Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland
Abstract
:1. Introduction
2. Materials and Methods
- Meteorological data for Lublin in Poland—Meteonorm 8.0 [42];
- Azimuth angle—0°, modules facing south direction;
- Tilt angle—30°;
- In order to obtain shadow impact information, 3D scene was built;
- All the electrical and mechanicals parameters concerning modules, inverters, and electrical circuits;
- Aging effects based on the Longi Solar datasheet for LR6-72 PH 370M module;
- For the scenarios with the energy storage (hybrid system), a battery LG RESU 13 12.4 kWh (South Korea) was chosen;
- Profile of the user electrical energy needs in 15 min measurement step for year 2023 (Figure A1);
- The anticipated lifespan of the installation was 25 years;
- The anticipated lifespan of the batteries was 10 years.
- As the simulations included a standard rooftop PV installation, no maintenance costs were considered. All financial parameters depended on the examined scenario.
- Scenario 1
- Scenario 2
- Scenario 3
- Scenario 4
Analyzed Parameters
3. Results and Discussion
3.1. Photovoltaic System Performance
3.2. Financial Parameters
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaics |
SC | Self-consumption parameter |
IRR | Internal rate of return |
ROI | Return on investment |
NI | Net income |
IC | Investment costs |
Payback Period | The period of time following the implementation of a given investment, during which the total net benefits of the investment will cover the expenditure incurred for its implementation |
Symbols | |
EP | Yearly electrical energy production by PV |
Eneed | Yearly electrical energy needs of prosumers |
EGRID | Electrical energy that was provided to a user from the electrical grid |
ESC | Electrical energy that comes from the photovoltaic system and is used in the household (self-consumption) |
EPV-GRID | Electrical energy injected into the electrical grid. |
Appendix A
References
- Svazas, M.; Bilan, Y.; Navickas, V. Research Directions of the Energy Transformation Impact on the Economy in the Aspect of Asset Analysis. Sustainability 2024, 16, 2556–2577. [Google Scholar] [CrossRef]
- Lei, H.; Xu, W. How does the transformation of the energy structure impact the coordinated development of economy and environment? Environ. Sci. Pollut. Res. 2023, 30, 112368–112384. [Google Scholar] [CrossRef]
- Swain, R.B.; Karimu, A.; Gråd, E. Sustainable development, renewable energy transformation and employment impact in the EU. Int. J. Sustain. Dev. World Ecol. 2022, 29, 695–708. [Google Scholar] [CrossRef]
- Zamfir, A.I.; Croitoru, E.O.; Burlacioiu, C.; Dobrin, C. Renewable Energies: Economic and Energy Impact in the Context of Increasing the Share of Electric Cars in EU. Energies 2022, 15, 8882. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Rogozińska-Mitrut, J.; Różycka, M.; Soboń, D.; Stasiak, J. Energy Innovation for Individual Consumers in Poland—Analysis of Potential and Evaluation of Practical Applications in Selected Areas. Energies 2023, 16, 5766. [Google Scholar] [CrossRef]
- Biswas, S. Optimal investment policy in sharing and standalone economy for solar PV panel under operational cost. Sol. Energy 2023, 264, 112003. [Google Scholar] [CrossRef]
- De Groote, O.; Gautier, A.; Verboven, F. The political economy of financing climate policy—Evidence from the solar PV subsidy programs. Resour. Energy Econ. 2024, 77, 101436. [Google Scholar] [CrossRef]
- Rydehell, H.; Lantz, B.; Mignon, I.; Lindahl, J. The impact of solar PV subsidies on investment over time—The case of Sweden. Energy Econ. 2024, 133, 107552. [Google Scholar] [CrossRef]
- Hagerman, S.; Jaramillo, P.; Granger Morgan, M. Is rooftop solar PV at socket parity without subsidies? Energy Policy 2016, 89, 84–94. [Google Scholar] [CrossRef]
- Dong, C.; Zhou, R.; Li, J. Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China. Appl. Energy 2021, 281, 116007. [Google Scholar] [CrossRef]
- Benalcazar, P.; Kalka, M.; Kamiński, J. From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems. Energy Policy 2024, 191, 114167. [Google Scholar] [CrossRef]
- Chen, Q.; Kuang, Z.; Liu, X.; Zhang, T. Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics. Appl. Energy 2024, 364, 123163. [Google Scholar] [CrossRef]
- Shboul, B.; Zayed, M.E.; Ashraf, W.M.; Usman, M.; Roy, D.; Irshad, K.; Rehman, S. Energy and economic analysis of building integrated photovoltaic thermal system: Seasonal dynamic modeling assisted with machine learning-aided method and multi-objective genetic optimization. Alex. Eng. J. 2024, 94, 131–148. [Google Scholar] [CrossRef]
- Shboul, B.; Zayed, M.E.; Tariq, R.; Ashraf, W.M.; Odat, A.; Rehman, S.; Abdelrazik, A.S.; Krzywanski, J. New hybrid photovoltaic-fuel cell system for green hydrogen and power production: Performance optimization assisted with Gaussian process regression method. Int. J. Hydrog. Energy 2024, 59, 1214–1229. [Google Scholar] [CrossRef]
- Brown, P.R.; Williams, T.; Brown, M.L.; Murphy, C. System-cost-minimizing deployment of PV-wind hybrids in low-carbon U.S. power systems. Appl. Energy 2024, 365, 123151. [Google Scholar] [CrossRef]
- Salau, A.O.; Maitra, S.K.; Kumar, A.; Mane, A.; Dumicho, R.W. Design, modeling, and simulation of a PV/diesel/battery hybrid energy system for an off-grid hospital in Ethiopia. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 8, 100607. [Google Scholar] [CrossRef]
- Kurz, D.; Nowak, A. Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland. Energies 2023, 16, 946. [Google Scholar] [CrossRef]
- Institute for Renewable Energy. Photovoltaic Market in Poland. 2024. Available online: https://ieo.pl/raport-rynek-fotowoltaiki-w-polsce-2024 (accessed on 17 June 2024).
