Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends
Abstract
:1. Introduction
Novelty and Objectives of Study
2. Biomass Types and Characterizations
2.1. Biomass Types
- Woody plants.
- Herbaceous plants.
- Wastes.
- Aquatic plants.
2.2. Biomass Properties
2.2.1. Moisture
2.2.2. Fixed Carbon, Volatile Matter
2.2.3. Ash
2.2.4. Alkali Metal
2.2.5. Heating Value (HV)
2.2.6. Cellulose/Lignin Ratio
3. Biomass Conversion Technologies
3.1. Thermochemical Process
3.1.1. Combustion
- -
- Intensified stirring in fluidized beds, allowing complete combustion to occur, which leads to lower excess air rate and lower heat loss with stack gasses;
- -
- Resilience in utilizing biomasses with different properties, sizes, and shapes;
- -
- Flexibility in using biomasses with higher ash contents (>50%);
- -
- Capability of using biomasses with higher moisture rates of up to 60%;
- -
- Integrated structure of heat exchanger and furnace resulting in effective heat transfer.
3.1.2. Gasification
3.1.3. Pyrolysis
3.1.4. Liquefaction or Hydrothermal
3.2. Biochemical Process
3.2.1. Anaerobic Digestion
3.2.2. Fermentation
3.3. Physicochemical Process
4. Biomass-Based Power Generation Systems
4.1. Organic Rankine Cycle (ORC)
4.1.1. ORC Components and Energy Sources
Energy Source | Study | Useful Outputs | Working Fluid |
---|---|---|---|
Solar | Noorpoor et al. [84] | Power, cooling, heating | R600a |
Villarini et al. [85] | Power, cooling, heating | R245fa | |
Mirbagheri et al. [86] | Power | R245fa | |
Geothermal | Ganjehsarabi [87] | Power, hydrogen | Mixture of butane, pentane, and iso-pentane |
Zanellato et al. [88] | Power | R245fa | |
Eyerer et al. [89] | Power, heating | R1233zd(E) | |
Waste heat | Heidarnejad et al. [90] | Power, cooling, heating | R123 |
Kleef et al. [91] | Power | 1,3-butadiene and 4-methyl-2-pentene | |
Chatzopoulou et al. [92] | Power | R245fa, R1233zd(E), R152a, R1234ze(Z), R1234yf, toluene, butane, pentane, and hexane | |
Biomass | Borsukiewicz-Gozdur et al. [93] | Power, heating | Octamethyltrisiloxane, methylcyclohexane, methanol, and water |
Kalina [94] | Power | R123 and R245fa | |
Swierzewski et al. [95] | Power, heating | MDM (Octamethyltrisiloxane) | |
Permana et al. [96] | power | R134a | |
Solar–biomass | Ghasemi et al. [97] | Power, cooling, heating, and fresh water | R123 |
Cao et al. [98] | Power, cooling, heating, and fresh water | R717 | |
Solar–geothermal | Ghasemi et al. [99] | Power | Isobutane |
Cakici et al. [100] | Power | R134a | |
Geothermal–biomass | Borsukiewicz-Gozdur [101] | Power | R236fa, R245fa, R365mfc, cyclohexane |
Thain et al. [102] | Power | n-Pentane | |
Solar–fossil fuel | Boyaghchi et al. [103] | Power and cooling | R123 |
Li et al. [104] | Power | Isopentane and R125 |
4.1.2. Working Fluids
4.1.3. ORC Design and Optimization
- ✓
- Net electricity output: This is estimated as the gross output by turbine except for electricity consumption by pumps and other components.
- ✓
- Energy efficiency: The ratio of net electricity output to total energy input.
- ✓
- Exergy efficiency: The ratio of net electricity output to total exergy input.
- ✓
- Levelized cost of electricity: Total expenses related to investment cost, operation, and maintenance, and fuel cost during the lifetime of the system per energy unit of electricity produced by the system.
- ✓
- Discounted cash flow: This considers the time value of money.
- ✓
- Specific cost: This is the total investment cost per net power of the system, neglecting the fuel and operation and maintenance costs.
5. Biomass-Fueled ORCs
5.1. Overview
5.2. Analysis of Biomass-Fueled ORC Systems
5.2.1. Thermodynamic Analysis
5.2.2. Thermoeconomic (Exergoeconomic) Analysis
Biomass Conversion Technology | Study | Useful Outputs | Efficiency | Assessment Method |
---|---|---|---|---|
(a) | ||||
Biomass gasification | Huang et al. [173] | Power, heating | 76% (willow chip) 81% (miscanthus) | Techno-economic analysis |
Behzadi et al. [174] | Power | 12.72% | Energy, exergy, and exergoeconomic analyses | |
Karimi et al. [175] | Power and heating | 55.2% | Energy, exergy, and economic analyses | |
Cao et al. [176] | Power and hydrogen | 39.2% | Three-objective optimization | |
Anaerobic digestion of biomass | Ghaebi et al. [177] | Power and hydrogen | 45.63% | Thermodynamic analysis |
Gholizadeh et al. [178] | Power | 41.83% | Thermodynamic and thermoeconomic | |
Adebayo et al. [179] | Power, cooling, and heating | 47.4% | Energy, exergy, and exergoenvironmental | |
(b) | ||||
Biomass combustion/Geothermal | Moret et al. [180] | Power and heating | Different efficiencies in different scenarios | Environmental and life cycle assessment analyses |
Briola et al. [181] | Power | 28.3–42.6% | Exergy and economic analyses | |
Heidarnejad et al. [182] | Power and desalinated water | 13.9% | Techno-economic and environmental analyses | |
Chen et al. [183] | Power and heating | 25.47% | Thermodynamic and economic analysis | |
Dou et al. [184] | Power, heating, cooling, and fresh water | 20.55% | Thermodynamic and economic analysis | |
Anaerobic digestion of biomass/Solar | Zhao et al. [185] | Power and heating | 11.17% | Exergy and economic analyses |
Perollese et al. [186] | Power | 10–65% | Techno-economic assessment | |
Al-Arfi et al. [187] | Power and fresh water | 30.49% | Thermo-economic and design | |
Biomass combustion/Wind | Bamisile et al. [188] | Power, cooling, hot water, desalinated water, hydrogen, and oxygen | 35.22% | Energy and exergy analyses |
Biomass combustion/Solar | Islam et al. [189] | Power, cooling, and hydrogen | 67.6% | Energy and exergy analyses |
Oyekale et al. [190] | Power and heating | 40% | Exergoeconomic analysis |
5.3. Environmental Issues
- (a)
- Environmental issues related to working fluids
- (b)
- Environmental issues related to the conversion of fuel to energy
- ✓
- Combustion:
- ✓
- Gasification:
- ✓
- Pyrolysis:
- ✓
- Liquefaction:
- ✓
- Anaerobic digestion:
- ✓
- Fermentation:
6. Future Trends
6.1. Modeling of Biomass Conversion
6.2. Environmental Impact of Biomass Conversion
6.3. Biomass Economic Aspects and Accessibility
6.4. Organic Rankine Cycles
7. Concluding Remarks
- Selecting the appropriate conversion technology necessitates being conscious of the properties of a specific type of biomass. For instance, high-moisture species are applicable for fermentation and anaerobic digestion, while low-moisture plants are suitable for combustion. Moreover, the cellulose/lignin ratio is a determining parameter in selecting a biomass feedstock for biochemical conversion.
