Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications
Abstract
:1. Introduction
2. Classification of Heat Storage Methods
3. Assessment Methodology for Accumulation Materials
4. Overview of TES Applications and Heat Storage Materials
4.1. Sensible Heat Storage
4.1.1. Packed Bed
4.1.2. Liquid
4.2. Latent Heat—Phase-Change Materials
5. Results
5.1. Solid-Phase Materials for Sensible Heat Storage
5.2. Liquid-Phase Materials for Sensible Heat Storage
5.3. Phase-Change Materials for Latent and Sensible Heat Storage
5.4. Heat Storage Technology Selection Path
- Liquid energy storage is a preferred method of heat storage, as it allows for greater flexibility in power generation while maintaining the operational parameters of the heat source. Liquids are also employed as intersectional coolants for machines, such as compressors, which enables the integration of heat accumulators with varying temperature levels or HTF preheaters. The advantage of liquid heat accumulators is that the geometry of the exchangers can be optimised to achieve the desired temperature parameters.
- Heat storage in solid materials is a preferred option for systems where the heat transfer fluid is also the main circulating medium. An example of this is adiabatic energy storage systems in compressed air. One significant advantage of this approach is the relatively low cost of natural rock materials, the ability to withstand high temperatures and the ability to operate at all defined temperature thresholds.
- Solid sensible heat storage materials: Structural stability; wide availability; low price; and wide range of temperature applicability.
- Sensible heat storage fluids: Easy thermal integration of energy systems; can be used as a machine coolant; and maintains constant inlet and outlet parameters in case of constant operation and correct design of heat exchangers.
- Phase-change materials for latent heat storage: Phase change occurs around the melting/freezing temperature, which can provide constant heat transfer parameters; wide availability of materials with different compositions, which allows easy selection of PCMs depending on the expected phase-change temperature; potential for sensible heat storage.
- Solid sensible heat storage materials: Use of a porous bed leads to an increase in the required volume of the heat tank; inability to maintain constant HTF parameters due to heat transfer characteristics; and significant pressure drop of the flowing HTF.
- Sensible heat storage fluids: The need to build tanks for hot and cold liquid; the potential toxicity of the liquid; the need to consider chemical reactions with pipework and heat exchangers; and the need to prevent solidification, which can lead to damage to the plant.
- Phase-change materials for latent heat storage: Effect solidification near the heat transfer surface limits the intensity of energy transfer; potential toxicity; and relatively high cost.
6. Conclusions
- For all defined temperature levels, i.e., 100 °C (low-temperature storage), 300 °C (medium-temperature storage) and 500 °C (high-temperature storage), it is possible to adapt a solid, liquid or phase-change material for heat storage. However, it is essential to consider the characteristics of the specific system and to assess the advantages and disadvantages of the accumulation material used.
- A prospective evaluation utilising the weighting method enables the selection of materials that are aligned with the principal objectives of the energy storage system. The following materials were proposed using the weighting method for temperature levels of 100 °C, 300 °C and 500 °C: quartzite (solid), rapeseed oil (liquid), HITEC XL (PCM); basalt (solid), Therminol 66 (liquid), solar salt (PCM); basalt (solid), solar salt (liquid) and LiNaK (PCM), respectively.
- Rock materials such as basalt, granite or sandstone are most often proposed in systems where the HTF is also the main working fluid. Such solutions are used within solar thermal systems and compressed gas energy storage systems. The maximum operating temperature was determined for basalt and was 700 °C.
- Rock materials are characterised by similar thermophysical parameters and relatively low prices compared with their universality. In system calculations and heat storage design, the parameters of specific rocks must be taken into account, as it has been demonstrated that rocks of the same type can exhibit significantly different characteristic values depending on their extraction location. Synthetic solid materials may have more favourable thermophysical parameters and shapes [86]; however, their unit cost increases significantly.
- Due to the nature of heat storage and heat exchange processes involving a packed bed, it is not feasible to maintain a constant HTF temperature throughout system operation. This results in a decline in the energy efficiency of the machines utilising the heat storage. This must also be considered during the design phase, as there is a possibility of requiring a volume allowance for the storage material due to the need to maintain an optimal HTF temperature range.
- The utilisation of sensible heat storage in liquids is a favoured approach in many systems, including systems where the heat transfer fluid is the primary circulating medium (such as solar thermal systems) and as an intermediary or system integration medium. The deployment of sensible heat storage in liquids is a widely proposed solution for both conventional systems (such as those utilising coal or nuclear power) and energy storage applications. This is due to the high flexibility in the organisation of heat transfer and storage processes and the possibility of employing liquid mixers with varying temperature potentials and preheaters.
- It has been demonstrated that materials designated as phase-change ones can also function as high-temperature sensible heat storage fluids due to their capacity to accommodate a significant temperature range between the melting point and the maximum operating temperature.