- Parra-Domínguez, J.; Sánchez, E.; Ordóñez, Á. The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development. Sustainability 2023, 15, 10552. [Google Scholar] [CrossRef]
- Santa, A.-M.I. Prosumers—A New Mindset for Citizens in Smart Cities. Smart Cities 2022, 5, 1409–1420. [Google Scholar] [CrossRef]
- Gržanić, M.; Capuder, T.; Zhang, N.; Huang, W. Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges. Renew. Sustain. Energy Rev. 2022, 154, 111859. [Google Scholar] [CrossRef]
- Sharma, T.; Kanwar, N.; Sharma, M.K. Net metering from smart grid perspective. In Proceedings of the A Two-Day Conference on Flexible Electronics for Electric Vehicles, Jaipur, India, 5–6 March 2020. [Google Scholar]
- Act of 20 February 2015 on Renewable Energy Sources (In Polish: Ustawa z Dnia 20 Lutego 2015 r. o Odnawialnych ´Zródłach Energii (Dz.U. 2015, poz. 478)). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/T/D20150478L.pdf (accessed on 17 June 2024).
- Malciak, M.; Nowakowska, P. Zmiany w Funkcjonowaniu i Zasadach Rozliczania Fotowoltaika. Nowa Energ. 2021, 5–6, 81. [Google Scholar]
- Cieślak, K.J. Multivariant Analysis of Photovoltaic Performance with Consideration of Self-Consumption. Energies 2022, 15, 6732. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy 2015, 84, 684–694. [Google Scholar] [CrossRef]
- Ordóñez, Á.; Sánchez, E.; Rozas, L.; García, R.; Parra-Domínguez, J. Net-metering and net-billing in photovoltaic self-consumption: The cases of Ecuador and Spain. Sustain. Energy Technol. Assess. 2022, 53, 102434. [Google Scholar] [CrossRef]
- Bertsch, V.; Geldermann, J.; Lühn, T. What drives the profitability of household PV investments, self-consumption and self-sufficiency? Appl. Energy 2017, 204, 1–15. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Villar, C.H.; Neves, D.; Silva, C.A. Solar PV self-consumption: An analysis of influencing indicators in the Portuguese context. Energy Strategy Rev. 2017, 18, 224–234. [Google Scholar] [CrossRef]
- Barzegkar-Ntovom, G.A.; Chatzigeorgiou, N.G.; Nousdilis, A.I.; Vomva, S.A.; Kryonidis, G.C.; Kontis, E.O.; Georghiou, G.E.; Christoforidis, G.C.; Papagiannis, G.K. Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme. Renew. Energy 2020, 152, 1302–1309. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, F.J.; Jiménez-Castillo, G.; de la Casa Hernández, J.; Aguilar Pena, J.D. A new tool to Analysing photovoltaic self-consumption systems with batteries. Renew. Energy 2021, 168, 1327–1343. [Google Scholar] [CrossRef]
- Gulkowski, S. Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland. Energies 2022, 15, 3666. [Google Scholar] [CrossRef]
- Khatib, T.; Deria, R. East-west oriented photovoltaic power systems: Model, benefits and technical evaluation. Energy Convers. Manag. 2022, 266, 115810–115825. [Google Scholar] [CrossRef]
- Pater, S. Increase of energy self-consumption in hybrid RES installations with PV panels and air-source heat pumps. Chem. Process Eng. New Front. 2023, 44, e43. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources. Energies 2023, 16, 3751. [Google Scholar] [CrossRef]
- Reibsch, R.; Blechinger, P.; Kowal, J. The importance of battery storage systems in reducing grid issues in sector-coupled and renewable low-voltage grids. J. Energy Storage 2023, 72 Pt. E, 108726. [Google Scholar] [CrossRef]
- Kurz, D. Analiza możliwości zarządzania i rozdziału energii elektrycznej, wyprodukowanej w prosumenckiej instalacji fotowoltaicznej, w budynku z automatyką budynkową. Przegląd Elektrotechniczny 2022, 1, 259. [Google Scholar] [CrossRef]
- Mój Prąd. Program Dofinansowania Mikroinstalacji Fotowoltaicznych. Available online: https://mojprad.gov.pl/nabor-v (accessed on 17 June 2024).