- Among the various routes for biomass conversion, combustion and anaerobic digestion have been proven to be mature and commercially available technologies due to process simplicity and their ability to handle a wide ranges of feedstocks.
- The share of power generation from renewable energy resources accounted for 29% of global production in 2020, and its increasing trend will continue until 2040, which necessitates the application of ORCs superior to steam cycles in the case of using low- and medium-energy sources.
- Biomass has the potential to combine with other renewable energy sources in order to improve the efficiencies of the systems and to yield a constant-temperature energy source. Based on this study, it appears particularly beneficial to hybridize with geothermal, solar, and wind energy.
- An appropriate working fluid is one of the criteria affecting the performance of an ORC. The fluid selection process is challenging because of technical, cost, and environmental barriers. Octamethyltrisiloxane, methylcyclohexane, R123, and R245fa are the primary working fluids suggested in the literature for biomass-fueled ORCs.
- The performance of a biomass-fueled ORC strongly depends on the type of biomass feedstock, the technology of biomass conversion, and appropriate layout along with suitable working fluid. Also, different input variables and assumptions considering technical, economic, and environmental limitations lead to achieving an optimum design through utilizing robust algorithmic tools.
- Thermodynamic, thermoeconomic, environmental, and life cycle assessments are the prevailing methods to investigate the performance of a biomass-fueled ORC.
- Although most of the organic fluids used for ORCs are not favored from the viewpoint of global warming potential, they are still used for ORC systems. Also, Siloxanes are introduced as one of the alternatives with low ODP and GWP rates.
- According to the emissions related to each biomass conversion technology, all processes result in particulate matter emissions except for anaerobic digestion and fermentation. All investigated technologies in this study have the potential to emit CO, NOx, and SOx during conversion as well as the combustion process. From the global warming effect viewpoint, CH4 and CO2 are formed during liquefaction, anaerobic digestion, and fermentation processes.
- Integration of environmental and socio-economic approaches, and applying more advanced analyses such as exergoenvironmental and Machine Learning algorithms, would be useful for simplifying and making comprehension simulations in the future. Also, future progress in biomass-based systems would go toward more environment-friendly processes, flexibility in feedstock usage, and combination with other renewables. Applying prevailing technologies such as membrane technology and fluidized bed combustion would be promising solutions for eliminating ash. The trend in enhancing the efficiency of biomass-fueled ORC systems involves using more efficient working fluids, such as nanofluids, along with environmentally friendly fluids and advanced heat exchangers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AD | Anaerobic digestion |
CHP | Combined heating and power |
GHG | Greenhouse gas |
GWP | Global warming potential |
HFEs | Hydrofluoroethers |
HV | Heating value |
IEA | International Energy Agency |
ICE | Internal combustion engine |
LCOE | Levelized cost of electricity |
LHV | Lower heating value |
NOXs | Nitrogen oxides |
ODP | Ozone depletion potential |
ORC | Organic Rankine cycle |
PAHs | Polycyclic aromatic hydrocarbons |
SOX | Sulfide oxide |
VOCs | Volatile organic compounds |
References
- Paul, S.; Mazumder, C.; Mukherjee, S. Challenges faced in commercialization of biofuel from biomass energy resources. Biocatal. Agric. Biotechnol. 2024, 103312. [Google Scholar] [CrossRef]
- Al Asi, A.; Khashehchi, M.; Thangavel, S.; Kumar, A.; Prasad, A. Strategic approach to biomass energy production: Feasibility, challenges, and opportunities. In Biodegradable Waste Processing for Sustainable Developments; CRC Press: Boca Raton, FL, USA, 2025; pp. 87–112. [Google Scholar]
- IEA. Key World Energy Statistics 2021. 2021. Available online: https://www.iea.org/reports/key-world-energy-statistics-2021 (accessed on 21 August 2022).
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An overview of advances in biomass gasification. Energy Environ. Sci. 2016, 9, 2939–2977. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2020. 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 21 August 2022).
- Morris, G. Biomass Energy Production in California: The Case for a Biomass Policy Initiative. 2000. Available online: https://www.osti.gov/biblio/772427 (accessed on 23 July 2022).
- Nguea, S.M.; Fotio, H.K. Synthesizing the role of biomass energy consumption and human development in achieving environmental sustainability. Energy 2024, 293, 130500. [Google Scholar] [CrossRef]
- Bojek, P.; Moorhouse, J. Bioenergy Power Generation. 2021. Available online: https://www.iea.org/reports/bioenergy-power-generation (accessed on 22 September 2022).
- Abouemara, K.; Shahbaz, M.; Mckay, G.; Al-Ansari, T. The review of power generation from integrated biomass gasification and solid oxide fuel cells: Current status and future directions. Fuel 2024, 360, 130511. [Google Scholar] [CrossRef]
- Hashemian, N.; Noorpoor, A. Optimization and multi-aspect evaluation of a solar/biomass-powered multi-generation plant with an integrated thermoelectric generator unit. Sustain. Energy Technol. Assess. 2023, 56, 102998. [Google Scholar] [CrossRef]
- Qi, X.; Yang, C.; Huang, M.; Ma, Z.; Hnydiuk-Stefan, A.; Feng, K.; Siarry, P.; Królczyk, G.; Li, Z. Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources. Energy 2024, 288, 129657. [Google Scholar] [CrossRef]
- Martín, M.; Sánchez, A. Biomass Pathways to Produce Green Ammonia and Urea. Curr. Opin. Green Sustain. Chem. 2024, 47, 100933. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Z.; Yang, S.; Xie, N.; Ma, K. Exergy and environmental footprint analysis for a green ammonia production process. J. Clean. Prod. 2024, 455, 142357. [Google Scholar] [CrossRef]
- Malico, I. Biomass for Power Production and Cogeneration. In Forest Bioenergy: From Wood Production to Energy Use; Springer: Berlin/Heidelberg, Germany, 2024; pp. 271–291. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, K.; Chandrashekar, N.; Mohan, S. Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J. For. Res. 2010, 21, 514–516. [Google Scholar] [CrossRef]
- Rodrigues, A.; Loureiro, L.; Nunes, L.J.R. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. Biomass Bioenergy 2018, 108, 55–65. [Google Scholar] [CrossRef]
- Klass, D.L. Biomass for Renewable Energy, Fuels, and Chemicals; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Sudaryanto, Y.; Hartono, S.B.; Irawaty, W.; Hindarso, H.; Ismadji, S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresur. Technol. 2006, 97, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Liu, R.; Mei, Y.; Fei, W.; Sun, X. Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 2013, 112, 96–104. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.; Yu, D.; Chen, G. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy 2015, 80, 284–292. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Sweeten, J.M.; Annamalai, K.; Thien, B.; McDonald, L.A. Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel 2003, 82, 1167–1182. [Google Scholar] [CrossRef]
- Taylor, R.; Ray, R.; Chapman, C. Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel 2013, 106, 401–409. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Sharma, B.K.; Hopke, P.K.; Rajagopalan, N. Combustion of Switchgrass in Biomass Home Heating Systems: Emissions and Ash Behavior. Energy Fuels 2016, 30, 2958–2967. [Google Scholar] [CrossRef]
- Choi, H.L.; Sudiarto, S.I.A.; Renggaman, A. Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 2014, 116, 772–780. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. Front. Energy Res. 2015, 3, 46. [Google Scholar] [CrossRef]
- Aplan, F.F. 1992 Gaudin Lecture: Coal properties dictate coal flotation strategies. Min. Eng. 1993, 45, 83–96. [Google Scholar]
- Agraniotis, M.; Bergins, C.; Stein-Cichoszewska, M.; Kakaras, E. 5—High-efficiency pulverized coal power generation using low-rank coals. In Low-Rank Coals for Power Generation, Fuel and Chemical Production; Luo, Z., Agraniotis, M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 95–124. [Google Scholar] [CrossRef]
- Quaak, P.; Knoef, H.; Stassen, H.E. Energy from Biomass: A Review of Combustion and Gasification Technologies; 1999; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/936651468740985551/energy-from-biomass-a-review-of-combustion-and-gasification-technologies (accessed on 21 September 2022).