- Despite the numerous experimental studies of PCMs conducted at a range of operating temperatures, there is a notable discrepancy in the number of concepts for large-scale energy storage systems utilising this technology in comparison with sensible heat storage. This is primarily due to the performance limitations associated with PCM solidification at the heat transfer surface, which significantly reduces the heat transfer flux.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
CAES | Compressed Air Energy Storage |
DP | Deliquescence Point |
HTF | Heat Transfer Fluid |
LCOE | Levelised Cost of Electricity |
MTPS | Modified Transient Plane Source |
PCM | Phase-Change Material |
RES | Renewable Energy Sources |
RH | Relative Humidity Level |
SMR | Small Modular Reactor |
TES | Thermal Energy Storage |
Symbols | |
A0 | heat transfer surface area between the rock and the fluid, m2 |
cp | specific heat capacity, J/kgK |
cplPCM | specific heat capacity of the accumulation material in the liquid phase, J/kgK |
cpsPCM | specific heat capacity of the accumulation material in the solid phase, J/kgK |
Dp | diameter of the rock particles, m |
hsf | heat transfer coefficient, W/m2K |
kf | fluid conductivity, W/mK |
L | heat of fusion, J/kg |
Ls | length of porous bed, m |
mPCM | mass of the phase-change material, kg |
msm | mass of solid material, kg |
Nu | Nusselt number, - |
Pr | Prandtl number, - |
QPCM | amount of heat accumulated in PCM, J |
Qs | amount of heat stored in rock material, J |
Re | Reynolds number, - |
t | time, s |
Tfin | final temperature, °C |
Tf | average temperature of the fluid, °C |
Ti | initial temperature, °C |
Tin | temperature of inlet fluid, °C |
Tm | melting point of a phase-change material, °C |
Tout | temperature of outlet fluid, °C |
Ts | average temperature of the rock material, °C |
vf | flow velocity of the fluid, m/s |
x | heat storage segment length, m |
xAV_T | average value for the given temperature value T, °C |
xn_T | values of the analysed parameter for a given temperature from references |
nT | number of the references from which the data were used, - |
Δp | pressure drop, Pa |
Greek Symbols | |
ε | porosity of the packed bed, - |
ρ | density, kg/m3 |
References
- Doan, N.; Doan, H.; Nguyen, C.P.; Nguyen, B.Q. From Kyoto to Paris and beyond: A Deep Dive into the Green Shift. Renew. Energy 2024, 228, 120675. [Google Scholar] [CrossRef]
- Wang, H.; Xie, B.; Li, C. Review on Operation Control of Cold Thermal Energy Storage in Cooling Systems. Energy Built Environ. 2024, in press. [CrossRef]
- Tawalbeh, M.; Khan, H.A.; Al-Othman, A.; Almomani, F.; Ajith, S. A Comprehensive Review on the Recent Advances in Materials for Thermal Energy Storage Applications. Int. J. Thermofluids 2023, 18, 100326. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Velraj, R. Sensible Heat Storage for Solar Heating and Cooling Systems. In Advances in Solar Heating and Cooling; Elsevier: Amsterdam, The Netherlands, 2016; pp. 399–428. ISBN 978-0-08-100301-5. [Google Scholar]
- Kenisarin, M.M. High-Temperature Phase Change Materials for Thermal Energy Storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat Transfer Fluids for Concentrating Solar Power Systems—A Review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.; Gomez-Vidal, J.; Coventry, J. Assessment of a Novel Ternary Eutectic Chloride Salt for next Generation High-Temperature Sensible Heat Storage. Energy Convers. Manag. 2018, 167, 156–164. [Google Scholar] [CrossRef]
- Du, L.; Ding, J.; Tian, H.; Wang, W.; Wei, X.; Song, M. Thermal Properties and Thermal Stability of the Ternary Eutectic Salt NaCl-CaCl2-MgCl2 Used in High-Temperature Thermal Energy Storage Process. Appl. Energy 2017, 204, 1225–1230. [Google Scholar] [CrossRef]
- Nomura, T.; Okinaka, N.; Akiyama, T. Technology of Latent Heat Storage for High Temperature Application: A Review. ISIJ Int. 2010, 50, 1229–1239. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, J.; Zeng, L.; Xia, Y.; Xie, W.; Ye, W. Experimental Analysis of the Resistance of Packed Beds Based on the Morphology of Cylinder. Powder Technol. 2020, 369, 238–247. [Google Scholar] [CrossRef]
- Esence, T.; Bruch, A.; Molina, S.; Stutz, B.; Fourmigué, J.-F. A Review on Experience Feedback and Numerical Modeling of Packed-Bed Thermal Energy Storage Systems. Sol. Energy 2017, 153, 628–654. [Google Scholar] [CrossRef]
- Govender, N.; Cleary, P.W.; Kiani-Oshtorjani, M.; Wilke, D.N.; Wu, C.-Y.; Kureck, H. The Effect of Particle Shape on the Packed Bed Effective Thermal Conductivity Based on DEM with Polyhedral Particles on the GPU. Chem. Eng. Sci. 2020, 219, 115584. [Google Scholar] [CrossRef]
- Wehinger, G.D.; Scharf, F. Thermal Radiation Effects on Heat Transfer in Slender Packed-Bed Reactors: Particle-Resolved CFD Simulations and 2D Modeling. Chem. Eng. Res. Des. 2022, 184, 24–38. [Google Scholar] [CrossRef]
