skilled labor | Need for technical personnel for operation and maintenance | 40% of rural communities have skills shortages |
Waste management | Costs and logistics associated with the collection and transport of organic waste | 30% of the communities increased management costs |
Title | Authors | Year | Database | Cit |
---|---|---|---|---|
Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid | [20] | 2018 | WOS | 317 |
Air temperature optima of vegetation productivity across global biomes | [21] | 2019 | WOS | 300 |
Renewable energy communities under the 2019 European Clean Energy Package-Governance model for the energy clusters of the future? | [22] | 2020 | Scopus | 294 |
Regulatory challenges and opportunities for collective renewable energy prosumers in the EU | [23] | 2020 | Scopus | 256 |
Local electricity market designs for peer-to-peer trading: The role of battery flexibility | [24] | 2018 | WOS | 254 |
Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models | [25] | 2020 | WOS | 226 |
BioTIME: A database of biodiversity time series for the Anthropocene | [26] | 2018 | WOS | 223 |
Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems | [27] | 2018 | Scopus | 220 |
Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling | [28] | 2020 | WOS | 218 |
Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community | [29] | 2020 | WOS | 212 |
Local flexibility market design for aggregators providing multiple flexibility services at distribution network level | [30] | 2018 | Scopus | 179 |
Prosumer integration in wholesale electricity markets: synergies of peer-to-peer trade residential storage | [31] | 2019 | WOS | 139 |
Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland | [32] | 2019 | Scopus | 113 |
Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities | [33] | 2021 | Scopus | 103 |
Circular Economy Strategies in Eight Historic Port Cities: Criteria and Indicators Towards a Circular City Assessment Framework | [34] | 2019 | WOS | 91 |
Day-Ahead Scheduling of a Local Energy Community: An Alternating Direction Method of Multipliers Approach | [35] | 2020 | Scopus | 87 |
Empowering vulnerable consumers to join renewable energy communities-towards an inclusive design of the clean energy package | [36] | 2020 | Scopus | 65 |
PV sharing in local communities: Peer-to-peer trading under consideration of the prosumers’ willingness-to-pay | [37] | 2021 | Scopus | 57 |
Collective action and social innovation in the energy sector: A mobilisation model perspective | [38] | 2020 | Scopus | 51 |
Overview of emerging regulatory frameworks on collective self-consumption and energy communities in Europe | [39] | 2019 | Scopus | 48 |
Proposed Strategy | Strategy Description |
---|---|
Promoting active community participation | Through favorable policies and educational initiatives |
Incentives for technological investments | Incentives to encourage the adoption of new technologies |
Regulatory support | Creating regulations that support energy communities |
Overcoming technological barriers | Solving technology implementation issues |
Tackling initial financial costs | Providing financial support to start up projects |
Planning and waste management | Careful planning to ensure sustainability and economic benefits |
Collaboration between different actors | Collaboration between governments, the private sector, the scientific community, and civil society |
Category Benefits | Benefits Description |
---|---|
Economic | Reducing dependence on non-renewable energy sources, saving on energy costs |
Social | Promotion of community participation, sustainability through decentralized energy models |
Environmental | Reducing greenhouse gas emissions, promoting renewable energy, mitigating climate change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, F.; Campana, P.; Censi, R.; Di Renzo, M.; Tarola, A.M. Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste. Energies 2024, 17, 3789. https://doi.org/10.3390/en17153789
Bellini F, Campana P, Censi R, Di Renzo M, Tarola AM. Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste. Energies. 2024; 17(15):3789. https://doi.org/10.3390/en17153789
Chicago/Turabian StyleBellini, Francesco, Paola Campana, Riccardo Censi, Matteo Di Renzo, and Anna Maria Tarola. 2024. "Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste" Energies 17, no. 15: 3789. https://doi.org/10.3390/en17153789
APA StyleBellini, F., Campana, P., Censi, R., Di Renzo, M., & Tarola, A. M. (2024). Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste. Energies, 17(15), 3789. https://doi.org/10.3390/en17153789