- Zeng, Y.; Zhao, S.; Yang, S.; Ding, S.-Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol. 2014, 27, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Boateng, A.A.; Weimer, P.J.; Jung, H.G.; Lamb, J.F.S. Response of Thermochemical and Biochemical Conversion Processes to Lignin Concentration in Alfalfa Stems. Energy Fuels 2008, 22, 2810–2815. [Google Scholar] [CrossRef]
- Öhgren, K.; Bura, R.; Saddler, J.; Zacchi, G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresur. Technol. 2007, 98, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, Y.Y. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresur. Technol. 2006, 97, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Iten, L.B.; Cotta, M.A.; Wu, Y.V. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005, 40, 3693–3700. [Google Scholar] [CrossRef]
- Jin, S.; Chen, H. Structural properties and enzymatic hydrolysis of rice straw. Process Biochem. 2006, 41, 1261–1264. [Google Scholar] [CrossRef]
- IRENA-ETSAP. Biomass for Heat and Power; 2015. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA-ETSAP_Tech_Brief_E05_Biomass-for-Heat-and-Power.pdf (accessed on 10 July 2024).
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresur. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Bridge, S.A. A Review of Biomass Pyrolysis and Pyrolysis Technologies. In Biomass Pyrolysis Liquids Upgrading and Utilization; Bridgwater, A.V., Grassi, G., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 11–92. [Google Scholar] [CrossRef]
- Gielen, D. Renewable energy technologies: Cost analysis series. Biomass Power Gener. 2012, 1, 1–60. [Google Scholar]
- Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Dai, J.; Cui, H.; Grace, J.R. Biomass feeding for thermochemical reactors. Prog. Energy Combust. Sci. 2012, 38, 716–736. [Google Scholar] [CrossRef]
- Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Kleinhans, U.; Wieland, C.; Frandsen, F.J.; Spliethoff, H. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci. 2018, 68, 65–168. [Google Scholar] [CrossRef]
- Sukumaran, S.; Kong, S.-C. Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner. Combust. Flame 2013, 160, 2159–2168. [Google Scholar] [CrossRef]
- Smith, J.D.; Sreedharan, V.; Landon, M.; Smith, Z.P. Advanced design optimization of combustion equipment for biomass combustion. Renew. Energy 2020, 145, 1597–1607. [Google Scholar] [CrossRef]
- US Energy Department, Office of Energy Efficiency & Renewable Energy. Energy Saver, Furnaces and Boilers. 2019. Available online: https://www.energy.gov/energysaver/home-heating-systems/furnaces-and-boilers (accessed on 25 September 2020).
- Quaak, P.K. Harrie Stassen, Hubert. In Energy from Biomass; World Bank Group: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Rauch, R.; Hrbek, J.; Hofbauer, H. Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ. 2014, 3, 343–362. [Google Scholar] [CrossRef]
- Maniatis, K. Progress in biomass gasification: An overview. In Progress in Thermochemical Biomass Conversion; Wiley: Hoboken, NJ, USA, 2008; Volume 1. [Google Scholar]
- Knoef, H.; Ahrenfeldt, J. Handbook Biomass Gasification; BTG Biomass Technology Group: Enschede, The Netherlands, 2005. [Google Scholar]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Onay, O.; Kockar, O.M. Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 2003, 28, 2417–2433. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Zhang, Z.; Wang, Z.; Yang, S.; Yang, Y.; Wang, X.; Liu, S.; Zhang, Q.; Lei, T. Fast corn stalk pyrolysis and the influence of catalysts on product distribution. Bioresur. Technol. 2020, 301, 122739. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 1996, 7, 233–250. [Google Scholar] [CrossRef]
- Nachenius, R.W.; Ronsse, F.; Venderbosch, R.H.; Prins, W. Chapter Two—Biomass Pyrolysis. In Advances in Chemical Engineering; Murzin, D.Y., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 42, pp. 75–139. [Google Scholar]
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Hisham, M.W.M.; Yarmo, M.A.; Yun Hin, T.-Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910–5923. [Google Scholar] [CrossRef]
- Iribarren, D.; Peters, J.F.; Dufour, J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 2012, 97, 812–821. [Google Scholar] [CrossRef]
- Maggi, R.; Delmon, B. Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass. Fuel 1994, 73, 671–677. [Google Scholar] [CrossRef]
- Horne, P.A.; Williams, P.T. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 1996, 75, 1051–1059. [Google Scholar] [CrossRef]
- Zhang, B.; von Keitz, M.; Valentas, K. Thermochemical liquefaction of high-diversity grassland perennials. J. Anal. Appl. Pyrolysis 2009, 84, 18–24. [Google Scholar] [CrossRef]
- Biller, P.; Sharma, B.K.; Kunwar, B.; Ross, A.B. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 2015, 159, 197–205. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Adams, P.; Bridgwater, T.; Lea-Langton, A.; Ross, A.; Watson, I. Biomass conversion technologies. In Greenhouse Gas Balances of Bioenergy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 107–139. [Google Scholar]
- Lu, X.; Xi, B.; Zhang, Y.; Angelidaki, I. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresur. Technol. 2011, 102, 7937–7940. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Xia, X.; Li, J.; Liu, J. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresur. Technol. 2014, 163, 74–81. [Google Scholar] [CrossRef]
- Larnaudie, V.; Rochón, E.; Ferrari, M.D.; Lareo, C. Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions. Renew. Energy 2016, 88, 280–287. [Google Scholar] [CrossRef]
- Granjo, J.F.O.; Nunes, D.S.; Duarte, B.P.M.; Oliveira, N.M.C. A comparison of process alternatives for energy-efficient bioethanol downstream processing. Sep. Purif. Technol. 2020, 238, 116414. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. Prog. Energy Combust. Sci. 2008, 34, 551–573. [Google Scholar] [CrossRef]
- IEA. Global Generation Shares from Coal and Low-Carbon Sources; IEA: Paris, France, 2020. [Google Scholar]
- IEA. Electricity Generation by Fuel and Scenario; IEA: Paris, France, 2019. [Google Scholar]
- Hashemian, N.; Noorpoor, A. Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Convers. Manag. 2019, 195, 788–797. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2020. 2021. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 10 September 2022).