- Izquierdo-Barrientos, M.A.; Sobrino, C.; Almendros-Ibáñez, J.A. Modeling and Experiments of Energy Storage in a Packed Bed with PCM. Int. J. Multiph. Flow 2016, 86, 1–9. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Z.; Ji, X.; Gao, L.; Che, D. Thermal Energy Storage Characteristics of Packed Bed Encapsulating Spherical Capsules with Composite Phase Change Materials. Appl. Therm. Eng. 2022, 201, 117659. [Google Scholar] [CrossRef]
- Liang, H.; Niu, J.; Annabattula, R.K.; Reddy, K.S.; Abbas, A.; Luu, M.T.; Gan, Y. Phase Change Material Thermal Energy Storage Design of Packed Bed Units. J. Energy Storage 2022, 51, 104576. [Google Scholar] [CrossRef]
- He, X.; Qiu, J.; Wang, W.; Hou, Y.; Ayyub, M.; Shuai, Y. Optimization Design and Performance Investigation on the Cascaded Packed-Bed Thermal Energy Storage System with Spherical Capsules. Appl. Therm. Eng. 2023, 225, 120241. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Mechanical Engineering Series; Springer New York: New York, NY, USA, 1995; ISBN 978-1-4612-8710-0. [Google Scholar]
- Gunn, D.J.; Ahmad, M.M.; Sabri, M.N. Radial Heat Transfer to Fixed Beds of Particles. Chem. Eng. Sci. 1987, 42, 2163–2171. [Google Scholar] [CrossRef]
- Wakao, N.; Kaguei, S.; Funazkri, T. Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds. Chem. Eng. Sci. 1979, 34, 325–336. [Google Scholar] [CrossRef]
- Gunn, D.J. Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds. Int. J. Heat Mass Transf. 1978, 21, 467–476. [Google Scholar] [CrossRef]
- Allen, K.G.; Von Backström, T.W.; Kröger, D.G. Packed Bed Pressure Drop Dependence on Particle Shape, Size Distribution, Packing Arrangement and Roughness. Powder Technol. 2013, 246, 590–600. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, H.; Feng, J.; Dong, H. An Experimental Study of Gas Flow Regime and Pressure Drop in a Random Packed Bed with Sinter Particles. Energies 2021, 14, 872. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sefidvash, F. Study of Pressure Drop in Fixed Bed Reactor Using a Computational Fluid Dynamics (CFD) Code. ChemEngineering 2018, 2, 14. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, L.; Wang, H.; Cheng, Z.; Xia, Y.; Dong, H. Determination of Pressure Drop Correlation for Air Flow through Packed Bed of Sinter Particles in Terms of Euler Number. Energies 2022, 15, 4034. [Google Scholar] [CrossRef]
- Bartela, Ł.; Ochmann, J.; Waniczek, S.; Lutyński, M.; Smolnik, G.; Rulik, S. Evaluation of the Energy Potential of an Adiabatic Compressed Air Energy Storage System Based on a Novel Thermal Energy Storage System in a Post Mining Shaft. J. Energy Storage 2022, 54, 105282. [Google Scholar] [CrossRef]
- Bartela, Ł.; Skorek-Osikowska, A.; Dykas, S.; Stanek, B. Thermodynamic and Economic Assessment of Compressed Carbon Dioxide Energy Storage Systems Using a Post-Mining Underground Infrastructure. Energy Convers. Manag. 2021, 241, 114297. [Google Scholar] [CrossRef]
- Federsel, K.; Wortmann, J.; Ladenberger, M. High-Temperature and Corrosion Behavior of Nitrate Nitrite Molten Salt Mixtures Regarding Their Application in Concentrating Solar Power Plants. Energy Procedia 2015, 69, 618–625. [Google Scholar] [CrossRef]
- Fernández, A.G.; Galleguillos, H.; Fuentealba, E.; Pérez, F.J. Thermal Characterization of HITEC Molten Salt for Energy Storage in Solar Linear Concentrated Technology. J. Therm. Anal. Calorim. 2015, 122, 3–9. [Google Scholar] [CrossRef]
- Omran, S.; Heggs, P.; Ding, Y. The Influence of Moisture Content on the Evaluation of Latent Heat of Molten Salts Used for Thermal Energy Storage Applications. Energy Procedia 2014, 46, 317–323. [Google Scholar] [CrossRef]
- Barbour, E.; Mignard, D.; Ding, Y.; Li, Y. Adiabatic Compressed Air Energy Storage with Packed Bed Thermal Energy Storage. Appl. Energy 2015, 155, 804–815. [Google Scholar] [CrossRef]
- Lai, Z.; Zhou, H.; Zhou, M.; Lv, L.; Meng, H.; Cen, K. Experimental Study on Storage Performance of Packed Bed Solar Thermal Energy Storage System Using Sintered Ore Particles. Sol. Energy Mater. Sol. Cells 2022, 238, 111654. [Google Scholar] [CrossRef]
- Kothari, R.; Hemmingsen, C.S.; Voigt, N.V.; La Seta, A.; Nielsen, K.K.; Desai, N.B.; Vijayan, A.; Haglind, F. Numerical and Experimental Analysis of Instability in High Temperature Packed-Bed Rock Thermal Energy Storage Systems. Appl. Energy 2024, 358, 122535. [Google Scholar] [CrossRef]
- Ochmann, J.; Rusin, K.; Rulik, S.; Waniczek, S.; Bartela, Ł. Experimental and Computational Analysis of Packed-Bed Thermal Energy Storage Tank Designed for Adiabatic Compressed Air Energy Storage System. Appl. Therm. Eng. 2022, 213, 118750. [Google Scholar] [CrossRef]
- Ochmann, J.; Rusin, K.; Bartela, Ł. Comprehensive Analytical Model of Energy and Exergy Performance of the Thermal Energy Storage. Energy 2023, 283, 128783. [Google Scholar] [CrossRef]
- Nahhas, T.; Py, X.; Sadiki, N. Experimental Investigation of Basalt Rocks as Storage Material for High-Temperature Concentrated Solar Power Plants. Renew. Sustain. Energy Rev. 2019, 110, 226–235. [Google Scholar] [CrossRef]