- Ministry of Climate and Environment Republic of Poland. Nowe Zasady Rozliczen Prosumentów od 2022 r. Available online: https://www.gov.pl/web/klimat/nowy-system-rozliczania-tzw-net-billing (accessed on 17 June 2024).
- Act of 16 August 2023 On Amending the Act on Special Solutions for the Protection of Electricity Consumers in 2023. (In Polish: Ustawa z Dnia 16 Sierpnia 2023 r. o Zmianie Ustawy o Szczególnych Rozwiązaniach Służących Ochronie Odbiorców Energii Elektrycznej w 2023 Roku w Związku z Sytuacją na Rynku Energii Elektrycznej Oraz Niektórych Innych Ustaw (Dz.U. 2023, poz. 1785)). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20230001785/O/D20231785.pdf (accessed on 17 June 2024).
- Available online: https://meteonorm.com/en/ (accessed on 18 June 2024).
- Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0944 (accessed on 17 June 2024).
- SMARD Market Data. Available online: https://www.smard.de/en/downloadcenter/download-market-data/ (accessed on 18 June 2024).
- Fraunhofer ISE Photovoltaics Report. Available online: https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (accessed on 18 June 2014).
- Ministry of Finance Republic of Poland. Available online: https://www.gov.pl/web/finanse/srednie-arytmetyczne (accessed on 18 June 2024).
- Kellison, S.G. The Theory of Interest, 3rd ed.; McGraw-Hill Irwin: Boston, MA, USA, 2009. [Google Scholar]
- Lis, M.; Antonov, V.; Olczak, P. Hybrid photovoltaic and energy storage system in order to enhance self-consumption energy—Poland case study. J. Energy Storage 2024, 91, 112096. [Google Scholar] [CrossRef]
Yearly Energy Need [MWh/y] | Ep [MWh/y] | EGREED [MWh/y] | ESC [MWh/y] | EPV-GREED [MWh/y] | SC [%] | |
---|---|---|---|---|---|---|
Without energy storage | 5.74 | 5.6 | 4.155 | 1.6 | 4.05 | 28.6 |
With energy storage | 2.37 | 3.38 | 1.7 | 60.4 |
No Additional Financing | “Mój Prąd” Subsidy | ||||||
---|---|---|---|---|---|---|---|
IRR | ROI | Payback Period | IRR | ROI | Payback Period | ||
Without energy storage | 3 MWh energy limit | 14.80% | 281.90% | 6.5 | 18.16% | 360.90% | 5.4 |
4 MWh energy limit | 14.25% | 269.40% | 6.8 | 17.52% | 345.80% | 5.6 | |
With energy storage | 3 MWh energy limit | 5.75% | 90.80% | 13.1 | 9.38% | 162.20% | 9.5 |
4 MWh energy limit | 5.31% | 82.90% | 13.7 | 8.85% | 151.30% | 9.9 |
No Additional Financing | “Moj Prad” Subsidy | |||||
---|---|---|---|---|---|---|
IRR | ROI | Payback Period | IRR | ROI | Payback Period | |
Without energy storage | 17.1% | 335.8% | 5.7 | 20.86% | 425.9% | 4.8 |
With energy storage | 11.69% | 211.9% | 8 | 20.75% | 423.3% | 5.8 |
No Additional Financing | “Mój Prąd” Subsidy | |||||
---|---|---|---|---|---|---|
IRR | ROI | Payback Period | IRR | ROI | Payback Period | |
Without energy storage | 121.9% | 222.8% | 7.7 | 15.13% | 289.6% | 6.4 |
With energy storage | 58.7% | 93% | 13 | 12.23% | 223.8%% | 7.7 |
No Additional Financing | “Moj Prad” Subsidy | |||||
---|---|---|---|---|---|---|
IRR | ROI | Payback Period | IRR | ROI | Payback Period | |
Without energy storage | 26.36% | 560.7% | 3.8 | 31.87% | 697.4% | 3.1 |
With energy storage | 14.96% | 285.7% | 6.5 | 25.8% | 547% | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieślak, K.J. Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland. Energies 2024, 17, 3618. https://doi.org/10.3390/en17153618
Cieślak KJ. Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland. Energies. 2024; 17(15):3618. https://doi.org/10.3390/en17153618
Chicago/Turabian StyleCieślak, Krystian Janusz. 2024. "Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland" Energies 17, no. 15: 3618. https://doi.org/10.3390/en17153618
APA StyleCieślak, K. J. (2024). Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland. Energies, 17(15), 3618. https://doi.org/10.3390/en17153618