- Macchi, E.; Astolfi, M. Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Woodhead Publishing: New Delhi, India, 2016. [Google Scholar]
- Zhar, R.; Allouhi, A.; Jamil, A.; Lahrech, K. A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery. Case Stud. Therm. Eng. 2021, 28, 101608. [Google Scholar] [CrossRef]
- Zare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138. [Google Scholar] [CrossRef]
- Karimi, S.; Mansouri, S. A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations. Renew. Energy 2018, 115, 600–619. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nemati, A.; ghavimi, A.; Yari, M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy 2016, 109, 791–802. [Google Scholar] [CrossRef]
- Noorpoor, A.; Heidararabi, S.; Heidarnejad, P. Dynamic modeling, exergy assessment and optimization of a novel solar-driven trigeneration system. Int. J. Exergy 2016, 20, 405–444. [Google Scholar] [CrossRef]
- Villarini, M.; Tascioni, R.; Arteconi, A.; Cioccolanti, L. Influence of the incident radiation on the energy performance of two small-scale solar Organic Rankine Cycle trigenerative systems: A simulation analysis. Appl. Energy 2019, 242, 1176–1188. [Google Scholar] [CrossRef]
- Mirbagheri, M.H.; Baniasadi, E.; Genceli, H. Exploring the performance of an innovative integrated solar tower power plant with hydrogen generation and storage. Int. J. Hydrogen Energy 2023, 48, 39271–39285. [Google Scholar] [CrossRef]
- Ganjehsarabi, H. Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. Int. J. Hydrogen Energy 2019, 44, 18703–18711. [Google Scholar] [CrossRef]
- Zanellato, L.; Astolfi, M.; Serafino, A.; Rizzi, D.; Macchi, E. Field performance evaluation of geothermal ORC power plants with a focus on radial outflow turbines. Renew. Energy 2020, 147, 2896–2904. [Google Scholar] [CrossRef]
- Eyerer, S.; Dawo, F.; Wieland, C.; Spliethoff, H. Advanced ORC architecture for geothermal combined heat and power generation. Energy 2020, 205, 117967. [Google Scholar] [CrossRef]
- Heidarnejad, P.; Noorpoor, A.; Dincer, I. Chapter 2.19—Thermodynamic and Thermoeconomic Comparisons of Two Trigeneration Systems. In Exergetic, Energetic and Environmental Dimensions; Dincer, I., Colpan, C.O., Kizilkan, O., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 551–567. [Google Scholar] [CrossRef]
- van Kleef, L.M.T.; Oyewunmi, O.A.; Markides, C.N. Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques. Appl. Energy 2019, 251, 112513. [Google Scholar] [CrossRef]
- Chatzopoulou, M.A.; Lecompte, S.; Paepe, M.D.; Markides, C.N. Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications. Appl. Energy 2019, 253, 113442. [Google Scholar] [CrossRef]
- Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M. ORC power plant for electricity production from forest and agriculture biomass. Energy Convers. Manag. 2014, 87, 1180–1185. [Google Scholar] [CrossRef]
- Kalina, J. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC. Appl. Therm. Eng. 2011, 31, 2829–2840. [Google Scholar] [CrossRef]
- Świerzewski, M.; Kalina, J. Optimisation of biomass-fired cogeneration plants using ORC technology. Renew. Energy 2020, 159, 195–214. [Google Scholar] [CrossRef]
- Permana, D.I.; Fagioli, F.; De Lucia, M.; Rusirawan, D.; Farkas, I. Energy, exergy, environmental and economy (4E) analysis of the existing of biomass-ORC plant with capacity 150 kWe: A case study. Energy Convers. Manag. X 2024, 23, 100646. [Google Scholar] [CrossRef]
- Heidarnejad, P. Exergy based optimization of a biomass and solar fuelled cchp hybrid seawater desalination plant. J. Therm. Eng. 2017, 3, 1034–1043. [Google Scholar] [CrossRef]
- Cao, Y.; Nikafshan Rad, H.; Hamedi Jamali, D.; Hashemian, N.; Ghasemi, A. A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy Convers. Manag. 2020, 219, 112961. [Google Scholar] [CrossRef]
- Ghasemi, H.; Sheu, E.; Tizzanini, A.; Paci, M.; Mitsos, A. Hybrid solar–geothermal power generation: Optimal retrofitting. Appl. Energy 2014, 131, 158–170. [Google Scholar] [CrossRef]
- Cakici, D.M.; Erdogan, A.; Colpan, C.O. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy 2017, 120, 306–319. [Google Scholar] [CrossRef]
- Borsukiewicz-Gozdur, A. Dual-fluid-hybrid power plant co-powered by low-temperature geothermal water. Geothermics 2010, 39, 170–176. [Google Scholar] [CrossRef]
- Thain, I.; Di Pippo, R. Hybrid geothermal-biomass power plants: Applications, designs and performance analysis. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 19–25. [Google Scholar]
- Boyaghchi, F.; Heidarnejad, P. Energy and Exergy Analysis and Optimization of a μ-solar-driven Combined Ejector-Cooling and Power System based on Organic Rankine Cycle using an Evolutionary Algorithm. Sci. Iran. 2015, 22, 245–257. [Google Scholar]
- Li, P.; Li, J.; Pei, G.; Munir, A.; Ji, J. A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas. Sol. Energy 2016, 127, 136–146. [Google Scholar] [CrossRef]
- Hung, T.-C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers. Manag. 2001, 42, 539–553. [Google Scholar] [CrossRef]
- Hung, T.C.; Shai, T.Y.; Wang, S.K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 1997, 22, 661–667. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Stijepovic, M.; Linke, P. On the systematic design and selection of optimal working fluids for Organic Rankine Cycles. Appl. Therm. Eng. 2010, 30, 760–769. [Google Scholar] [CrossRef]
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Bahrami, M.; Hamidi, A.A.; Porkhial, S. Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC. Int. J. Energy Environ. Eng. 2013, 4, 12. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L.; Mao, S.S.; Deng, S. Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle. Appl. Energy 2020, 270, 115186. [Google Scholar] [CrossRef]
- Li, G. Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation. Renew. Sustain. Energy Rev. 2016, 53, 477–499. [Google Scholar] [CrossRef]
- Stijepovic, M.Z.; Linke, P.; Papadopoulos, A.I.; Grujic, A.S. On the role of working fluid properties in Organic Rankine Cycle performance. Appl. Therm. Eng. 2012, 36, 406–413. [Google Scholar] [CrossRef]
- Drescher, U.; Brüggemann, D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 2007, 27, 223–228. [Google Scholar] [CrossRef]
