Evaluating the Impact of CO2 Capture on the Operation of Combined Cycles with Different Configurations
Highlights
- Given the role played by natural gas combined cycles (NGCCs) in balancing the grid and offsetting renewable energy fluctuations, the application of post-combustion carbon capture through an amine-based process was evaluated from a thermodynamic point of view, taking into account realistic power plant configurations.
- The study explores part-load behavior with a focus on gas turbine control strategy: inlet air flow, fuel flow rate, and exhaust temperature determine not only the efficiency of the topping and bottoming cycle but also the energy requirements for CO2 capture and thus the overall performance.
- This study suggests that applying an appropriate part-load strategy can help reduce the burden of retrofitting the capture process to existing NGCCs within the constraints of the specific gas turbine model.
- Regarding new “decarbonized” NGCCs, design guidelines could enable less complex and therefore less costly configurations by considering the capture unit as an integral part of the system from the beginning of the project.
Abstract
:1. Introduction
- Cane Run 7, Kentucky’s first NGCC, with a capacity of 640 MW;
- General Electric Gas Power domestic NGCC located in Schenectady, NY, USA;
- Calpine’s Delta Energy Center, a 944 MW NGCC located in Pittsburg, CA, USA;
- PK2, an 1190 MW NGCC belonging to the Polk Power Station located in Mulberry, FL, USA.
- Baytown Energy Center (Baytown, TX, USA), a 896 MW NGCC operated in combined-heat and power mode;
- A 1.2 GW NGCC power plant located in Deer Park, TX, USA;
- Sutter Energy Center, a 550 MW NGCC near Yuba City, CA, USA.
2. Description and Modelling of the NGCC Layouts without CO2 Capture
- Simulations were carried out at ISO conditions, defined as 15 °C ambient temperature, 1.013 bar ambient pressure, and 60% relative humidity;
- The GT fuel is a mixture of gaseous hydrocarbons consisting primarily of methane (87%), as listed in Table 1;
- HRSG design was based on a blowdown fraction of 1%, which implies high-quality feedwater, an evaporator pinch point temperature difference of 10 to 20 °C, and an economizer subcooling of 5 °C.
- At part load, each steam turbine (ST) stage operates in sliding pressure mode: inlet turbine areas remain constant, and live steam pressures result naturally as a function of the steam flow rates, according to the choking conditions at the ST inlet.
2.1. NGCC with Triple-Pressure HRSG
2.2. NGCC with Double-Pressure HRSG
2.3. NGCC with Single-Pressure HRSG
3. Description and Modelling of the CO2 Capture Unit
4. Performance Prediction of NGCC Power Plants with CO2 Capture
4.1. Sources of Energy Loss
4.2. Net Electric Efficiency and CO2 Emission Intensity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | Combined cycle |
CCS | Carbon capture and storage |
EI | Emission intensity |
GT | Gas turbine |
HP | High pressure |
HRSG | Heat recovery steam generator |
IGV | Inlet guide vane |
IP | Intermediate pressure |
ISO | International Standards Organization |
LP | Low pressure |
MEA | Mono-ethanolamine |
NG | Natural gas |
NGCC | Natural gas combined cycle |
P | Power |
PCC | Post-combustion capture |
pp | Percentage points |
RH | Reheat |
SRD | Specific reboiler duty |
ST | Steam turbine |
TIT | Turbine inlet temperature |
TOT | Turbine outlet temperature |
vol | By volume |
X | Molar concentration |
wt | Weight |
∆% | Percentage difference |
η | Thermal efficiency |
3P | Triple-pressure HRSG |
2P | Double-pressure HRSG |
1P | Single-pressure HRSG |
Subscripts | |
g | gross |
n | net |
R | Rankine |
Appendix A
Appendix B
- GE 7F.05: GE GTP Web 4.42.0 (7F.05-1016T-L3) 06/2017.
- SGT-800: Siemens SIPEP 5.14.0 (07/2018).
- GE 9E.04: GE GTP Web 4.23.0 (9E.04-PRODCAT2016) 04/16.
References
- IPCC. 2023: Sections. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I. II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Kerr, R.B.; Hasegawa, T.; Pradhan, P.; Wreford, A.; von der Pahlen, M.C.T.; Gurney-Smith, H. Severe climate change risks to food security and nutrition. Clim. Risk Manag. 2023, 39, 100473. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2022. 2023. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 19 April 2024).