- Cascetta, M.; Cau, G.; Puddu, P.; Serra, F. A Comparison between CFD Simulation and Experimental Investigation of a Packed-Bed Thermal Energy Storage System. Appl. Therm. Eng. 2016, 98, 1263–1272. [Google Scholar] [CrossRef]
- Anderson, R.; Shiri, S.; Bindra, H.; Morris, J.F. Experimental Results and Modeling of Energy Storage and Recovery in a Packed Bed of Alumina Particles. Appl. Energy 2014, 119, 521–529. [Google Scholar] [CrossRef]
- Kosman, W.; Rusin, A.; Reichel, P. Application of an Energy Storage System with Molten Salt to a Steam Turbine Cycle to Decrease the Minimal Acceptable Load. Energy 2023, 266, 126480. [Google Scholar] [CrossRef]
- Kosman, W.; Rusin, A. The Application of Molten Salt Energy Storage to Advance the Transition from Coal to Green Energy Power Systems. Energies 2020, 13, 2222. [Google Scholar] [CrossRef]
- Serrano-López, R.; Fradera, J.; Cuesta-López, S. Molten Salts Database for Energy Applications. Chem. Eng. Process. Process Intensif. 2013, 73, 87–102. [Google Scholar] [CrossRef]
- Nissen, D.A. Thermophysical Properties of the Equimolar Mixture Sodium Nitrate-Potassium Nitrate from 300 to 600 °C. J. Chem. Eng. Data 1982, 27, 269–273. [Google Scholar] [CrossRef]
- Bartela, Ł.; Gładysz, P.; Ochmann, J.; Qvist, S.; Sancho, L.M. Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage. Energies 2022, 15, 5830. [Google Scholar] [CrossRef]
- Al Kindi, A.A.; Aunedi, M.; Pantaleo, A.M.; Strbac, G.; Markides, C.N. Thermo-Economic Assessment of Flexible Nuclear Power Plants in Future Low-Carbon Electricity Systems: Role of Thermal Energy Storage. Energy Convers. Manag. 2022, 258, 115484. [Google Scholar] [CrossRef]
- Denholm, P.; King, J.C.; Kutcher, C.F.; Wilson, P.P.H. Decarbonizing the Electric Sector: Combining Renewable and Nuclear Energy Using Thermal Storage. Energy Policy 2012, 44, 301–311. [Google Scholar] [CrossRef]
- Kluba, A.M.; Field, R.M. Control System Considerations for APR1400 Integrated with Thermal Energy Storage. In Proceedings of the Korean Nuclear Society Autumn Meeting, Goyang, Korea, 23–25 October 2019. [Google Scholar]
- Zou, L.; Chen, X.; Wu, Y.; Wang, X.; Ma, C. Experimental Study of Thermophysical Properties and Thermal Stability of Quaternary Nitrate Molten Salts for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2019, 190, 12–19. [Google Scholar] [CrossRef]
- Guo, X.; Goumba, A.P.; Wang, C. Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems. Energies 2019, 12, 1948. [Google Scholar] [CrossRef]
- Hailu, G.; Hayes, P.; Masteller, M. Seasonal Solar Thermal Energy Sand-Bed Storage in a Region with Extended Freezing Periods: Part I Experimental Investigation. Energies 2017, 10, 1873. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An Overview of Thermal Energy Storage Systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Brewster, D.W.; Hotz, K.J.; Dudek, B.R.; Healy, C.E.; Nair, R.S.; Wilson, A.G.E. Biochemical Toxicology and Disposition of Therminol 66 Heat Transfer Fluid after Inhalation or after Dietary Administration to Male Sprague-dawley Rats. J. Toxicol. Environ. Health 1992, 37, 375–389. [Google Scholar] [CrossRef]
- Kluba, A.; Field, R. Optimization and Exergy Analysis of Nuclear Heat Storage and Recovery. Energies 2019, 12, 4205. [Google Scholar] [CrossRef]
- THERMINOL 66. Heat Transfer Fluid. Proven Performance for High-Temperature, Low-Pressure Applications. Available online: https://www.therminol.com/product/71093438?pn=Therminol-66-Heat-Transfer-Fluid (accessed on 23 June 2024).
- Stanek, B.; Ochmann, J.; Węcel, D.; Bartela, Ł. Study of Twisted Tape Inserts Segmental Application in Low-Concentrated Solar Parabolic Trough Collectors. Energies 2023, 16, 3716. [Google Scholar] [CrossRef]
- Rackam. Available online: https://rackam.com/ (accessed on 23 June 2024).
- Häberle, A.; Krüger, D. Concentrating Solar Technologies for Industrial Process Heat. In Concentrating Solar Power Technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 659–675. ISBN 978-0-12-819970-1. [Google Scholar]
- Goel, V.; Dwivedi, A.; Kumar, R.; Kumar, R.; Pandey, A.K.; Chopra, K.; Tyagi, V.V. PCM-Assisted Energy Storage Systems for Solar-Thermal Applications: Review of the Associated Problems and Their Mitigation Strategies. J. Energy Storage 2023, 69, 107912. [Google Scholar] [CrossRef]
- Reddy, L.K.; Biswal, P.; Pujari, A.K. Latent Heat Thermal Energy Storage Solution for CSPs: Integration of PCM Heat Exchangers. J. Energy Storage 2023, 73, 109150. [Google Scholar] [CrossRef]
- Jayathunga, D.S.; Karunathilake, H.P.; Narayana, M.; Witharana, S. Phase Change Material (PCM) Candidates for Latent Heat Thermal Energy Storage (LHTES) in Concentrated Solar Power (CSP) Based Thermal Applications—A Review. Renew. Sustain. Energy Rev. 2024, 189, 113904. [Google Scholar] [CrossRef]