- Liu, H.; Shao, Y.; Li, J. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)—Thermodynamic modelling studies. Biomass Bioenergy 2011, 35, 3985–3994. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Benato, A.; Stoppato, A.; Mirandola, A. Fluid selection and plant configuration of an ORC-biomass fed system generating heat and/or power. Energy Procedia 2016, 101, 822–829. [Google Scholar] [CrossRef]
- Eyerer, S.; Dawo, F.; Kaindl, J.; Wieland, C.; Spliethoff, H. Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa. Appl. Energy 2019, 240, 946–963. [Google Scholar] [CrossRef]
- Eyerer, S.; Wieland, C.; Vandersickel, A.; Spliethoff, H. Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization. Energy 2016, 103, 660–671. [Google Scholar] [CrossRef]
- Yang, J.; Ye, Z.; Yu, B.; Ouyang, H.; Chen, J. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E). Energy 2019, 173, 721–731. [Google Scholar] [CrossRef]
- Petr, P.; Raabe, G. Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in Organic Rankine Cycles—From thermophysical properties to cycle performance. Energy 2015, 93, 266–274. [Google Scholar] [CrossRef]
- Garg, P.; Kumar, P.; Srinivasan, K.; Dutta, P. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles. Appl. Therm. Eng. 2013, 51, 292–300. [Google Scholar] [CrossRef]
- Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29, 2468–2476. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rajagopal, K. Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12. Energy Convers. Manag. 2007, 48, 3053–3062. [Google Scholar] [CrossRef]
- Shu, G.; Zhao, M.; Tian, H.; Huo, Y.; Zhu, W. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine. Energy 2016, 115, 756–769. [Google Scholar] [CrossRef]
- Pang, K.-C.; Chen, S.-C.; Hung, T.-C.; Feng, Y.-Q.; Yang, S.-C.; Wong, K.-W.; Lin, J.-R. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy 2017, 133, 636–651. [Google Scholar] [CrossRef]
- Garland, N.P.; Hadfield, M. Environmental implications of hydrocarbon refrigerants applied to the hermetic compressor. Mater. Des. 2005, 26, 578–586. [Google Scholar] [CrossRef]
- Sánchez, D.; Cabello, R.; Llopis, R.; Arauzo, I.; Catalán-Gil, J.; Torrella, E. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. Int. J. Refrig. 2017, 74, 269–282. [Google Scholar] [CrossRef]
- Sempértegui-Tapia, D.F.; Ribatski, G. Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. Int. J. Heat Mass Transf. 2017, 108, 2417–2432. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Chen, X.; Liang, K. Comparative study on energy efficiency of low GWP refrigerants in domestic refrigerators with capacity modulation. Energy Build. 2019, 192, 93–100. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; John Wiley & Sons Inc.: Montreal, QC, Canada, 1996. [Google Scholar]
- Breeze, P. Power Generation Technologies; Elsevier: London, UK, 2019. [Google Scholar] [CrossRef]
- Mascuch, J.; Novotny, V.; Vodicka, V.; Spale, J.; Zeleny, Z. Experimental development of a kilowatt-scale biomass fired micro—CHP unit based on ORC with rotary vane expander. Renew. Energy 2020, 147, 2882–2895. [Google Scholar] [CrossRef]
- Salomón, M.; Savola, T.; Martin, A.; Fogelholm, C.-J.; Fransson, T. Small-scale biomass CHP plants in Sweden and Finland. Renew. Sustain. Energy Rev. 2011, 15, 4451–4465. [Google Scholar] [CrossRef]
- Moradi, R.; Marcantonio, V.; Cioccolanti, L.; Bocci, E. Integrating biomass gasification with a steam-injected micro gas turbine and an Organic Rankine Cycle unit for combined heat and power production. Energy Convers. Manag. 2020, 205, 112464. [Google Scholar] [CrossRef]
- Qiu, G.; Shao, Y.; Li, J.; Liu, H.; Riffat, S.B. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012, 96, 374–382. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Li, J.; Li, H.; Wang, Y.; Li, S. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture. Energy Convers. Manag. 2020, 204, 112310. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl. Therm. Eng. 2014, 71, 751–759. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Techno-economic analysis of biomass-fired ORC systems for single-family combined heat and power (CHP) applications. Energy Procedia 2014, 45, 1285–1294. [Google Scholar] [CrossRef]
- Camporeale, S.M.; Pantaleo, A.M.; Ciliberti, P.D.; Fortunato, B. Cycle configuration analysis and techno-economic sensitivity of biomass externally fired gas turbine with bottoming ORC. Energy Convers. Manag. 2015, 105, 1239–1250. [Google Scholar] [CrossRef]
- Taljan, G.; Verbič, G.; Pantoš, M.; Sakulin, M.; Fickert, L. Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage. Renew. Energy 2012, 41, 29–38. [Google Scholar] [CrossRef]
- Tańczuk, M.; Ulbrich, R. Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system—A comparative analysis under Polish and German conditions. Energy 2013, 62, 132–141. [Google Scholar] [CrossRef]
- Pantaleo, A.M.; Camporeale, S.; Fortunato, B. Small scale biomass CHP: Techno-economic performance of steam vs. gas turbines with bottoming ORC. Energy Procedia 2015, 82, 825–832. [Google Scholar] [CrossRef]
- Obernberger, I.; Thonhofer, P.; Reisenhofer, E. Description and evaluation of the new 1000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat Power 2002, 10, 18–25. [Google Scholar]
- Noussan, M.; Cerino Abdin, G.; Poggio, A.; Roberto, R. Biomass-fired CHP and heat storage system simulations in existing district heating systems. Appl. Therm. Eng. 2014, 71, 729–735. [Google Scholar] [CrossRef]
- Kalina, J.; Świerzewski, M.; Strzałka, R. Operational experiences of municipal heating plants with biomass-fired ORC cogeneration units. Energy Convers. Manag. 2019, 181, 544–561. [Google Scholar] [CrossRef]
- Kalina, J.; Świerzewski, M. Identification of ORC unit operation in biomass-fired cogeneration system. Renew. Energy 2019, 142, 400–414. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, J. Optimizations of the organic Rankine cycle-based domestic CHP using biomass fuel. Energy Convers. Manag. 2018, 160, 31–47. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, G.; Shao, Y.; Daminabo, F.; Riffat, S.B. Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle. Int. J. Low-Carbon Technol. 2010, 5, 81–87. [Google Scholar] [CrossRef]
- de Mena, B.; Vera, D.; Jurado, F.; Ortega, M. Updraft gasifier and ORC system for high ash content biomass: A modelling and simulation study. Fuel Process. Technol. 2017, 156, 394–406. [Google Scholar] [CrossRef]