- Nivard, M.; Smeets, B.; Tryggestad, C.; van de Giessen, P.; van der Meijden, R. Global Energy Perspective 2023: CO2 emissions outlook. McKinsey Energy Solutions. 2024. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-co2-emissions-outlook (accessed on 21 April 2024).
- IEA. CO2 Emissions in 2023. 2024. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 22 April 2024).
- IEA. World Energy Outlook 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 23 April 2024).
- IEA. Electricity 2024. Available online: https://www.iea.org/reports/electricity-2024 (accessed on 24 April 2024).
- Global CCS Institute. The Global Status of CCS: 2023. In Scaling Up through 2030; Global CCS Institute: Melbourne, Australia, 2023. [Google Scholar]
- Fattouh, B.; Muslemani, H.; Jewad, R. Capture Carbon. In Capture Value: An Overview of CCS Business Models; Oxford Institute for Energy Studies: Oxford, UK, 2024; ISBN 978-1-78467-228-7. [Google Scholar]
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture. utilization. and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Wang, N.; Wang, D.; Krook-Riekkola, A.; Ji, X. MEA-based CO2 capture: A study focuses on MEA concentrations and process parameters. Front. Energy Res. 2023, 11, 1230743. [Google Scholar] [CrossRef]
- Karayil, A.; Elseragy, A.; Aliyu, A.M. An Assessment of CO2 Capture Technologies towards Global Carbon Net Neutrality. Energies 2024, 17, 1460. [Google Scholar] [CrossRef]
- Buvik, V.; Høisæter, K.K.; Vevelstad, S.J.; Knuutila, H.K. A review of degradation and emissions in post-combustion CO2 capture pilot plants. Int. J. Greenh. Gas Control. 2021, 106, 103246. [Google Scholar] [CrossRef]
- Vega, F.; Baena-Moreno, F.M.; Fernández LM, G.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energy 2020, 260, 114313. [Google Scholar] [CrossRef]
- Subramanian, N.; Madejski, P. Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology. Energy 2023, 282, 128311. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, C.; Li, Z.; Du, X.; Wang, Y.; Li, J.; Yao, Z.; Yao, J. Recent advances and future perspectives in carbon capture. transportation. utilization. and storage (CCTUS) technologies: A comprehensive review. Fuel 2023, 351, 128913. [Google Scholar] [CrossRef]
- DOE/NETL. Point Source Carbon Capture Project Map; U.S. Department of Energy; National Energy Technology Laboratory: Washington, DC, USA, 2024. Available online: https://netl.doe.gov/carbon-management/carbon-capture/psc-map (accessed on 29 April 2024).
- Carbon Capture Demonstration Projects Selections for Award Negotiations. Available online: https://www.energy.gov/oced/carbon-capture-demonstration-projects-selections-award-negotiations (accessed on 30 April 2024).