- Munir, Z.; Roman, F.; Niazi, B.M.K.; Mahmood, N.; Munir, A.; Hensel, O. Thermal Analysis of a Solar Latent Heat Storage System Using Scheffler Concentrator for Agricultural Applications. Appl. Therm. Eng. 2023, 218, 119230. [Google Scholar] [CrossRef]
- Yu, X.; Dou, W.; Zhang, Z.; Hong, Y.; Qian, G.; Li, Z. Performance Analysis and Optimization of Compressed Air Energy Storage Integrated with Latent Thermal Energy Storage. Energies 2024, 17, 2608. [Google Scholar] [CrossRef]
- Urquhart, A.; Bauer, S. Experimental Determination of Single-Crystal Halite Thermal Conductivity, Diffusivity and Specific Heat from −75 °C to 300 °C. Int. J. Rock Mech. Min. Sci. 2015, 78, 350–352. [Google Scholar] [CrossRef]
- El Alami, K.; Asbik, M.; Boualou, R.; Ouchani, F.; Agalit, H.; Bennouna, E.G.; Rachidi, S. A Critical Overview of the Suitability of Natural Moroccan Rocks for High Temperature Thermal Energy Storage Applications: Towards an Effective Dispatching of Concentrated Solar Power Plants. J. Energy Storage 2022, 50, 104295. [Google Scholar] [CrossRef]
- Tiskatine, R.; Aharoune, A.; Bouirden, L.; Ihlal, A. Identification of Suitable Storage Materials for Solar Thermal Power Plant Using Selection Methodology. Appl. Therm. Eng. 2017, 117, 591–608. [Google Scholar] [CrossRef]
- Grirate, H.; Zari, N.; Elamrani, I.; Couturier, R.; Elmchaouri, A.; Belcadi, S.; Tochon, P. Characterization of Several Moroccan Rocks Used as Filler Material for Thermal Energy Storage in CSP Power Plants. Energy Procedia 2014, 49, 810–819. [Google Scholar] [CrossRef]
- Laing, D.; Zunft, S. Using Concrete and Other Solid Storage Media in Thermal Energy Storage (TES) Systems. In Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 65–86. ISBN 978-1-78242-088-0. [Google Scholar]
- Abddaim, E.; Sakami, S.; El Hassnaoui, A.; Boukhattem, L. Impact of Temperature on Chemical, Thermo-Physical, and Mechanical Properties of Four Rock Materials for Sensible Thermal Energy Storage. J. Energy Storage 2024, 89, 111602. [Google Scholar] [CrossRef]
- Jemmal, Y.; Zari, N.; Asbik, M.; Maaroufi, M. Experimental Characterization and Thermal Performance Comparison of Six Moroccan Rocks Used as Filler Materials in a Packed Bed Storage System. J. Energy Storage 2020, 30, 101513. [Google Scholar] [CrossRef]
- Agalit, H.; Zari, N.; Maalmi, M.; Maaroufi, M. Numerical Investigations of High Temperature Packed Bed TES Systems Used in Hybrid Solar Tower Power Plants. Sol. Energy 2015, 122, 603–616. [Google Scholar] [CrossRef]
- Liao, Z.; Zhao, G.; Xu, C.; Yang, C.; Jin, Y.; Ju, X.; Du, X. Efficiency Analyses of High Temperature Thermal Energy Storage Systems of Rocks Only and Rock-PCM Capsule Combination. Sol. Energy 2018, 162, 153–164. [Google Scholar] [CrossRef]
- Hartlieb, P.; Toifl, M.; Kuchar, F.; Meisels, R.; Antretter, T. Thermo-Physical Properties of Selected Hard Rocks and Their Relation to Microwave-Assisted Comminution. Miner. Eng. 2016, 91, 34–41. [Google Scholar] [CrossRef]
- Sun, Q.; Lü, C.; Cao, L.; Li, W.; Geng, J.; Zhang, W. Thermal Properties of Sandstone after Treatment at High Temperature. Int. J. Rock Mech. Min. Sci. 2016, 85, 60–66. [Google Scholar] [CrossRef]
- Waples, D.W.; Waples, J.S. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks. Nat. Resour. Res. 2004, 13, 97–122. [Google Scholar] [CrossRef]
- Laing, D.; Steinmann, W.-D.; Tamme, R.; Richter, C. Solid Media Thermal Storage for Parabolic Trough Power Plants. Sol. Energy 2006, 80, 1283–1289. [Google Scholar] [CrossRef]
- Munro, R.G. Evaluated Material Properties for a Sintered alpha-Alumina. J. Am. Ceram. Soc. 1997, 80, 1919–1928. [Google Scholar] [CrossRef]
- Mersch, M.; Sapin, P.; Olympios, A.V.; Ding, Y.; Mac Dowell, N.; Markides, C.N. A Unified Framework for the Thermo-Economic Optimisation of Compressed-Air Energy Storage Systems with Solid and Liquid Thermal Stores. Energy Convers. Manag. 2023, 287, 117061. [Google Scholar] [CrossRef]
- Al-Azawii, M.M.S.; Alhamdi, S.F.H.; Braun, S.; Hoffmann, J.-F.; Calvet, N.; Anderson, R. Experimental Study on Packed-Bed Thermal Energy Storage Using Recycled Ceramic as Filler Materials. J. Energy Storage 2021, 44, 103375. [Google Scholar] [CrossRef]
- Bagdassarov, N.; Dingwell, D. Thermal Properties of Vesicular Rhyolite. J. Volcanol. Geotherm. Res. 1994, 60, 179–191. [Google Scholar] [CrossRef]
- Halite Mineral Data. Available online: https://Webmineral.Com/ (accessed on 23 June 2024).
- Díaz-Heras, M.; Belmonte, J.F.; Almendros-Ibáñez, J.A. Effective Thermal Conductivities in Packed Beds: Review of Correlations and Its Influence on System Performance. Appl. Therm. Eng. 2020, 171, 115048. [Google Scholar] [CrossRef]
- Li, B.; Ju, F. Thermal Stability of Granite for High Temperature Thermal Energy Storage in Concentrating Solar Power Plants. Appl. Therm. Eng. 2018, 138, 409–416. [Google Scholar] [CrossRef]
- Robertson, E. Thermal Properties of Rocks; U.S. Geological Survey: Reston, VA, USA, 1988.