- Vera, D.; Jurado, F.; Carpio, J.; Kamel, S. Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry. Energy 2018, 144, 41–53. [Google Scholar] [CrossRef]
- Messineo, A.; Volpe, R.; Marvuglia, A. Ligno-cellulosic biomass exploitation for power generation: A case study in Sicily. Energy 2012, 45, 613–625. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Dincer, I.; Hamdullahpur, F. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle. Energy 2012, 45, 975–985. [Google Scholar] [CrossRef]
- Uris, M.; Linares, J.I.; Arenas, E. Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy 2017, 133, 969–985. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Hamdullahpur, F.; Dincer, I. Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production. Appl. Therm. Eng. 2011, 31, 439–446. [Google Scholar] [CrossRef]
- Ali Sabbaghi, M.; Baniasadi, E.; Genceli, H. Thermodynamic assessment of an innovative biomass-driven system for generating power, heat, and hydrogen. Int. J. Hydrogen Energy 2024, 75, 529–539. [Google Scholar] [CrossRef]
- Boyaghchi, F.A.; Chavoshi, M.; Sabeti, V. Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations. Energy 2018, 145, 38–51. [Google Scholar] [CrossRef]
- Maraver, D.; Sin, A.; Royo, J.; Sebastián, F. Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Appl. Energy 2013, 102, 1303–1313. [Google Scholar] [CrossRef]
- Ozcan, H.; Dincer, I. Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification. Int. J. Hydrogen Energy 2015, 40, 7798–7807. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I.; Rosen, M.A. Development and assessment of an integrated biomass-based multi-generation energy system. Energy 2013, 56, 155–166. [Google Scholar] [CrossRef]
- Chinese, D.; Meneghetti, A.; Nardin, G. Diffused introduction of Organic Rankine Cycle for biomass-based power generation in an industrial district: A systems analysis. Int. J. Energy Res. 2004, 28, 1003–1021. [Google Scholar] [CrossRef]
- Mazzola, S.; Astolfi, M.; Macchi, E. The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India. Appl. Energy 2016, 169, 370–383. [Google Scholar] [CrossRef]
- Aziz, M.; Kurniawan, T.; Oda, T.; Kashiwagi, T. Advanced power generation using biomass wastes from palm oil mills. Appl. Therm. Eng. 2017, 114, 1378–1386. [Google Scholar] [CrossRef]
- Guercio, A.; Bini, R. Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 527–567. [Google Scholar]
- Dong, L.; Liu, H.; Riffat, S. Development of small-scale and micro-scale biomass-fuelled CHP systems—A literature review. Appl. Therm. Eng. 2009, 29, 2119–2126. [Google Scholar] [CrossRef]
- González, A.; Riba, J.-R.; Puig, R.; Navarro, P. Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests’ wood chips. Renew. Sustain. Energy Rev. 2015, 43, 143–155. [Google Scholar] [CrossRef]
- Wegener, M.; Malmquist, A.; Isalgué, A.; Martin, A. Biomass-fired combined cooling, heating and power for small scale applications—A review. Renew. Sustain. Energy Rev. 2018, 96, 392–410. [Google Scholar] [CrossRef]
- Abbas, T.; Issa, M.; Ilinca, A. Biomass Cogeneration Technologies: A Review. J. Sustain. Bioenergy Syst. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Sevinchan, E.; Dincer, I.; Lang, H. Energy and exergy analyses of a biogas driven multigenerational system. Energy 2019, 166, 715–723. [Google Scholar] [CrossRef]
- Sikarwar, S.S.; Surywanshi, G.D.; Patnaikuni, V.S.; Kakunuri, M.; Vooradi, R. Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant—Energy and exergy analyses. Renew. Energy 2020, 155, 931–949. [Google Scholar] [CrossRef]
- Sung, T.; Kim, S.; Kim, K.C. Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Appl. Therm. Eng. 2017, 127, 963–974. [Google Scholar] [CrossRef]
- Gholizadeh, T.; Vajdi, M.; Rostamzadeh, H. Exergoeconomic optimization of a new trigeneration system driven by biogas for power, cooling, and freshwater production. Energy Convers. Manag. 2020, 205, 112417. [Google Scholar] [CrossRef]
- Zahedi, R.; Ahmadi, A.; Dashti, R. Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system. Renew. Sustain. Energy Rev. 2021, 150, 111420. [Google Scholar] [CrossRef]
- Huang, Y.; McIlveen-Wright, D.R.; Rezvani, S.; Huang, M.J.; Wang, Y.D.; Roskilly, A.P.; Hewitt, N.J. Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings. Appl. Energy 2013, 112, 518–525. [Google Scholar] [CrossRef]
- Behzadi, A.; Gholamian, E.; Houshfar, E.; Habibollahzade, A. Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran’s waste-to-energy plant integrated with an ORC unit. Energy 2018, 160, 1055–1068. [Google Scholar] [CrossRef]
- Karimi, M.H.; Chitgar, N.; Emadi, M.A.; Ahmadi, P.; Rosen, M.A. Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. Int. J. Hydrogen Energy 2020, 45, 6262–6277. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; Hussen, H.M.; Anqi, A.E.; Farouk, N.; Issakhov, A. Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion. Energy 2022, 238, 122010. [Google Scholar] [CrossRef]
- Ghaebi, H.; Yari, M.; Gargari, S.G.; Rostamzadeh, H. Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew. Energy 2019, 130, 87–102. [Google Scholar] [CrossRef]
- Gholizadeh, T.; Vajdi, M.; Mohammadkhani, F. Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas. Energy Convers. Manag. 2019, 181, 463–475. [Google Scholar] [CrossRef]
- Adebayo, V.; Abid, M.; Adedeji, M.; Hussain Ratlamwala, T.A. Energy, exergy and exergo-environmental impact assessment of a solid oxide fuel cell coupled with absorption chiller & cascaded closed loop ORC for multi-generation. Int. J. Hydrogen Energy 2022, 47, 3248–3265. [Google Scholar] [CrossRef]
- Moret, S.; Peduzzi, E.; Gerber, L.; Maréchal, F. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems. Energy Convers. Manag. 2016, 129, 305–318. [Google Scholar] [CrossRef]
- Briola, S.; Gabbrielli, R.; Bischi, A. Off-design performance analysis of a novel hybrid binary geothermal-biomass power plant in extreme environmental conditions. Energy Convers. Manag. 2019, 195, 210–225. [Google Scholar] [CrossRef]