- Tait, P.; Buschle, B.; Ausner, I.; Valluri, P.; Wehrli, M.; Lucquiaud, M. A pilot-scale study of dynamic response scenarios for the flexible operation of post-combustion CO2 capture. Int. J. Greenh. Gas Control 2016, 48, 216–233. [Google Scholar] [CrossRef]
- Bui, M.; Flø, N.E.; de Cazenove, T.; Mac Dowell, N. Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO2 capture plant. Int. J. Greenh. Gas Control 2020, 93, 102879. [Google Scholar] [CrossRef]
- Jordal, K.; Ystad, P.A.M.; Anantharaman, R.; Chikukwa, A.; Bolland, O. Design-point and part-load considerations for natural gas combined cycle plants with post combustion capture. Int. J. Greenh. Gas Control 2012, 11, 271–282. [Google Scholar] [CrossRef]
- Rezazadeh, F.; Gale, W.F.; Hughes, K.J.; Pourkashanian, M. Performance viability of a natural gas fired combined cycle power plant integrated with post-combustion CO2 capture at part-load and temporary non-capture operations. Int. J. Greenh. Gas Control 2015, 39, 397–406. [Google Scholar] [CrossRef]
- Van Der Spek, M.; Bonalumi, D.; Manzolini, G.; Ramirez, A.; Faaij, A.P. Techno-economic comparison of combined cycle gas turbines with advanced membrane configuration and monoethanolamine solvent at part load conditions. Energy Fuels 2018, 32, 625–645. [Google Scholar] [CrossRef]
- Alcaráz-Calderon, A.M.; González-Díaz, M.O.; Mendez, Á.; González-Santaló, J.M.; González-Díaz, A. Natural gas combined cycle with exhaust gas recirculation and CO2 capture at part-load operation. J. Energy Inst. 2019, 92, 370–381. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kim, J.K. Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes. Energy 2018, 146, 57–66. [Google Scholar] [CrossRef]
- Verhaeghe, A.; Dubois, L.; Bricteux, L.; Thomas, D.; Blondeau, J.; De Paepe, W. Carbon Capture Performance Assessment Applied to Combined Cycle Gas Turbine Under Part-Load Operation. J. Eng. Gas Turbines Power 2023, 145, 041009. [Google Scholar] [CrossRef]
- Montañés, R.M.; GarÐarsdóttir, S.Ó.; Normann, F.; Johnsson, F.; Nord, L.O. Demonstrating load-change transient performance of a commercial-scale natural gas combined cycle power plant with post-combustion CO2 capture. Int. J. Greenh. Gas Con 2017, 63, 158–174. [Google Scholar] [CrossRef]
- Rúa, J.; Bui, M.; Nord, L.O.; Mac Dowell, N. Does CCS reduce power generation flexibility? A dynamic study of combined cycles with post-combustion CO2 capture. Int. J. Greenh. Gas Con 2020, 95, 102984. [Google Scholar] [CrossRef]
- Vaccarelli, M.; Sammak, M.; Jonshagen, K.; Carapellucci, R.; Genrup, M. Combined cycle power plants with post-combustion CO2 capture: Energy analysis at part load conditions for different HRSG configurations. Energy 2016, 112, 917–925. [Google Scholar] [CrossRef]
- Ravelli, S. Thermodynamic Assessment of Exhaust Gas Recirculation in High-Volume Hydrogen Gas Turbines in Combined Cycle Mode. ASME J. Eng. Gas Turbines Power 2022, 144, 111012. [Google Scholar] [CrossRef]
- Ravelli, S. Reducing the Energy Penalty of Retrofit Decarbonization in Combined Cycle Power Plants. ASME J. Eng. Gas Turbines Power 2023, 145, 121003. [Google Scholar] [CrossRef]
- Boyce, M.P. Handbook for Cogeneration and Combined Cycle Power Plants, 2nd ed.; ASME Press: New York, NY, USA, 2010; pp. 1–776. ISBN 9780791859537. [Google Scholar]
- Variny, M.; Mierka, O. Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services. Appl. Energy 2009, 86, 888–894. [Google Scholar] [CrossRef]
- Elmasri, M.A. Design of Gas Turbine Combined Cycles and Cogeneration Systems; Thermoflow Inc.: Jacksonville, FL, USA, 2009. [Google Scholar]
- Dechamps, P.J.; Pirard, N.; Mathieu, P. Part-load operation of combined cycle plants with and without supplementary firing. ASME J. Eng. Gas Turbines Power 1995, 117, 475–483. [Google Scholar] [CrossRef]
- Carbon Capture. Utilisation and Storage. Available online: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage (accessed on 22 May 2024).