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. Advances in Thermal Energy Storage Materials and Their Applications towards Zero Energy Buildings: A Critical Review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, J.; Liu, M.; Zhao, Y.; Olympios, A.V.; Sapin, P.; Yan, J.; Markides, C.N. Thermo-Economic Assessments of Pumped-Thermal Electricity Storage Systems Employing Sensible Heat Storage Materials. Renew. Energy 2022, 186, 431–456. [Google Scholar] [CrossRef]
- Sasidharan, S.; Dutta, P. Studies on Thermal Energy Storage System with Ceramic Honeycomb Channels. J. Energy Storage 2022, 52, 104867. [Google Scholar] [CrossRef]
- Liu, M.; Steven Tay, N.H.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Benoit, H.; Spreafico, L.; Gauthier, D.; Flamant, G. Review of Heat Transfer Fluids in Tube-Receivers Used in Concentrating Solar Thermal Systems: Properties and Heat Transfer Coefficients. Renew. Sustain. Energy Rev. 2016, 55, 298–315. [Google Scholar] [CrossRef]
- Modi, A.; Pérez-Segarra, C.D. Thermocline Thermal Storage Systems for Concentrated Solar Power Plants: One-Dimensional Numerical Model and Comparative Analysis. Sol. Energy 2014, 100, 84–93. [Google Scholar] [CrossRef]
- Farres-Antunez, P.; Xue, H.; White, A.J. Thermodynamic Analysis and Optimisation of a Combined Liquid Air and Pumped Thermal Energy Storage Cycle. J. Energy Storage 2018, 18, 90–102. [Google Scholar] [CrossRef]
- Wang, G.-B.; Zhang, X.-R. Thermodynamic Analysis of a Novel Pumped Thermal Energy Storage System Utilizing Ambient Thermal Energy and LNG Cold Energy. Energy Convers. Manag. 2017, 148, 1248–1264. [Google Scholar] [CrossRef]
- Li, X.; Xu, E.; Song, S.; Wang, X.; Yuan, G. Dynamic Simulation of Two-Tank Indirect Thermal Energy Storage System with Molten Salt. Renew. Energy 2017, 113, 1311–1319. [Google Scholar] [CrossRef]
- Bouguila, A.; Said, R. Performance Investigation of a 100-kWhth Thermocline Packed Bed Thermal Energy Storage System: Comparison between Synthetic Oil and Vegetable Oil. Adv. Mech. Eng. 2020, 12, 168781402090574. [Google Scholar] [CrossRef]
- Aljaerani, H.A.; Samykano, M.; Saidur, R.; Pandey, A.K.; Kadirgama, K. Nanoparticles as Molten Salts Thermophysical Properties Enhancer for Concentrated Solar Power: A Critical Review. J. Energy Storage 2021, 44, 103280. [Google Scholar] [CrossRef]
- Wang, T.; Mantha, D.; Reddy, R.G. Thermal Stability of the Eutectic Composition in LiNO3–NaNO3–KNO3 Ternary System Used for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2012, 100, 162–168. [Google Scholar] [CrossRef]
- Roget, F.; Favotto, C.; Rogez, J. Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 Eutectics as Phase Change Materials for Thermal Storage in a Low-Temperature Solar Power Plant. Sol. Energy 2013, 95, 155–169. [Google Scholar] [CrossRef]
- Fei, Z.; Zhang, Y.; Ge, M.; Wang, Y.; Li, Y.; Cheng, J.; Wei, B.; Hou, H.; Liu, H. Probing Thermal Decomposition Mechanism of Molten Nitrite/Nitrates Salt by Time of Flight Mass Spectrometry. Sol. Energy 2019, 183, 823–828. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, H.; Meng, H.; Lv, L.; Liu, T.; Zuo, Y.; Cen, K. Analysis of Flowing and Heat Transfer of Commercial Molten Nitrate in Porous Foundation Material. J. Therm. Sci. 2023, 32, 1455–1465. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Z.; Xu, P.; Hongbing, C.; Wu, Y. Experimental Investigation into the Thermos-Physical Properties by Dispersing Nanoparticles to the Nitrates. Energy Procedia 2019, 158, 5551–5556. [Google Scholar] [CrossRef]
- Bonk, A.; Bauer, T. Solar Salt—Thermal Property Analysis: Extended Version; Deutsches Zentrum für Luft- und Raumfahrt (DLR): Köln, Germany, 2022. [Google Scholar]
- Peng, Q.; Yang, X.; Ding, J.; Wei, X.; Yang, J. Design of New Molten Salt Thermal Energy Storage Material for Solar Thermal Power Plant. Appl. Energy 2013, 112, 682–689. [Google Scholar] [CrossRef]
- Babaev, B.D. System NaF–NaCl–NaNO3. Inorg. Mater. 2002, 38, 83–84. [Google Scholar] [CrossRef]
- Lai, X.; Yin, H.; Li, P.; Liu, B.; Gao, L.; Tang, Z. Design Optimization and Thermal Storage Characteristics of NaNO3-NaCl-NaF Molten Salts with High Latent Heat and Low Cost for the Thermal Energy Storage. J. Energy Storage 2022, 52, 104805. [Google Scholar] [CrossRef]
- Li, M.-J.; Jin, B.; Ma, Z.; Yuan, F. Experimental and Numerical Study on the Performance of a New High-Temperature Packed-Bed Thermal Energy Storage System with Macroencapsulation of Molten Salt Phase Change Material. Appl. Energy 2018, 221, 1–15. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sakamoto, R.; Kamimoto, M. Heat Capacities and Latent Heats of LiNO3, NaNO3, and KNO3. Int. J. Thermophys. 1988, 9, 1081–1090. [Google Scholar] [CrossRef]
- Wei, X.; Song, M.; Wang, W.; Ding, J.; Yang, J. Design and Thermal Properties of a Novel Ternary Chloride Eutectics for High-Temperature Solar Energy Storage. Appl. Energy 2015, 156, 306–310. [Google Scholar] [CrossRef]
- Alibaba Group Holding Limited. Available online: https://www.alibaba.com/ (accessed on 23 June 2024).