- Heidarnejad, P.; Genceli, H.; Asker, M.; Khanmohammadi, S. A comprehensive approach for optimizing a biomass assisted geothermal power plant with freshwater production: Techno-economic and environmental evaluation. Energy Convers. Manag. 2020, 226, 113514. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Li, J.; Xu, G.; Lei, J.; Liu, T. Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant. Energy 2022, 240, 122477. [Google Scholar] [CrossRef]
- Dou, Z.; Zou, Y.; Mohebbi, A. Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system. Energy 2024, 293, 130532. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, S.; Zhang, J.; Zhang, Y. Exergy and economic analysis of organic Rankine cycle hybrid system utilizing biogas and solar energy in rural area of China. Int. J. Green Energy 2017, 14, 1221–1229. [Google Scholar] [CrossRef]
- Petrollese, M.; Cocco, D. Techno-economic assessment of hybrid CSP-biogas power plants. Renew. Energy 2020, 155, 420–431. [Google Scholar] [CrossRef]
- Al-Arfi, I.; Shboul, B.; Poggio, D.; Ingham, D.; Ma, L.; Hughes, K.; Pourkashanian, M. Thermo-economic and design analysis of a solar thermal power combined with anaerobic biogas for the air gap membrane distillation process. Energy Convers. Manag. 2022, 257, 115407. [Google Scholar] [CrossRef]
- Bamisile, O.; Huang, Q.; Dagbasi, M.; Adebayo, V.; Adun, H.; Hu, W. Steady-state and process modeling of a novel wind-biomass comprehensive energy system: An energy conservation, exergy and performance analysis. Energy Convers. Manag. 2020, 220, 113139. [Google Scholar] [CrossRef]
- Islam, S.; Dincer, I.; Yilbas, B.S. A novel renewable energy-based integrated system with thermoelectric generators for a net-zero energy house. Int. J. Energy Res. 2020, 44, 3458–3477. [Google Scholar] [CrossRef]
- Oyekale, J.; Petrollese, M.; Cau, G. Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant. Appl. Energy 2020, 268, 114888. [Google Scholar] [CrossRef]
- Jones, J.M.; Lea-Langton, A.R.; Ma, L.; Pourkashanian, M.; Williams, A. Pollutants Generated by the Combustion of Solid Biomass Fuels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- San Miguel, G.; Domínguez, M.P.; Hernández, M.; Sanz-Pérez, F. Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass Bioenergy 2012, 47, 134–144. [Google Scholar] [CrossRef]
- Schwartz, N.R.; Paulsen, A.D.; Blaise, M.J.; Wagner, A.L.; Yelvington, P.E. Analysis of emissions from combusting pyrolysis products. Fuel 2020, 274, 117863. [Google Scholar] [CrossRef]
- Chan, Y.H.; Yusup, S.; Quitain, A.T.; Tan, R.R.; Sasaki, M.; Lam, H.L.; Uemura, Y. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment. Energy Convers. Manag. 2015, 104, 180–188. [Google Scholar] [CrossRef]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health Part A 2018, 53, 899–906. [Google Scholar] [CrossRef]
- Nielsen, M.; Nielsen, M.; Plejdrup, M.; Hjelgaard, K. Danish Emission Inventories for Stationary Combustion Plants. No.: NERI Technical Report. 2007. Available online: https://dce2.au.dk/pub/SR279.pdf (accessed on 25 September 2022).
- IPCC. Climate Change 2013; Contribution to the Fifth Assessment Report of the Working Group I; The Physical Science Basis. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 26 October 2022).
- Carter, M.S.; Hauggaard-Nielsen, H.; Heiske, S.; Jensen, M.; Thomsen, S.T.; Schmidt, J.E.; Johansen, A.; Ambus, P. Consequences of field N2O emissions for the environmental sustainability of plant-based biofuels produced within an organic farming system. GCB Bioenergy 2012, 4, 435–452. [Google Scholar] [CrossRef]
- Senbayram, M.; Chen, R.; Wienforth, B.; Herrmann, A.; Kage, H.; Mühling, K.H.; Dittert, K. Emission of N2O from biogas crop production systems in Northern Germany. Bioenergy Res. 2014, 7, 1223–1236. [Google Scholar] [CrossRef]
- Kristensen, P.G.; Jensen, J.K.; Nielsen, M.; Illerup, J.B. Emission Factors for Gas Fired CHP Units < 25 MW; IGRC: Vancouver, BC, Canada, 2004. [Google Scholar]
- Petracchini, F.; Romagnoli, P.; Paciucci, L.; Vichi, F.; Imperiali, A.; Paolini, V.; Liotta, F.; Cecinato, A. Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ. Sci. Pollut. Res. 2017, 24, 4741–4754. [Google Scholar] [CrossRef] [PubMed]
- Thorneloe, S. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills; Citeseer, 2008. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=198363 (accessed on 26 August 2022).
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogas production plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Gómez, J.S.; Lohmann, H.; Krassowski, J. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere 2016, 153, 48–57. [Google Scholar] [CrossRef]
- Wang, L.; Littlewood, J.; Murphy, R.J. Environmental sustainability of bioethanol production from wheat straw in the UK. Renew. Sustain. Energy Rev. 2013, 28, 715–725. [Google Scholar] [CrossRef]
- Lisboa, C.C.; Butterbach-Bahl, K.; Mauder, M.; Kiese, R. Bioethanol production from sugarcane and emissions of greenhouse gases—Known and unknowns. GCB Bioenergy 2011, 3, 277–292. [Google Scholar] [CrossRef]
- Zailan, R.; Lim, J.S.; Manan, Z.A.; Alwi, S.R.W.; Mohammadi-ivatloo, B.; Jamaluddin, K. Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review. Renew. Sustain. Energy Rev. 2021, 148, 111289. [Google Scholar] [CrossRef]
- Pereira, J.S.; Ribeiro, J.B.; Mendes, R.; Vaz, G.C.; André, J.C. ORC based micro-cogeneration systems for residential application—A state of the art review and current challenges. Renew. Sustain. Energy Rev. 2018, 92, 728–743. [Google Scholar] [CrossRef]
- Míguez, J.; Morán, J.; Granada, E.; Porteiro, J. Review of technology in small-scale biomass combustion systems in the European market. Renew. Sustain. Energy Rev. 2012, 16, 3867–3875. [Google Scholar] [CrossRef]
- Rangel-Martinez, D.; Nigam, K.; Ricardez-Sandoval, L.A. Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chem. Eng. Res. Des. 2021, 174, 414–441. [Google Scholar] [CrossRef]
- Tao, J.; Hou, L.a.; Li, J.; Yan, B.; Chen, G.; Cheng, Z.; Lin, F.; Ma, W.; Crittenden, J.C. Biomass combustion: Environmental impact of various precombustion processes. J. Clean. Prod. 2020, 261, 121217. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Hochenauer, C.; Scharler, R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renew. Sustain. Energy Rev. 2021, 135, 110237. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2017. Available online: https://www.iea.org/reports/energy-technology-perspectives-2017 (accessed on 16 April 2022).