- Carapellucci, R.; Giordano, L.; Vaccarelli, M. Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture. Energy 2015, 85, 594–608. [Google Scholar] [CrossRef]
- Fernandez, E.S.; del Rio, M.S.; Chalmers, H.; Khakharia, P.; Goetheer, E.; Gibbins, J.; Lucquiaud, M. Operational flexibility options in power plants with integrated post-combustion capture. Int. J. Greenh. Gas Control 2016, 48, 275–289. [Google Scholar] [CrossRef]
- Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93–99. [Google Scholar] [CrossRef]
- Kumar, T.R.; Beiron, J.; Biermann, M.; Harvey, S.; Thunman, H. Plant and system-level performance of combined heat and power plants equipped with different carbon capture technologies. Appl. Energy 2023, 338, 120927. [Google Scholar] [CrossRef]
- Frimpong, R.A.; Nikolic, H.; Pelgen, J.; Ghorbanian, M.; Figueroa, J.D.; Liu, K. Evaluation of different solvent performance in a 0.7 MWe pilot scale CO2 capture unit. Chem. Eng. Res. Des. 2019, 148, 11–20. [Google Scholar] [CrossRef]
- Fernandez, E.S.; Goetheer, E.L.; Manzolini, G.; Macchi, E.; Rezvani, S.; Vlugt, T. Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology. Fuel 2014, 129, 318–329. [Google Scholar] [CrossRef]
- Schmitt, T.; Homsy, S.; Mantripragada, H.; Woods, M.; Hoffman, H.; Shultz, T.; Fout, T.; Hackett, G. Cost and Performance of Retrofitting NGCC Units for Carbon Capture–Revision 3; No. DOE/NETL-2023/3848; National Energy Technology Laboratory (NETL): Pittsburgh, PA, USA; Morgantown, WV, USA; Albany, OR, USA, 2023. [Google Scholar]
- Adams, T.; Mac Dowell, N. Off-design point modelling of a 420 MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process. Appl. Energy 2016, 178, 681–702. [Google Scholar] [CrossRef]
Fuel Composition [vol%] | |
---|---|
Methane (CH4) | 87 |
Ethane (C2H6) | 8.46 |
Nitrogen (N2) | 3.65 |
Hydrogen (H2) | 0.36 |
Carbon dioxide (CO2) | 0.34 |
Carbon monoxide (CO) | 0.09 |
Oxygen (O2) | 0.07 |
Ethylene (C2H4) | 0.03 |
Lower heating value [kJ/kg] | 46,280 |
Nominal Parameters | 3PRH | 2P | 1P |
---|---|---|---|
GT inlet air (kg/s) | 501.2 | 132.3 | 407.7 |
Compressor pressure ratio | 18 | 21 | 13.2 |
Turbine inlet temperature (°C) | 1357.2 | 1310.2 | 1179 |
GT exhaust mass flow (kg/s) | 514.2 | 135.3 | 416.1 |
GT exhaust temperature (°C) | 648.1 | 569.5 | 541 |
ST-HP conditions (bar/°C) | 181.2/566.1 | 50/520 | 50/520 |
ST-IP conditions (bar/°C) | 42.6/566.1 | - | - |
ST-LP conditions (bar/°C) | 4.4/280.8 | 6/259 | 5/231 |
Condenser pressure (bar) | 0.069 | 0.08 | 0.08 |
Nominal Parameters (90% Capture Rate) | 3PRH | 2P | 1P |
---|---|---|---|
Rich solvent flow rate (kg/s) | 1226.5 | 142.6 | 396.3 |
Solvent consumption (kg/s) | 0.0245 | 0.00285 | 0.00793 |
Heating steam flow rate (kg/s) | 92.25 | 10.83 | 30.39 |
Heating steam quality * (bar/°C) | 4.4/283 | 4.4/227 | 5/231 |
CO2 captured (kg/s) | 61.33 | 7.13 | 19.82 |
SRD (MJ/kg CO2) | 3.279 | 3.312 | 3.342 |
Condensate return ** (bar/°C) | 1.9/118 | 2.4/126.6 | 2.4/126.6 |
GT Load (%) | 3PRH | 2P | 1P | ||||||