- IndiaMART InterMESH Ltd. Available online: https://www.indiamart.com/ (accessed on 23 June 2024).
Properties | Desirable Parameter | ||
---|---|---|---|
Solid Material | Liquid | PCM | |
Thermal properties | Operating temperature (5*) Operating temperature range (4) Specific heat capacity (5) Thermal conductivity (3) | Operating temperature (5*) Operating temperature range (3) Specific heat capacity (5) Thermal conductivity (3) | Operating temperature (5*) Operating temperature range (2) Heat of fusion (5) Specific heat capacity (5) Thermal conductivity (5) |
Physical properties | Density (5) | Density (5) Viscosity (2) | Density of PCM (5) Density change during phase change (3) Supercooling effect (3) Hygroscopicity and viscosity (3) |
Economic factor | Cost (4) | Cost (4) | Cost (4) |
Chemical properties | - | Chemical stability (4) Corrosivity (3) Toxicity (4) Non-flammability and non-explosivity (5) | Chemical stability (4) Corrosivity (3) Toxicity (4) Non-flammability and non-explosivity (5) |
Salts Mixtures of | Advantages | Disadvantages |
---|---|---|
Fluorides | High latent heat | Highly toxic and corrosive, high melting temperature, expensive (especially LiF). |
Chlorides | Usually nontoxic (MgCl2, NaCl, KCl), low price, good availability, wide operating temperature range | Highly corrosive, very hygroscopic (MgCl2), higher price of anhydrous salts than hydrated salts, which are more available (e.g., MgCl2, MnCl2) |
Nitrates | Low price, good availability, low toxicity, low corrosivity | Thermal stability (<500 °C). |
Hydroxides | Usually lower the melting point of salts mixtures, low price, good availability | Highly corrosive and very caustic, high hygroscopicity (NaOH, LiOH, KOH) |
Carbonates | Usually nontoxic (K2CO3, Na2CO3, LiCO3), nonexpensive (excluding Li salts), high thermal stability | High melting temperature (usually >400 °C), |
Lithium salts | High latent heat, (LiOH-LiF >500 kJ/kg), medium toxicity (excluding LiF) | Expensive, high hygroscopicity (LiF, LiCl, LiNO3) |
Type of Rock | Density, kg/m3 | Specific Heat Capacity, J/kgK | Volumetric Thermal Capacity, kJ/m3K | Thermal Conductivity, W/mK |
---|---|---|---|---|
Basalt | 2768.0 | 852.1 | 2358.5 | 2.1 |
Granite | 2642.8 | 859.7 | 2272.0 | 3.0 |
Rholite (25 °C) | 2677.7 | 865.3 | 2316.9 | 2.0 |
Gneis (25 °C) | 2777.5 | 876.0 | 2433.1 | 3.0 |
Sandstone | 2481.5 | 774.5 | 1921.8 | 2.7 |
Limestone | 2600.0 | 810.0 | 2106.0 | 2.2 |
Quartzite | 2576.0 | 818.3 | 2107.8 | 5.2 |
Halite | 2170.0 | 882.4 | 1914.8 | 6.1 |
Magnetite (100 °C) | 4890.0 | 745.0 | 3643.0 | 5.6 |
Cofalit | 3120.0 | 1034.0 | 3226.0 | 2.1 |
Castable ceramics | 3500.0 | 866.0 | 3031.0 | 1.4 |
Concrete | 2383.3 | 916.0 | 2183.1 | 1.0 |
Sinter bed (25 °C) | 3603.8 | 606.7 | 2186.2 | - |
Alumina | 3984.0 | 758.6 | 3022.4 | 33.4 |
Type of Solid Material | Cost, EUR/kg |
---|---|
Basalt | 0.11 |
Magnetite | 0.46 |
Quartzite | 0.04 |
Limestone | 0.03–0.32 |
Concrete | 0.03–0.08 |
Alumina | 1.39 |
Cofalit | 1.2 |
Ceramic | 4.5–9 |
Substance | Density, kg/m3 | Specific Heat Capacity, J/kgK | Thermal Conductivity, W/mK | Viscosity, mPa×s |
---|---|---|---|---|
HITEC | 1637–1640 | 1560–1562 | 0.382 | 2.60 |
HITEC XL | 1959–1960 | 1430–1432 | 0.519 | 4.19 |
Solar salt | 1817–1820 | 1517–1520 | 0.519–0.525 | 1.57 |
Therminol 66 | 909–910 | 2070–2072 | 0.109 | 1.20 |
Therminol VP-1 | 909 | 2066 | 0.113 | 0.37 |
Rapeseed oil | 843 | 2383 | 0.195 | 7.59 |
Type of Solid Material | Cost, EUR/kg |
---|---|
HITEC | 0.95 |
HITEC XL | 0.57 |
Solar salt | 0.69 |
Therminol 66 | 0.93 |
Therminol VP-1 | 3.68 |