- IPCC. Special Report of Intergovernmental Panel on Climate Change: Global Warming of 1.5C. 2018. Available online: https://www.ipcc.ch/sr15/chapter/chapter-4/ (accessed on 14 April 2022).
- Coady, J.; Duquette, J. Quantifying the impacts of biomass driven combined heat and power grids in northern rural and remote communities. Renew. Sustain. Energy Rev. 2021, 148, 111296. [Google Scholar] [CrossRef]
- Munawar, M.A.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Hassan, M.; Liaquat, R.; Dawood, U.F. Challenges and opportunities in biomass ash management and its utilization in novel applications. Renew. Sustain. Energy Rev. 2021, 150, 111451. [Google Scholar] [CrossRef]
- Malico, I.; Pereira, R.N.; Gonçalves, A.C.; Sousa, A.M. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- IRENA. A Background Paper to “Renewable Energy in Manufacturing. 2015. Available online: https://www.irena.org/publications/2014/Jun/Renewable-Energy-in-Manufacturing (accessed on 9 April 2022).
- Morató, T.; Vaezi, M.; Kumar, A. Techno-economic assessment of biomass combustion technologies to generate electricity in South America: A case study for Bolivia. Renew. Sustain. Energy Rev. 2020, 134, 110154. [Google Scholar] [CrossRef]
- Colonna, P.; Casati, E.; Trapp, C.; Mathijssen, T.; Larjola, J.; Turunen-Saaresti, T.; Uusitalo, A. Organic Rankine cycle power systems: From the concept to current technology, applications, and an outlook to the future. J. Eng. Gas Turbines Power 2015, 137, 100801. [Google Scholar] [CrossRef]
- Loni, R.; Najafi, G.; Bellos, E.; Rajaee, F.; Said, Z.; Mazlan, M. A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. J. Clean. Prod. 2020, 287, 125070. [Google Scholar] [CrossRef]
Category | Name | Moisture Content (wt %) | Volatile Matter (dry wt %) | Fixed Carbon (dry wt %) | Ash (dry wt %) | HHV (MJ/dry kg) |
---|---|---|---|---|---|---|
Woody plants | Cottonwood | 30–60 | 78 | 20 | 1.1 | 19.5 |
Eucalyptus | 30–60 | 82.25 | 17.07 | 2.4 | 18.7 | |
Hybrid poplar | 30–60 | 81.34 | 17.70 | 1 | 19.5 | |
Herbaceous plants | Cassava | 20–60 | 59.4 | 28.9 | 3.9 | 17.5 |
Sweet sorghum | 20–70 | 76.33 | 15.98 | 9 | 17.6 | |
Switchgrass | 30–70 | 73.9 | 21.2 | 4.01 | 17.36 | |
Barley straw | 30 | 46 | 18 | 6 | 17.38 | |
Wheat straw | 16 | 59 | 21 | 4 | 18.7 | |
Wastes | Cattle manure | 20–70 | 47.31 | 32.50 | 20.20 | 11.92–19.44 |
Refuse-derived fuel | 15–30 | 67.3 | 1.4 | 22.3 | 21.63 | |
Aquatic plants | Water hyacinth | 85–97 | 65.7 | 21.9 | 12.4 | 14.55 |
Coal | Bituminous | 16–29 | 60 | 71–81 | 2–10 | 23 |
Lignite | 35 | 33–62 | 66–76 | 2–10 | 16 |
Type | Lignin (%) | Cellulose (%) | Hemicellulose (%) |
---|---|---|---|
Corn stover (herbaceous plant) | 17.2 | 36.1 | 21.4 |
Wheat straw (herbaceous plant) | 8.2 | 48.6 | 27.7 |
Rice straw (herbaceous plant) | 8.6 | 30.4 | 32.3 |
Poplar (woody plant) | 41.3 | 32.9 | 25.9 |
Sycamore (woody plant) | 44.7 | 29.4 | 25.5 |
Pine (woody plant) | 40.4 | 24.9 | 34.5 |
Type of Technology | Components | Combustion Temperature (°C) | Fuel Supply | Ash Removal | Maximum Moisture Content (%) |
---|---|---|---|---|---|
Fixed bed system | Grate, primary and secondary air inlets, fuel inlet, ash door, flue gas outlet | 850–1400 | Manual/Automatic | Manual/Automatic | 50 |
Fluidized bed system | Fluidized bed, air inlets, fuel inlet, ash door, heat exchanger, flue gas outlet | 750–950 | Automatic | Automatic | 60 |
Product Distribution | |||||||
---|---|---|---|---|---|---|---|
Type | Major Products | Liquid (wt.%) | Gas (wt.%) | Solid (wt.%) | Settlement Time | Maximum Temperature | References |
Slow pyrolysis (carbonization) | Charcoal | 30–50 | 15–30 | 30–60 | Hours–days | 350–750 °C | [40,59,60] |
Fast pyrolysis | Bio-oil | 65–75 | 13–25 | 12–19 | 0.5–5 s | <650 °C | [40,61,62,63] |
Flash pyrolysis | Bio-oil, chemicals, and fuel gas | 60–70 | 10–15 | 15–25 | <1 s | 400–1000 °C | [40,64,65] |
Name | Molecular Mass [kg/kmol] | Normal Boiling Point [K] | Critical Pressure [MPa] | Critical Temperature [K] | ODP | GWP [100 yr] | Source |
---|---|---|---|---|---|---|---|
R245fa | 134.05 | 288.05 | 3.64 | 427.2 | 0 | 950 | [117,118,119,120,121] |
R141b | 116.95 | 305.2 | 4.46 | 479.96 | 0.086 | 700 | [110,122] |
R123 | 152.93 | 300.97 | 3.662 | 456.83 | 0.012 | 120 | [123,124,125] |
R11 | 137.37 | 296.86 | 4.408 | 471.11 | 1 | 4600 | [110,126] |
R134a | 102.03 | 247.08 | 4.059 | 374.21 | 0 | 1301 | [127,128,129] |
R600a | 58.12 | 261.40 | 3.629 | 407.81 | 0 | 4 | [127,128,129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidarnejad, P.; Genceli, H.; Hashemian, N.; Asker, M.; Al-Rawi, M. Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends. Energies 2024, 17, 3788. https://doi.org/10.3390/en17153788
Heidarnejad P, Genceli H, Hashemian N, Asker M, Al-Rawi M. Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends. Energies. 2024; 17(15):3788. https://doi.org/10.3390/en17153788
Chicago/Turabian StyleHeidarnejad, Parisa, Hadi Genceli, Nasim Hashemian, Mustafa Asker, and Mohammad Al-Rawi. 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends" Energies 17, no. 15: 3788. https://doi.org/10.3390/en17153788
APA StyleHeidarnejad, P., Genceli, H., Hashemian, N., Asker, M., & Al-Rawi, M. (2024). Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends. Energies, 17(15), 3788. https://doi.org/10.3390/en17153788