---|---|---|---|---|---|---|---|---|---|
w/o PCC (MW) | with PCC (MW) | ∆ (%) | w/o PCC (MW) | with PCC (MW) | ∆ (%) | w/o PCC (MW) | with PCC (MW) | ∆ (%) | |
20 | 195.5 | 165.4 | 15.4 | 20.3 | 16.7 | 18.2 | - | - | - |
30 | 272.1 | 235.8 | 13.4 | 28.6 | 24.2 | 15.3 | - | - | - |
40 | 338.7 | 296.0 | 12.6 | 36.1 | 31.0 | 14.3 | - | - | - |
50 | 403.9 | 354.4 | 12.3 | 43.0 | 37.1 | 13.7 | 115.5 | 98.4 | 14.9 |
60 | 467.2 | 410.7 | 12.1 | 49.7 | 43.1 | 13.2 | 132.9 | 113.9 | 14.4 |
70 | 529.4 | 465.6 | 12.0 | 56.3 | 49.0 | 13.0 | 149.3 | 128.4 | 14.1 |
80 | 588.4 | 517.0 | 12.1 | 62.2 | 54.1 | 12.9 | 165.4 | 142.4 | 14.0 |
90 | 643.5 | 563.8 | 12.4 | 67.9 | 59.2 | 12.9 | 181.0 | 156.1 | 13.9 |
100 | 708.9 | 621.6 | 12.3 | 74.5 | 65.0 | 12.8 | 196.2 | 169.2 | 13.8 |
GT Load (%) | 3PRH | 2P | 1P | ||||||
---|---|---|---|---|---|---|---|---|---|
w/o PCC (%) | with PCC (%) | ∆ (pp) | w/o PCC (%) | with PCC (%) | ∆ (pp) | w/o PCC (%) | with PCC (%) | ∆ (pp) | |
20 | 45.22 | 38.25 | 6.97 | 36.85 | 30.14 | 6.71 | - | - | - |
30 | 50.57 | 43.82 | 6.75 | 42.35 | 35.89 | 6.46 | - | - | - |
40 | 53.13 | 46.44 | 6.69 | 45.65 | 39.13 | 6.52 | - | - | - |
50 | 54.95 | 48.22 | 6.73 | 47.67 | 41.15 | 6.52 | 45.71 | 38.91 | 6.8 |
60 | 56.22 | 49.43 | 6.79 | 49.26 | 42.74 | 6.52 | 47.1 | 40.31 | 6.79 |
70 | 57.16 | 50.3 | 6.86 | 50.52 | 43.97 | 6.55 | 48.15 | 41.34 | 6.81 |
80 | 57.74 | 50.75 | 6.99 | 51.43 | 44.79 | 6.64 | 49.02 | 42.17 | 6.85 |
90 | 57.98 | 50.81 | 7.17 | 52.21 | 45.48 | 6.73 | 49.75 | 42.84 | 6.91 |
100 | 58.63 | 51.42 | 7.21 | 53.08 | 46.3 | 6.78 | 50.36 | 43.39 | 6.97 |
GT Load (%) | 3PRH | 2P | 1P | |||
---|---|---|---|---|---|---|
w/o PCC | with PCC | w/o PCC | with PCC | w/o PCC | with PCC | |
kg CO2/MWhn | ||||||
20 | 450.1 | 53.2 | 553.3 | 67.6 | - | - |
30 | 401.8 | 46.4 | 480.3 | 56.7 | - | - |
40 | 382.3 | 43.7 | 445.2 | 51.9 | - | - |
50 | 369.5 | 42.1 | 426.3 | 49.4 | 444.8 | 52.2 |
60 | 361.0 | 41.1 | 412.4 | 47.5 | 431.6 | 50.4 |
70 | 355.0 | 40.4 | 402.0 | 46.2 | 422.1 | 49.2 |
80 | 351.5 | 40.0 | 394.9 | 45.3 | 414.6 | 48.2 |
90 | 350.0 | 39.9 | 389.1 | 44.7 | 408.6 | 47.4 |
100 | 346.1 | 39.5 | 382.6 | 43.9 | 403.6 | 46.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savoldelli, E.; Ravelli, S. Evaluating the Impact of CO2 Capture on the Operation of Combined Cycles with Different Configurations. Energies 2024, 17, 3501. https://doi.org/10.3390/en17143501
Savoldelli E, Ravelli S. Evaluating the Impact of CO2 Capture on the Operation of Combined Cycles with Different Configurations. Energies. 2024; 17(14):3501. https://doi.org/10.3390/en17143501
Chicago/Turabian StyleSavoldelli, Elena, and Silvia Ravelli. 2024. "Evaluating the Impact of CO2 Capture on the Operation of Combined Cycles with Different Configurations" Energies 17, no. 14: 3501. https://doi.org/10.3390/en17143501
APA StyleSavoldelli, E., & Ravelli, S. (2024). Evaluating the Impact of CO2 Capture on the Operation of Combined Cycles with Different Configurations. Energies, 17(14), 3501. https://doi.org/10.3390/en17143501