Rapeseed oil | 0.74 |
Composition of PCM, % wt | Specific Heat Capacity, J/kgK | Thermal Conductivity, W/mK | Melting Temperature,°C | Maximum Operating Temperature, °C | Toxic Hazard | Hygroscopicity | Reference |
---|---|---|---|---|---|---|---|
38 KNO3—15 NaNO3—47 LiNO3 | 1600 | 0.5 | 100 | 500 | H, Ir | 2 | [94] |
54 KNO3—20 NaNO3—26 LiNO3 | 1090 | - | 118 | 435 | H, Ir | 2 | [95] |
52 KNO3—18 NaNO3—30 LiNO3 | 1640 | - | 123 | 435, 540 | H, Ir | 2 | [96,97,98] |
48 Ca(NO3)2—45 KNO3—7 NaNO3 (HITEC XL) | 1272–1450 | 0.52 (300 °C) | 120, 130 | 550–554 | H, Ir | 2 | [6,7,30,98] |
66.6 KNO3—10 LiNO3—23 Ca (NO3)2 | 1500 (300 °C) | 0.5696 | 136 | 600 | H, Ir | 2 | [94] |
67 KNO3—14 LiNO3—19 Ca (NO3)2 (HPHTF-A) | 2080 (300 °C) | 0.506 | 137 | 600 | H, Ir | 2 | [94] |
65 KNO3—10 LiNO3—25 Ca (NO3)2 (HPHTF-C) | 1400 (300 °C) | 0.5791 | 138 | 600 | H, Ir | 2 | [94] |
68.6 ZnCl2—7.5 NaCl—23.9 KCl | 810 | - | 204 | 850 | H, C | 3 | [94] |
60 NaNO3—40 KNO3 (Solar Salt), | 1600 | 0.55 (565 °C) | 220–223, 246 | 550, 588 | Ir | 1 | [6,7,30,99,100,101] |
93.9 NaNO3—4.2 NaCl—1.8 NaF | 1760 (400 °C) | - | 288 | 600–650 | T, Ir | 1 | [6,102,103] |
32.1 Li2CO3—34.5 K2CO3—33.4 Na2CO3 (LiNaK) | 1400–1500, 1610 | 1.60 (l)–1.69 (s) | 397, 378 | 800–850 | H, Ir | 2 | [6,7,94,104] |
54.2 K2CO3—28.1 Na2CO3—17.7 LiF | 1900 | 1.17 | 421 | 920 | T, Ir | 3 | [105] |
NaCl—CaCl2—MgCl2 (SYSU-C4) | 830, 1190 | - | 424 | 560 | Ir | 2 | [106] |
62 K2CO3—38 Li2CO3 | 1600 | - | 488 | < 900 | H, Ir | 2 | [94] |
Composition of PCM, % wt | Cost, EUR/kg |
---|---|
38 KNO3—15 NaNO3—47 LiNO3 | 17.90 |
54 KNO3—20 NaNO3—26 LiNO3 | 10.26 |
52 KNO3—18 NaNO3—30 LiNO3 | 11.72 |
48 Ca(NO3)2—45 KNO3—7 NaNO3 (HITEC XL) | 0.57 |
66.6 KNO3—10 LiNO3—23 Ca (NO3)2 | 4.37 |
67 KNO3—14 LiNO3—19 Ca (NO3)2 (HPHTF-A) | 5.85 |
65 KNO3—10 LiNO3—25 Ca (NO3)2 (HPHTF-C) | 4.36 |
68.6 ZnCl2—7.5 NaCl—23.9 KCl | 0.61 |
60 NaNO3—40 KNO3 (Solar Salt), | 0.69 |
93.9 NaNO3—4.2 NaCl—1.8 NaF | 0.55 |
32.1 Li2CO3—34.5 K2CO3—33.4 Na2CO3 (LiNaK) | 9.89 |
54.2 K2CO3—28.1 Na2CO3—17.7 LiF | 5.40 |
NaCl—CaCl2—MgCl2 (SYSU-C4) | - |
62 K2CO3—38 Li2CO3 | 11.77 |
Temperature Level | Material | Score |
---|---|---|
100 °C (solid) | Quartzite | 4.38 |
300 °C (solid) | Basalt | 4.23 |
500 °C (solid) | Basalt | 4.23 |
100 °C (liquid) | Rapeseed oil | 3.91 |
300 °C (liquid) | Therminol 66 | 3.78 |
500 °C (liquid) | 60 NaNO3—40 KNO3 (Solar Salt) | 3.75 |
100 °C (PCM) | 48 Ca(NO3)2—45 KNO3—7 NaNO3 (HITEC XL) | 3.78 |
300 °C (PCM) | 60 NaNO3—40 KNO3 (Solar Salt) | 3.93 |
500 °C (PCM) | 32.1 Li2CO3—34.5 K2CO3—33.4 Na2CO3 (LiNaK) | 3.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczyk, M.; Spietz, T.; Czardybon, A.; Dobras, S.; Ignasiak, K.; Bartela, Ł.; Uchman, W.; Ochmann, J. Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications. Energies 2024, 17, 3544. https://doi.org/10.3390/en17143544
Jurczyk M, Spietz T, Czardybon A, Dobras S, Ignasiak K, Bartela Ł, Uchman W, Ochmann J. Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications. Energies. 2024; 17(14):3544. https://doi.org/10.3390/en17143544
Chicago/Turabian StyleJurczyk, Michał, Tomasz Spietz, Agata Czardybon, Szymon Dobras, Karina Ignasiak, Łukasz Bartela, Wojciech Uchman, and Jakub Ochmann. 2024. "Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications" Energies 17, no. 14: 3544. https://doi.org/10.3390/en17143544
APA StyleJurczyk, M., Spietz, T., Czardybon, A., Dobras, S., Ignasiak, K., Bartela, Ł., Uchman, W., & Ochmann, J. (2024). Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications. Energies, 17(14), 3544. https://doi.org/10.3390/en17143544